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Abstract: D-penicillamine (D-PA) is a sulfur-containing drug that has been used for various health
conditions. However, like any medication, overdosing on D-PA can have adverse effects and may re-
quire additional treatment. Therefore, developing simple and sensitive methods for sensing D-PA can
play a crucial role in improving its efficacy and reducing its side effects. Sensing technologies, such
as electrochemical sensors, can enable accurate and real-time measurement of D-PA concentrations.
In this work, we developed a novel electrochemical sensor for detecting D-PA by modifying a carbon
paste electrode (CPE) with a multi-walled carbon nanotube-Co3O4 nanocomposite, benzoyl-ferrocene
(BF), and ionic liquid (IL) (MWCNT-Co3O4/BF/ILCPE). Cyclic voltammetry (CV), differential pulse
voltammetry (DPV), and chronoamperometry (CHA) were employed to explore the electrochemical
response of D-PA on the developed sensor, the results of which verified a commendable electrochemi-
cal performance towards D-PA. Under optimized conditions, the developed sensor demonstrated
a rapid response to D-PA with a linear dynamic range of 0.05 µM–100.0 µM, a low detection limit
of 0.015 µM, and a considerable sensitivity of 0.179 µA µM−1. Also, the repeatability, stability, and
reproducibility of the MWCNT-Co3O4/BF/ILCPE sensor were studied and showed good characteris-
tics. In addition, the detection of D-PA in pharmaceutical and biological matrices yielded satisfactory
recoveries and relative standard deviation (RSD) values.

Keywords: electrocatalytic mechanism; multi-walled carbon nanotubes; Co3O4 nanoparticles; ionic
liquid; benzoyl-ferrocene; carbon paste electrode; D-penicillamine

1. Introduction

Today, drug analysis is a crucial aspect of scientific research. Drugs are highly diverse
compounds with varying chemical structures and properties. The chemical structure of a
drug specifies its physicochemical properties as well as its absorption, distribution, and
metabolism while also influencing its pharmacological activity and effectiveness. The
effectiveness and performance of these compounds are highly dependent on dosage. Each
drug has a therapeutic range; the presence of the drug in lower concentrations has weak
effects on patients, while higher concentrations cause side effects that can be dangerous for
patients. Therefore, determining trace amounts of drugs in pharmaceutical compounds and
biological fluids including plasma, blood serum, and urine is one of the ways to prevent
side effects and increase the therapeutic properties of drugs, and it has a great impact on
public health. In addition, drug analysis has a significant role in the drug development
process by ensuring the safety, quality, and efficacy of new drugs.

The hydrolytic degradation of penicillin leads to the formation of penicillamine (PA),
a potent chelating agent that has various therapeutic applications and reacts with diverse
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heavy metals. PA is of great significance in the pharmaceutical field because of its appre-
ciable metal-binding capability [1–3]. Penicillamine is an amino acid containing a thiol
group that exists in both D and L enantiomeric forms, each with distinct biological and
toxicological properties. D-penicillamine is the pharmaceutical form of penicillamine but
the L-penicillamine form is toxic as it inhibits the action of pyridoxine. D-PA is extensively
prescribed to treat Wilson’s disease (hepatolenticular degeneration) and some other condi-
tions such as primary biliary cirrhosis, rheumatoid arthritis, progressive systemic sclerosis,
fibrotic lung diseases, scleroderma, heavy element poisoning, and cystinuria [4–6]. It
inhibits the activity of macrophages, which in turn lowers the T-lymphocyte count, inhibits
collagen from cross-linking, and reduces rheumatoid factor. Routine dosage of this drug
for humans ranges from 0.5 to 2 g/day. Despite the positive effects of D-PA, its excessive
use can be associated with serious complications like anorexia, oral ulceration, nephrotic
syndrome, loss of taste, hematological problems, skin rashes, and glomerulonephritis,
especially nephrotic syndrome [7–10]. In this respect, it is important to design and develop
a quick, accurate, sensitive, and low-cost analytical method for the determination of D-PA.

There have been various techniques for the detection of D-PA in various matrices, some
of which are high-performance liquid chromatography with electrochemical (HPLC-EL)
detection [11], HPLC with fluorescence (HPLC-FL) detection and capillary electrophore-
sis with laser-induced fluorescence (CE-LIF) detection [12], chemiluminescence detec-
tion [9], colorimetric detection [13], fluorescence detection [14,15], and electrochemical
detection [5,16–24]. However, some of these techniques suffer from some shortcomings,
i.e., high cost, time consumption, and difficult pretreatment.

Electrochemical approaches have attracted further attention because they are highly
sensitive, highly selective, rapid, affordable, and easy to use [25–27]. In recent years,
various electrochemical sensors have been developed for analyte detection. However, high
potentials are needed for electro-oxidation of diverse analytes on bare electrodes, with
slow kinetics. In electrochemistry, modifying electrode surfaces is a key phase that could
potentially solve or eliminate the mentioned bottlenecks [28–32].

Carbon-based electrodes like carbon paste electrodes (CPEs) with chemical inertness,
simplified construction, rapid surface renewal, broad potential window, and affordability
have been extensively exploited as diverse pharmaceutical and biological species sensor.
The surface of CPE can be modified chemically by adding various materials to improve
selectivity, rapidity, and sensitivity [33–35]. The concurrent modification of electrodes using
ionic liquid, nanomaterials, and other conductive mediators introduces novel means to
measure selective pharmaceutical formulations [36–39].

Nanotechnology is a rapidly developing scientific field that involves manipulating,
controlling, and reforming materials at distinctive levels to effectuate new properties and
capacities that generate interesting applications. Rapid progress in nanotechnologies has
led to the wide application of this technology in several fields like medicine, catalysis,
and energy [40–45]. Reducing the size of materials to the nanometer scale increases sur-
face area and leads to new developments like great electro-conductivity [46–48]. Metal
oxide nanoparticles are popular because their particle size, crystallite size, morphology,
and crystalline phase can control their physicochemical features [49]. The popularity of
cobalt oxide nanoparticles (Co3O4 NPs) can be attributed to their biocompatibility, large
surface area, chemical stability, green nature, admirable conductivity, electronic profile,
availability, electrical catalytic performance, antifouling capacity, and affordability [50].
Carbon nanomaterials have been widely studied as an emerging class of materials and
have attracted attention across many different fields for their excellent electrical, optical,
thermal, mechanical, and chemical properties and versatile applications. Since the discov-
ery of carbon nanotubes (CNTs) by Iijima (1991), they have gained popularity in chemical,
physical, and materials fields due to their unique structural, chemical, mechanical, and
electronic properties [51]. Such unparalleled features, along with the use of catalyst support
for size and dispersion control, accelerated electron transfer, strong electrocatalytic perfor-
mance, great thermal conductivity, appreciable biocompatibility, and excellent interfacial
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adsorption features have elevated CNTs as semiconductor materials for the fabrication of
electrochemical sensors [52,53]. Following chemical functionalization, multi-walled carbon
nanotubes (MWCNTs) possess commendable adsorptive ability, catalytic performance,
and electron transfer, thereby making them a promising platform for metals and metal
nanoparticles. The CNTs/metal oxide nanoparticle composites offer great electrochemical
responses for electrochemical sensors because of the best aspect ratio, biocompatibility, and
electro-conductivity [54,55].

Ferrocene (Fc) and relevant derivatives have spurred extensive interest in the field of
electroanalysis owing to their commendable redox behavior. Fc derivatives are attractive
electrochemically active materials and the redox reaction of Fc+/Fc is completely reversible,
so it has been employed in the construction of chemically modified electrodes [56–58]. Ionic
liquids (ILs) are salts that are in a liquid state below 100 ◦C and are composed of organic
cations and (in)organic anions. They have a nearly unlimited range of structural diversity
and physicochemical properties that can be altered through the appropriate selection and
modification of cations and anions. Over the past few decades, ILs have gained significant
attention due to their unique characteristics and have become adaptable and novel materials
for various applications. They are being used in multiple fields such as catalysis, material
synthesis, photoelectric transformation, separation, and energy storage. More specifically,
due to their unique properties, ILs have been used in many electrochemical applications,
including electrocatalysts, electrochemical deposition, electrochemical equipment, and
sensors. ILs have interesting features such as high thermal stability, high conductivity,
and greater solubility than other electrolytes. Their non-flammability, low volatility, and
also their electrochemical and thermal stability have made them suitable for making
electrochemical sensors [59]. In general, the most characteristic features of ILs for use in
the fabrication of electrochemical sensors and biosensors include a wide electrochemical
window and high electrical conductivity.

Considering this, in this work, we demonstrate a sensitive D-PA electrochemical sensor
through the synergetic effect of a MWCNT-Co3O4 nanocomposite, benzoyl-ferrocene (BF),
and IL. The modified CPE provides high electrochemical performance towards D-PA.
The proposed MWCNT-Co3O4/BF/ILCPE sensor exhibits the characteristic properties of
individual components toward the oxidation of D-PA, the results of which highlighted
acceptable sensitivity towards D-PA in real specimens. The novelty of the presented
research is the application of the MWCNT-Co3O4 nanocomposite, BF, and IL as modifier
species for the modification of CPE and its utilization for D-PA determination. Also,
it should be noted that, to the best of our knowledge, no attempts have been made to
investigate the applications of MWCNT-Co3O4/BF/ILCPEs as an electrochemical sensing
platform for D-PA.

2. Experimental Design
2.1. Equipment and Materials

Electrochemical techniques such as CV, DPV, and CHA were carried out at ambi-
ent temperature with an Autolab potentiostat/galvanostat (PGSTAT302N, EcoChemie,
Utrecht, The Netherlands), controlled by GPES 4.9 software. The techniques were per-
formed using a three-electrode electrochemical cell consisting of three electrodes: (a) a
working electrode (MWCNT-Co3O4/BF/ILCPE and other CPEs), (b) a reference electrode
(Ag/AgCl/KCl (3.0 M)), and (c) an auxiliary or counter electrode (platinum wire). A pH
meter (Metrohm type 713, Herisau, Switzerland) was applied to accurately measure the
pH of different solutions. All solvents and chemicals were of analytical grade and used
without further purification.

The synthesis and characterization of the MWCNT-Co3O4 nanocomposite was re-
ported in our previous work [60].
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2.2. Preparation of MWCNT-Co3O4/BF/ILCPE

To obtain the best conditions in the preparation of the MWCNT-Co3O4/BF/ILCPEs,
we optimized the ratio of BF, IL, and MWCNT-Co3O4. Our results show that the max-
imum peak current intensity of D-PA could be obtained at the surface of the MWCNT-
Co3O4/BF/ILCPE with an optimum ratio of BF, IL, and MWCNT-Co3O4.

For the preparation of the MWCNT-Co3O4/BF/ILCPE, appropriate amounts of BF
(0.01 g), graphite powder (0.94 g), and MWCNT-Co3O4 nanocomposite (0.05 g) were hand-
mixed. Then, paraffin (0.6 mL) and IL (0.2 mL) were added in the resulting mixture,
followed by hand-mixing well for at least 30 min to prepare a homogeneous paste. In the
next step, the prepared homogeneous carbon paste was packed into a glass tube. A copper
wire was inserted into the carbon paste for electrical contact. After fabrication, the surface
of the modified CPE was polished on weighing paper and cleansed using deionized water.

Moreover, the preparation of unmodified CPE (in the absence of IL, BF, and MWCNT-
Co3O4 nanocomposite), MWCNT-Co3O4/CPE (in the absence of IL and BF), BF/ILCPE
(in the absence of MWCNTs/Co3O4 nanocomposite), and MWCNT-Co3O4/ILCPE (in the
absence of BF) was performed similar to the preparation of MWCNT-Co3O4/BF/ILCPE.

2.3. Preparation of Pharmaceutical (D-PA Capsules) and Biological (Urine) Samples

For the preparation of the sample solution for determining D-PA in pharmaceutical
formulations, the contents of five capsules (D-PA = 250 mg/capsule) were completely
grounded and homogenized to a fine powder using mortar and pestle. Then, a portion
of the powder corresponding to the weight of the contents of one capsule was weighed
and dissolved in a certain amount of deionized water by ultrasonication (30 min). After
complete dissolution, this solution was filtered through a filter paper. Next, the resulting
supernatant was collected and diluted with PBS (pH = 7.0). Finally, the prepared solution
was input into the electrochemical cell and used for D-PA determination by the standard
addition method.

Urine samples obtained from healthy volunteers were centrifuged at 2000 rpm for
10 min. Then, the collected supernatant was filtered using a paper filter (0.45 µm) and
diluted with 0.1 M PBS (pH = 7.0). The prepared sample was used for analysis by spiking
the known concentration of D-PA.

3. Results and Discussion
3.1. Evaluation of the Electrocatalytic Activity of MWCNT-Co3O4/BF/ILCPE towards D-PA

To examine the effect of the phosphate-buffered solution (PBS) pH on the electrochem-
ical response of D-PA (50.0 µM), measurements were performed using DPV across the pH
range 2.0 to 9.0 (Figure 1). The results on the MWCNT-Co3O4/BF/ILCPE surface showed
that changing the pH of the buffer solution also changed the oxidation peak current (Ipa)
of D-PA (Figure 1 (Inset)). The best Ipa for D-PA was obtained at pH 7.0.

To investigate the electrochemical response of the D-PA (50.0 µM) on the surface
of various electrodes, CV studies were performed. The corresponding recorded voltam-
mograms (CVs) are shown in Figure 2. As can be seen, on the unmodified CPE in the
presence of D-PA, the oxidation of D-PA occurs with a wide and weak peak at a potential
of nearly 800 mV (voltammogram b), whereas no peak appears in the absence of D-PA
(voltammogram a). After modifying the CPE using the MWCNT-Co3O4 nanocomposite
in the presence of D-PA, the intensity of the oxidation current increased slightly and the
oxidation potential was observed to be around 770 mV (voltammogram d). In the next step,
the addition of the nanocomposite and IL to the composition of the CPE in the presence of
D-PA led to an increase in current intensity and a decrease in potential (voltammogram e)
compared to voltammogram d. Compared to the MWCNT-Co3O4/ILCPE, BF/ILCPE
(voltammogram f) in the presence of D-PA clearly displayed a higher electrocatalytic ac-
tivity towards D-PA (enhanced current intensity and reduced over-potential) due to the
electrocatalytic activity of BF. On the surface of MWCNT-Co3O4/BF/ILCPE in the presence
of D-PA, the anodic peak current that is observed for MWCNT-Co3O4/BF/ILCPE in the
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absence of D-PA (voltammogram c) increases greatly, while the corresponding cathodic
peak disappears on the reverse scan (voltammogram g). The D-PA oxidation occurs at
650 mV at MMWCNT-Co3O4/BF/ILCPE surface; therefore, it is shifted ~150 mV towards
a less positive potential compared to unmodified CPE. The oxidation current also sig-
nificantly increased. From the results shown in Figure 2, the voltammetric response of
D-PA on all the electrodes was evaluated and verified that the MWCNT-Co3O4/BF/ILCPE
provides a significant improvement over other electrodes by increasing the current intensity
and reducing the over-potential. These observations indicate that the electron transfer
process on the MWCNT-Co3O4/BF/ILCPE has been facilitated, which can be attributed
to the unique properties of the MWCNT-Co3O4 nanocomposite and IL, the electrocat-
alytic activity of BF, and their synergistic effects in the electron transfer process in D-PA
oxidation. In addition, based on these findings, we propose a catalytic mechanism for
the electrochemical oxidation of D-PA on MWCNT-Co3O4/BF/ILCPE, as illustrated in
Scheme 1. According to the proposed mechanism, during the electrochemical reaction at
the MWCNT-Co3O4/BF/ILCPE, an oxidized form of BF is generated and subsequently
acts as a catalyst for the oxidation of D-PA [61].
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Figure 2. CV responses of: (a) un-modified CPE in 0.1 M PBS (pH = 7.0); (b) as (a) + 50.0 µM D-PA; (c)
as (a) on the MWCNT-Co3O4/BF/ILCPE surface; (d) as (b) on the MWCNT-Co3O4/CPE surface; (e)
as (b) on the MWCNT-Co3O4/ILCPE surface; (f) as (b) on the BF/ILCPE surface; and (g) as (b) on the
MWCNT-Co3O4/BF/ILCPE surface. (In all cases, the scan rate was 10 mV s−1).

3.2. Influence of Scan Rate

The influence of the scan rate on the electrochemical responses of D-PA on the
MWCNT-Co3O4/BF/ILCPE was also assessed with the CV method by changing the scan
rate from 1 to 30 mV·s−1 (Figure 3). It is apparent that the Ipa increases as the scan rate in-
creases. From the observed CVs, a linear relationship was found between the electrocatalytic
current of the D-PA and the square root of the scan rate ν1/2 (Inset of Figure 3). This finding
demonstrates that the electrocatalytic oxidation of D-PA at MWCNT-Co3O4/BF/ILCPE is a
diffusion-controlled process.
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3.3. Chronoamperometric Analysis

The technique of chronoamperometry was utilized to determine the diffusion coeffi-
cient of an D-PA reaction. Figure 4 displays a set of graphs, known as chronoamperograms,
that were obtained at a constant potential (700 mV) by utilizing MWCNT-Co3O4/BF/ILCPE
in 0.1 M PBS (pH = 7.0) containing various D-PA concentrations. By using the Cottrell
Equation (I = nFACD1/2π−1/2t−1/2), the diffusion coefficient (D) can be achieved by plotting
the I versus t−1/2 (the plots of I vs. t−1/2 displayed straight lines for different concentrations
of D-PA) (see Inset A, Figure 4), where D (cm2 s−1) is the diffusion coefficient; I (µA) is the
current; C (mol cm−3) is the concentration; A (cm2) is the surface area of the electrode; F
(96,485 C mol−1) is the Faraday’s constant; t (s) is the time; and n is the number of electrons
transferred. Then, a curve can be plotted from a linear relationship between different D-PA
concentrations (0.1 to 1.0 mM) and the obtained slopes from Inset A (see Inset B, Figure 4),
leading to the calculation of a D value for D-PA (~8.2 × 10−5 cm2 s−1). The value of D is
compared to 3.569 × 10−6 cm2 s−1 [16], 5.9 × 10−4 cm2 s−1 [18], 3.25 × 10−5 cm2 s−1 [20],
3.3 × 10−5 cm2 s−1 [22], and 2.5 × 10−4 cm2 s−1 [24].
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3.4. Quantitative Analysis of D-PA by DPV

The sensitivity of MWCNT-Co3O4/BF/ILCPE for quantitative analysis of D-PA under
optimal conditions was assessed using DPV. The DPV responses of the developed CPE to
various concentrations of D-PA in 0.1 M PBS (pH = 7.0) are illustrated in Figure 5. The
observations indicated that the anodic peak current (Ipa) gradually increases with an in-
crease in D-PA concentration. This observation pinpoints the remarkable performance of
MWCNT-Co3O4/BF/ILCPE in the electrooxidation of D-PA. A plot between the concentration
of D-PA and Ipa illustrates a linear relationship (Inset of Figure 5). From the linear plot and the
corresponding linear regression equation Ipa (µA) = 0.179CD-PA + 9.1967 (R2 = 0.9994), the de-
tection limit (0.015 µM), linear range (0.05 µM to 100.0 µM), and sensitivity (0.179 µA/µM)
were estimated.

The LOD was calculated using the following equation:

LOD = 3Sb/m

where Sb and m represent the standard deviation of the response for the blank solution
(PBS (0.1 M)) and the slope obtained from the linear regression curve, respectively.

An evaluation of the performance of the MWCNT-Co3O4/BF/ILCPE sensor to a
number of electrochemical sensors reported in the literature for the determination of D-PA
is presented in Table 1. It could be seen that the method developed based on MWCNT-
Co3O4/BF/ILCPE provides the least LOD compared to the other reported works (Table 1).
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Thus, the present sensor with its good performance, fast and simple operation, and low-
cost equipment can be an excellent tool for D-PA determination in pharmaceutical and
biological samples.
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Table 1. Comparison of the performance of the MWCNT-Co3O4/BF/ILCPE sensor with other
reported works for D-PA determination.

Electrochemical Sensor Electrochemical
Method Linear Range Limit of

Detection Ref.

Polydiphenylamine@electrochemically
reduced graphene oxide/glassy

carbon electrode
Amperometry 1.4 µM–541 µM 0.10 µM [5]

Ni3S4/NiS2/MoOx composite/glassy carbon
electrode Amperometry 5 µM–796 µM 0.26 µM [16]
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Table 1. Cont.

Electrochemical Sensor Electrochemical
Method Linear Range Limit of

Detection Ref.

Au nanoparticle-reduced graphene
oxide/glassy carbon electrode DPV 5 µM–110 µM 3.9 µM [17]

Multi-walled carbon nanotubes/CPE in the
presence of methyldopa as a mediator

Square wave
voltammetry 0.2 µM–250.0 µM 0.1 µM [18]

Potassium iodide (mediator)/glassy
carbon electrode

DPV 9 µM–120 µM 3.5 µM
[19]

CV 30 µM–1500 µM 30 µM

Catechol (electrochemical indicator)/CPE
DPV 70 µM–1000 µM 50 µM

[20]
CV 100 µM–1000 µM 58 µM

Ferrocene carboxylic acid/CPE DPV 6.5 µM–100 µM 6.15 µM
[21]

CV 75 µM–1000 µM 60.4 µM

ZnIn2S4 nanoparticles/CPE Square wave
voltammetry 0.5 µM–80.0 µM 0.3 µM [22]

Cobalt salophen Schiff base complex/CPE Square wave
voltammetry 0.1 µM–100.0 µM 0.1 µM [23]

Multi-walled carbon nanotubes paste
electrode in the presence of chlorpromazine

as a mediator

Linear sweep
voltammetry 0.5 µM–500 µM 0.2 µM [24]

MWCNT-Co3O4/BF/ILCPE DPV 0.05–100.0 µM 0.015 µM This work

3.5. Stability, Repeatability, and Reproducibility of MWCNT-Co3O4/BF/ILCPE for the
Determination of D-PA

Essential requirements for designing and developing electrochemical sensors for practi-
cal applications include excellent repeatability, reproducibility, and long-term stability. The
stability of the developed sensor was evaluated by examining the current response of the
MWCNT-Co3O4/BF/ILCPE towards 50.0 µM D-PA every three days over 15 days (stored
in ambient temperature). The developed sensor exhibited only a slight decrease (3.9%) in
the last current response from its original current response after the 15-day storage. This
finding evidences that the developed sensor has good storage stability. To investigate the
repeatability of the MWCNT-Co3O4/BF/ILCPE sensor, the measurements were repeated
in 0.1 M PBS (pH = 7.0) containing 50.0 µM D-PA. Acceptable repeatability was obtained
with RSD of 3.2% after using the same sensor for five continuous measurements. The repro-
ducibility of the developed sensor was also evaluated by recording the current response
of five electrodes prepared independently under the same conditions. All five prepared
sensors showed similar responses and the RSD was 4.2% in the determination of D-PA. The
obtained results verify the acceptable reproducibility of the MWCNT-Co3O4/BF/ILCPE
for D-PA sensing.

3.6. D-PA Analysis in D-PA Capsules and Urine Samples

The MWCNT-Co3O4/BF/ILCPE was applied to detect D-PA in D-PA capsules and
urine to demonstrate its practical applicability. The contents of D-PA in samples were
detected by the standard addition method. The obtained typical voltammograms are
shown in Figure 6. Table 2 displays the obtained results. The acceptable recoveries (between
96.7% and 104.3%) and low values of RSD (between 1.8% and 3.4%) were obtained, which
suggests that the method used for detection is reliable and accurate.
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of real samples: (A) D-PA capsules spiked with different concentrations of D-PA (a: 0, b: 1.0, c: 2.0,
d: 3.0, and e: 4.0 µM) and (B) urine samples spiked with different concentrations of D-PA (a: 0, b: 5.0,
c: 6.0, d: 7.0, and e: 8.0 µM).

Table 2. Voltammetric determination of D-PA in D-PA capsules and urine samples using MWCNT-
Co3O4/BF/ILCPE (n = 5).

Sample Spiked
Concentration

Found
Concentration Recovery R.S.D. (%)

D-PA capsules

0 3.7 µM - 3.4%

1.0 µM 4.6 µM 97.9% 1.9%

2.0 µM 5.9 µM 103.5% 2.4%

3.0 µM 6.8 µM 101.5% 3.0%

4.0 µM 7.6 µM 98.7% 2.7%

Urine

0 - - -

5.0 µM 5.1 µM 102.0% 1.8%

6.0 µM 5.8 µM 96.7% 3.4%

7.0 µM 7.3 µM 104.3% 2.3%

8.0 µM 7.9 µM 98.7% 2.1%

4. Conclusions

The present attempt was made to prepare a new electrochemical sensor based on the
modification of CPE using MWCNT-Co3O4nanocomoisite, BF, and IL for electrocatalyti-
cally sensing D-penicillamine. The MWCNT-Co3O4 nanocomposite, IL, and BF produced a
voltammetric sensor with a large conductive surface area capable of accelerating electron
transfer and current signal amplification. This sensor displayed an admirable electrocat-
alytic ability towards D-PA oxidation. The developed MWCNT-Co3O4/BF/ILCPE sensor
exhibited a high sensitivity of 0.179 µA/µM with a wide linear range from 0.05 µM to
100.0 M, and a detection limit of 0.015 µM. Also, the MWCNT-Co3O4/BF/ILCPE sensor
displayed acceptable repeatability (five consecutive measurements with RSD of 3.2%),
reproducibility (five independent electrodes with RSD of 4.2%) and long-term stability
(with a 3.9% decrease from its original current response after 15 days). According to the
results from a practical assessment of the MWCNT-Co3O4/BF/ILCPE using spiked sam-
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ples, the sensor showed an acceptable recovery percentage range of 96.7–104.3% and RSD
values ≤ 3.4.
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