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Abstract: In a beamforming circuit for a modern broadband phased-array system, high accuracy
and compactness have received sufficient attention as they are directly related to side lobe level and
fabrication cost, respectively. In order to meet the low phase error required, this paper proposed
an ultra-broadband 6-bit digital step switched-type attenuator (STA) with capacitive/inductive
compensation networks. Compared to the conventional methods, the proposed technique employs
an improved simplified T-structure with capacitive compensation networks, which simultaneously
achieves low insertion loss and high-accuracy amplitude/phase control. In addition, on-chip level
shifting circuit is integrated to avoid complex control schemes. The strategy of prioritizing return loss
is adopted to alleviate the performance degradation caused by impedance mismatch after cascade.
As a proof-of-principle demonstration, a wideband 6-bit STA with core area of only 0.5 mm × 1.8 mm
was designed via 0.15-micrometer GaAs pHEMT technology. It exhibits ultra-broadband operation
with a 31.5 dB amplitude tuning range and a 0.5 dB tuning step. The insertion loss of the reference
state is 4–5.3 dB. The return loss is better than 15 dB for all the 64 states. The RMS amplitude and
phase errors are less than 0.2 dB and 2◦ over the 10 to 20 GHz.

Keywords: digital step attenuator; GaAs; low insertion loss; modified simplified T-type; phase
error compensation

1. Introduction

Phased arrays are widely adopted in modern radio-frequency (RF)-integrated sys-
tems such as radar remote sensing and low-orbit broadband satellite communication
applications due to their high-precision beam pointing, fast beam synthesis and scanning
capabilities [1,2]. These superior characteristics result from the transmit/receive (T/R)
components in each antenna unit. As one of the critical modules in phased-array T/R
design, the amplitude control circuits play an indispensable role in tuning the link gain
variation and suppressing the sidelobes [3–6]. Typically, its realizations can be classified
as active-type [7] and passive-type categories [8], which should be determined on the
basis of system specifications and performance requirements, including insertion loss (IL),
resolution, tuning range, operating bandwidth, amplitude/phase error, and compactness.
Compared to the method using a variable gain amplifier (VGA), the main-stream solutions
prefer digital-step attenuator (DSA) since it offers high linearity, high switching speed,
bidirectional wideband operation and fine amplitude control without any power consump-
tion [9,10]. Currently, there is still a wide demand for single DSA designs for the following
applications: (1) novel topologies specifically studied for DSAs to improve their RF perfor-
mance [6,8,11], which do not need to be integrated with other functional chips; (2) Off-chip
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integration is required for wideband multimode multichannel receiver systems where sev-
eral narrowband signals are multiplexed through a common attenuator; (3) Attenuator-first
software-defined radios (SDRs) for communication infrastructure require a single MMIC
DSA solution [12]; and (4) Customized DSA chip designs based on customer requirements
for different bands.

Several common passive DSA topologies have been reported in the literature [11–17],
including distributed [11,13], switched-path [14], and switched T-/π-/bridge T-type [15–17],
as illustrated in Figure 1. These networks form a two-state architecture with selectable
insertion paths through controlled RF switches, where the difference between the ILs of the
respective states is the desired attenuation value [18]. Compared to the distributed structure
exhibited in Figure 1d, other topologies with the advantages of a larger attenuation range
and smaller chip area are preferred. However, with regards to a high-frequency broadband
attenuator design, these structures critically suffer, gradually increasing amplitude/phase
variations, which restrict the operating bandwidth of traditional DSAs [19]. Moreover,
especially when cascading multi-stage units, the inter-stage impedance mismatch leads
to further worsening of the property. In order to address this issue, the literature [20–23]
elucidates the compensation methods and effects of π-type, T-type, bridge T-type and
distributed structures, and verifies the principle under different technologies. Nevertheless,
this solution still suffers from a high attenuator IL due to the presence of the transistor lossy
resistance Ron in the reference state, which is the reason why switching path designs should
be adopted with caution [5]. To put it simply, this high-precision compensation approach
comes at the cost of a high IL. Therefore, the realization of the amplitude tuning capability
with accurate phase compensation while simultaneously maintaining compactness and
low IL is an issue that needs to be addressed.
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Furthermore, the characteristic of RF switches also constitutes majorly to the attenua-
tor performance. These switches are achieved by utilizing CMOS [24,25], BJT/HBT [26,27],
and HEMT [28,29] transistors. Among the numerous processes available, the GaAs pseu-
domorphic high-electron mobility transistor (p-HEMT) process is generally preferred due
to its low switching loss and high isolation. Nevertheless, there is a serious concern that
a negative voltage is required to control the on/off operation of the transistor, which
is incompatible with conventional CMOS electrical level. Currently, to create positive
voltage-controlled DSAs for better digital compatibility, novel realization schemes have
been proposed in [30,31]. However, it affects the signals in the path and introduces reso-
nance points at extremely low-frequency, which is not expected. Therefore, a more efficient
form of positive voltage supply is highly demanded.
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To address the above-mentioned issues, a novel positive voltage-controlled 6-bit DSA
with low loss and high accuracy is proposed and designed in this paper, which mainly
consists of several different structures, including improved simplified T-type, improved
π-type, and switched-path. In contrast to conventional passive attenuators, the major
contributions of the proposed DSA are as follows: (1) an improved and simplified T-type
structure is utilized in place of the 0.5/1/2 dB attenuation units to provide low insertion
loss and accurate phase compensation while maintaining a compact layout. (2) Aiming at
the simplified T-type structure, the phase transfer characteristics as well as mathematical
expressions for various compensation types at different frequencies are investigated and
characterized for the first time, including the forms of series tail capacitor and shunt
bypass capacitor. Moreover, the applicable attenuation range of the modified structure
and the corresponding limiting factors are also analyzed and indicated. (3) the transfer
function of the π-type unit is analyzed and the corresponding mathematical expressions
are given to reveal the mechanism of bandwidth expansion. (4) In addition, the level
shifting structure based on direct-coupled FET logic (DCFL) circuit is proposed to realize
the positive voltage control of PHEMT transistor, which is favored to avoid a complex
control signal loading scheme and exhibits a simple structure and fast speed with extremely
low power consumption. Ultimately, this paper demonstrates a 10–20 GHz 6-bit DSA using
0.15-µm GaAs pHEMT technology.

2. The Adopted Technology

The proposed design is based on the commercial 0.15 µm GaAs p-HEMT process from
WIN Semiconductor Corp, whose cross-section on a GaAs substrate with a thickness of
100 µm and a dielectric constant of 12.9 is illustrated in Figure 2. It consists of air and SiN
layers (with a dielectric constant of 6.9) with thicknesses of 0.15 µm and 2.3 µm, respectively.
Two metal layers, from the top to the bottom, Metal-2, and Metal-1, have thicknesses of
4 µm and 1.33 µm, respectively. The technology provides thin-film resistors (TFRs) with a
square resistance of 50 ohms and is available in a variety of transistor models, including
coplanar waveguide (CPW) transistors, switching transistors, and E/D mode transistors
(for level shifting circuits). The Metal–Insulator–Metal (MIM) capacitor can be realized by
using via holes (via2) and double-metal layers. In addition, the high resistivity substrate,
low loss tangent and high conductivity metal layer can effectively reduce the dielectric loss
and conduction loss of all the above circuits. Consequently, the process is ideally suited for
MMIC designs with low noise amplifiers, mixers, attenuators and phase shifters.
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3. Modified and Simplified T-Type Structure Designed for Low Attenuation Units
3.1. Analysis of the Mechanism Contributing to the Phase Error

Among the various metrics of the DSAs, amplitude/phase characteristics, IL and
voltage standing wave ratio have received the most attention. Although T-type and π-type
structures can provide favorable control of attenuation accuracy with proper impedance
matching, there is no avoidance of the extra path loss introduced by the transistor on-state
resistance Ron. In order to achieve a high-precision attenuation cell with low IL in a compact
layout, we applied a simplified T-type cell, whose circuit model considering the parasitic
parameters is illustrated in Figure 3a. To clarify the mechanisms jeopardizing the phase
error of the unit branch, we start from the analysis of the proposed attenuator operated in
reference mode and attenuation mode, respectively.
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circuit for reference mode with series RCs; and (c) equivalent circuit for attenuation mode with
parallel RCs.

Figure 3b,c shows the equivalent circuits for the reference and attenuation states,
respectively. As immediately seen, when turned off (i.e., reference mode), the transistor
can be treated as a series connection of resistance Rs (i.e., Roff) and capacitance Cs (i.e., Coff),
which are characterized by the transistor’s parasitic parameters as

Rs =
Rp

(
Cgd + Cgs

)2

ω2RP2
(

CgdCgs + CgdCds + CgsCds

)2
+

(
Cgd + Cgs

)2 (1)

Cs =
CgdCgs + CgdCds + CgsCds

Cgd + Cgs
+

Cgd + Cgs

ω2RP2
(

CgdCgs + CgdCds + CgsCds

) (2)

where ω is the angular frequency of interest, and Rp, Cgs, Cgd and Cds represent the parasitic
resistance, gate-to-source parasitic capacitance, gate-to-drain parasitic capacitance and
drain-to-source parasitic capacitance of the transistor, respectively. In this case, since the
Coff is extremely small, it is the dominant component contributing to isolation between the
RF signal to ground. As a result, the phase characteristics exhibit a low-pass effect, which
can be calculated as the following equation:

θre f 1 = − tan−1

 ωCo f f Z0

2 + ω2C2
o f f Ro f f ,all

(
2Ro f f ,all + Z0

)
 (3)

where Z0 denotes the characteristic impedance and Roff,all = Roff + R1. On the other hand,
when the transistor is turned on (i.e., attenuation mode), it can be treated as a parallel
connection of resistance Rp (i.e., Ron) and capacitance Cp according to the equivalence
principle, which is derived as

Cp =
CgdCgs + CgdCds + CgsCds

Cgd + Cgs
(4)

At this point, the impedance of Cp is considerably larger to negligible compared to Rp,
thereby the parasitic inductance Ls (i.e., Lon, which contains metal lines connected to the
source and drain of the transistor) and Rp play a major factor, causing a high-pass effect. Its
equivalent phase in the attenuation mode is calculated as

θatt1 = tan−1

 ωLonZ0(Ron,all + Z0)

2ω2L2
onZ0 + Z0Ron,all

(
Ron,all +

1
2 Z0

)
 (5)

where Ron,all = Ron + R1. In addition, it is worth mentioning that the values of the transistor’s
parasitic parameters in the above equations are variable in the on/off state, leading to quite
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different behavior. From the comparison of Equations (3) and (5), it can be found that
there are opposite phase responses in the reference and attenuation modes, as previously
mentioned. Moreover, the phase error will worsen with increasing frequency, severely
limiting the application in high-frequency broadband circuits. In other words, an important
conclusion is revealed that the effect of inductance Lon needs to be minimized or eliminated
to optimize the phase error.

3.2. Proposed Structure of the Attenuator with Bypass Compensation Technology

For phase correction architecture, the two simplest compensation solutions are adding
additional series/shunt capacitors at the end of the branches. The modified switched
T-type attenuator with a series tail capacitor CT is shown in Figure 4a. Depending on the
equivalent circuit model, the transmission phases in the reference and attenuation modes,
respectively, can be calculated as follows:

θre f ,seri ≈ − tan−1

 Co f f CTωZ0

2
(

Co f f + CT

)
 (6)

θatt,seri = − tan−1 ωCT
(
1 − ω2CT Lon

)
Z0

ω2C2
T Ron,all(2Ron,all + Z0) + 2(1 − ω2CT Lon)

2

≈ − tan−1 K(CTω)

L(ωCT)
2 + M

(7)

where K, L, and M are ω-independent constants used to simplify the formula, since ω2 CT
Lon is generally considered to be much less than 1. Based on Equations (6) and (7), it can be
concluded that the presence of the tail capacitance significantly affects the transmission
phase characteristics of the attenuation mode and changes its polarity. However, the phase
effect on the reference mode is relatively insignificant since it has the same power in the
numerator and denominator. Therefore, this method can only achieve phase compensation
within a relatively narrow percentage bandwidth. Furthermore, using the same analytical
approach, another compensation method using a parallel bypass capacitor CB is shown in
Figure 4a, whose transmission phase function can be expressed as

θre f ,paral ≈ − tan−1

 Co f f ω
(

C2
BR2

pω2 + 1
)

2
(

C2
BR2

pω2 + 2Co f f CBR2
pω2 + 1

)
 (8)

θatt,paral ≈ − tan−1 O(CBω)

P(ωCB)
2 + Q

(9)

where O, P, and Q are also constants independent of ω. The above equations indicate
that parallel capacitor CB can similarly modify the polarity of the attenuation mode and
regulate its phase characteristics so as to make it as close as possible to the reference state
behavior. Hence, this parallel form performs an improved broadband phase compensation
characteristic compared to the tail capacitor, which shows consistency with the results
in [32]. In order to demonstrate this difference more intuitively, simulation comparison
experiments were performed and the corresponding results are illustrated in Figure 5.

Here, we take a 0.5 dB unit as an example. The switched transistor was selected as
1 × 15 µm since smaller sizes have less parasitic inductance and capacitances, which favor-
ing higher bandwidth. From Figure 5b, it can be observed that the broadband compensation
effect of CB is actually superior to that of CT, with the maximum variation decreasing from
0.67◦ to 0.09◦. Hence, the parallel capacitor structure was finally used for the DSA design.
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Figure 5. Simulated results: (a) S11; (b) phase error according to transistor on/off.

3.3. Design of 1 dB and 2 dB Attenuation Units with Low IL

Since the proposed simplified T-type structure avoids the introduction of transistors in
the on-state path, there is theoretically no resistor Ron to cause any loss to the signal. There-
fore, the modified structure was inherently allowed to maintain extremely low insertion
loss performance across a wide bandwidth. In addition, the same technique was employed
to form 1 dB and 2 dB attenuation cells in symmetrical arrangement. The corresponding
schematics are presented in Figure 6a,b, respectively, where inductors L1, L2 were utilized
to optimize the port matching.
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Based on the RF performance simulation results in Figure 7, it can be shown that the
0.5 dB and 1 dB as well as the 2 dB unit all achieved accurate amplitude and phase control
within 10–20 GHz, with maximum phase errors of 0.12◦, 0.24◦, and 0.34◦, respectively.
However, it is essential to note that this proposed approach of multiple parallel branches
is not applicable to the large attenuation case. According to Figure 7b, the standing
wave performance deteriorates significantly with increasing attenuation range, which will
severely aggravate the amplitude/phase characteristics after cascading (generally, the S11
of each unit needs to be controlled below −15 dB). The above issue is due to the fact that
parallel branches create a reduction in impedance that cannot be avoided. In addition, too
many branches will consume more area and thus nullify the compactness advantage.
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Figure 8 demonstrates the performance comparison between the proposed structure
and the conventional bridge T-type structure (as shown in Figure 7c) for 2 dB attenuation.
It can be seen that the two architectures had quite close phase shift errors. Although the
S11 of the proposed method was inferior to that of the conventional method, it was still
maintained at −17 dB, which has less impact on performance after cascading. Additionally,
based on the results in Figure 8a, the maximum IL of the proposed topology was only
0.32 dB, which is considerably lower than that of the conventional method (i.e., 0.9 dB),
validating the effectiveness of the improved method. In conclusion, the proposed structure
exhibited merits in the attenuation range below 2 dB, while other forms of topology were
required for large attenuation cells.
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4. High Attenuation Units and Level Shifter Structure Design
4.1. Analysis and Design of Modified π-Type and Switched-Path Type Structures for 4 dB, 8 dB
and 16 dB Units

From the discussion in Section 3.3, it is clear that the proposed structure was no longer
suitable for high attenuation cells. Instead, the π-type topology shown in Figure 9a was
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adopted as it has a larger bandwidth after compensation compared to the T-type topology.
According to the reference and attenuation state equivalent circuits in Figure 9b,c, the
transfer functions for their respective states can be derived as follows:

T(s)π,re f =
2Z0

[
1 + Co f f 2Rps

]2

(a1s + 1)(a2s + b2)
(10)

T(s)π,att =
2Z0

(
1 + Co f f 1Rss

)(
Rp + Ron2

)2(
Rp + Ron2 + Z0

)
(a3s + b3)

(11)

where a1 = Coff2(Rp + Z0), a2 = Coff2(c2Rp + Z0RB), b2 = 2Z0 + RB, RB =Rs||Ron1, a3 =
2Coff1RsZ0(Rp + Ron2), and b3 = Rs(Rp + Ron2 + Z0) + 2 Z0(Rp + Ron2). It is well known that
when zeros and poles occur at the same or a closely approximated frequency, they cancel
out each other and thus produce a flat response. As can be learned from Equations (10)
and (11), it is rather difficult to satisfy pole-zero cancelation relying solely on resistor
selection and transistor sizing. However, when additional compensating components
are introduced, more poles and zeros are tacked on to their numerator and denominator,
resulting in more opportunities for tuning. Here, we applied the compensation scheme
of the series inductor, as shown in Figure 9d. By analyzing the updated derived transfer
function, it is able to find the critical zeros and poles to obtain a flat amplitude/phase
characteristic. In order to visualize the effect and avoid complicated formulas, the simulated
performance of the 4 dB unit with various LT is given in Figure 10. In view of the results,
an appropriate increase in LT favored the bandwidth expansion of the relative attenuation,
while an optimal compensation value existed for the phase error. Therefore, the value of LT
needs to be considered as a tradeoff according to the actual situation. The initial values
of the parameters adopted for the 4 dB and 8 dB units are shown in Table 1, which are
relatively idealized components. Immediately, they should be further iteratively optimized
based on the co-simulation performance after cascade design.
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Figure 9. Schematics of (a) typical π-type structure1; (b) reference-state equivalent circuit;
(c) attenuation-state equivalent circuit; and (d) modified π-type with series inductor.

Table 1. Parameter values for 4 dB and 8 dB units.

Rs Rp L1 LT M1 M2

4-dB 21.3 Ω 109 Ω 86.5 pH 0.315 nH 4 × 50 µm 1 × 15 µm

8-dB 35.3 Ω 13.5 Ω 67.5 pH N/A 4 × 25 µm 1 × 15 µm
N/A Not applicable.
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As for the 16 dB unit, the attenuation is so large that either the π-type or T-type is no 
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Figure 10. Analyzed (a) relative attenuation and (b) phase variation of the 4 dB π-type unit with
various series inductances.

As for the 16 dB unit, the attenuation is so large that either the π-type or T-type
is no longer valid, so we employed the switched-path type in Figure 1c. The proposed
performances of the 4 dB, 8 dB and 16 dB units are shown in Figure 11, exhibiting good
accuracy in attenuation and phase error. However, their maximum ILs are 0.62 dB, 0.86 dB
and 2.15 dB, which are significantly higher than those of the modified T-structure previously
proposed in Section 3, and confirm the rationality of the modified scheme.
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4.2. Level Shifter Structure

The inability to directly utilize positive voltages for on/off control of the transistor
has shown poor digital compatibility for GaAs processes. Previous GaAs DSA designs
have used off-chip serial peripheral interface (SPI) chips/devices to control the gate signals,
which have the following drawbacks that have not yet been addressed: (1) additional gold
bonding wires are required, which may lead to deterioration of RF performance and consis-
tency; and (2) 6-bit DSAs demand 6-bit complementary controlled voltages, which means
that there are a total of twelve off-chip power supply lines, twelve DC probes of 0/−5 V
and corresponding on-chip pads for complexing the T/R modules, which dramatically
increases the chip area and testing difficulty. In addition, the design of on-chip logic circuits
should take into account both power consumption and cost. More complex GaAs-based
serial-to-parallel (S/P) conversion modules, for example, have not been employed since
their integration is much less than that of CMOS processes. In addition, p-HEMT transistors
have, theoretically, gate parasitic diodes, which result in input logic thresholds that are
sensitive to temperature (i.e., logic functions may fail at high temperatures), making the
S/P modules difficult to be verified. In order to avoid the aforementioned disadvantages,
this paper proposes an on-chip level-shifting circuit based on an integrated direct-coupled
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field-effect transistor logic (DCFL) structure with a compact layout of 450 µm × 350 µm,
whose circuit schematic and layout are shown in Figure 12a,b, respectively.
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designed using 0.15 µm GaAs pHEMT technology, and its schematic and corresponding 
layout are shown in Figure 14 and Figure 15, respectively. It has a total area of 1200 µm × 
1800 um, including six on-chip integrated level shifting circuits and all RF/DC pads, with 
the ATT having a core area of only 520 µm × 1800 um. During cascading of the units, 
deterioration in matching conditions can contribute to variations in performance, and 
hence, all the initial parameters are optimized (according to the electromagnetic simula-
tion results) over several iterations to ensure overall quality and stability. In addition, in 
order to make RF performance as close to the real situation as possible, the data for the 
on/off states of the switching transistors were measured and are provided by an on-wafer 
measurement system based on a four-port vector network analyzer Ceyear 3672E. 

 
Figure 14. Schematic of the proposed ultrawideband high-accuracy DSA. 

Figure 12. (a) Schematic and (b) layout of the level shifting circuit.

The level shifter circuit is composed of voltage converters and inverters, which consists
of E/D mode transistors (with opposite threshold voltage-temperature curves) to reduce
temperature sensitivity and improve circuit stability. In addition, the diodes are formed by
connecting the source and drain of the E-mode transistors. With the reference voltage Vref
fixed at −5 V, the circuit converts the incoming 0/5 V pulses into a pair of complementary
−5/0 V outputs simultaneously (i.e., Vout1 and Vout2), thus enabling positive voltage control
of the ATT and saving half of the DC power lines and probes. The corresponding time
domain transient simulation is illustrated in Figure 13.
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5. Broadband 6-Bit High-Accuracy Digital Step Attenuator

Combining the aforementioned broadband compensation technologies with an on-
chip level shifter structure, a novel 6-bit 10–20 GHz high-accuracy DSA was proposed and
designed using 0.15 µm GaAs pHEMT technology, and its schematic and corresponding
layout are shown in Figures 14 and 15, respectively. It has a total area of 1200 µm × 1800 um,
including six on-chip integrated level shifting circuits and all RF/DC pads, with the ATT
having a core area of only 520 µm × 1800 um. During cascading of the units, deterioration
in matching conditions can contribute to variations in performance, and hence, all the
initial parameters are optimized (according to the electromagnetic simulation results) over
several iterations to ensure overall quality and stability. In addition, in order to make
RF performance as close to the real situation as possible, the data for the on/off states of
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the switching transistors were measured and are provided by an on-wafer measurement
system based on a four-port vector network analyzer Ceyear 3672E.
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Figure 15. Overall view of the DSA with on-chip level-shifting circuit.

Figure 16a illustrates the relative attenuation for all 64 states, from which it can be
seen that the attenuator has a dynamic range of 31.5 dB and an amplitude resolution of
0.5 dB. In addition, there is no overlap between these various states, which exhibits a
favorable monotonic amplitude control performance. Figure 16b shows the phase variation
of each state with respect to operation frequency. All curves were limited to within ±3◦

from 10 to 20 GHz, demonstrating precise phase control and verifying the validity of the
proposed method.
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As observed in Figure 17a, the root-mean-square (RMS) error of attenuation had a
smooth response of 0.12 dB to 0.2 dB across the whole band, which also presented superior
amplitude control. Moreover, it can be noticed that the maximum RMS phase error within
the range of 10–20 GHz did not exceed 2◦, which verifies the feasibility of the proposed
structure for phase compensation. Figure 17b illustrates the IL of the design, i.e., S21 in the
reference state. Profiting from the prominent performance of the simplified T-structure in
the 0.5 dB to 2 dB units, the maximum IL is below 5.3 dB, with an average insertion loss of
4.65 dB. Moreover, according to the results of Figure 17c,d, the return losses of input and
output better than 15 dB in all states (cascading causes a deterioration of standing waves,
but still maintains the specification for engineering applications). Table 2 summarizes
the performance of the designed broadband DSA and compared with other reported
attenuators with state-of-the-art methods. Based on the reference data, it can be noticed that
the proposed positive voltage control DSA has a more compact core circuit with the same
or more attenuation units. Despite the addition of six on-chip logic circuits, the overall size
remains within acceptable limits, achieving the desired goal of significantly reducing the
phase error and insertion loss of the DSA without an appreciable increase in area.
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Table 2. Performance comparison with other attenuators.

Ref. [2] [33] [34] [35] # [28] # [36] # This work $

Freq. (GHz) DC-20 1–18 5–18 8.5–10.5 6–18 12–18 10–20

Integrated Control No No No No Yes Yes Yes

Technology 0.13 µm
BiCMOS

0.25 µm
GaAs

pHEMT

0.13 µm
GaAs

pHEMT

0.13 µm
CMOS

0.25 µm
GaAs

pHEMT

0.18 µm
GaAs

pHEMT

0.15 µm
GaAs

pHEMT

Attenuation range
(dB) 31.5 (6 bit) 15.5 (5 bit) 31.5 (6 bit) 30 (5 bit) 31.75 (7 bit) 15.5 (5 bit) 31.5 (6 bit)

IL (dB) 1.7–7.2 <5.7 <6.2 N.A. <9 5–7.5 4.0–5.3

RL (dB) >12 >10 >10 >11 >12 >12.5 >15

RMS amp. error
(dB) <0.37 <0.55 <1.1 <0.3 <0.6 <1 <0.2

RMS/Max phase
error (◦) 4/15 N.A./20 2/4 7/N.A. 5/7 2.2/N.A. 2/3

Area (mm2) 1.3 × 0.75 1.46 × 1.6 2.5 × 1.5 2.06 × 0.58 2.7 × 2 4.2 × 2.8 1.2 × 1.8
0.5 × 1.8 *

# Multifunction Chip; * Core circuit area without pads and non-active space; $ Simulation with measured
transistors.

6. Conclusions

In this paper, the phase characteristics of the simplified T-structure with different com-
pensation networks were revealed and their applicable attenuation ranges and constraints
were indicated. Due to the lossless behavior of the proposed structure on the path and the
broadband phase compensation performance, the designed DSA achieved relatively low
insertion loss and ultra-low phase error in the 10 to 20 GHz range. Additionally, on-chip
level-shifting circuits were incorporated to avoid the traditional complex electrical control
scheme and improve the reliability, making it ideal for highly integrated and broadband
transceiver front-ends.
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