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Abstract: Fiber lasers are commonly used in many industrial applications, such as cutting, welding,
marking, and additive manufacturing. In a fiber laser system, the driver of a pumping source using a
laser diode (LD) module and its dynamic control capability directly affect the performance of the
fiber laser system. The commercial design of pumping source drivers for high-power fiber lasers
is mainly based on a linear-type DC power supply, which has two major drawbacks, i.e., lower
efficiency and bulk. In this regard, this paper proposes for the first time a new design approach with a
programmable switching mode laser diode driver using a power semiconductor device (PSD)-based
full-bridge phase-shifted (FB-PS) DC-DC converter for driving a 200 W optical power laser diode
module. In this paper, the characteristics of a laser diode module and the system configuration
of the proposed laser diode driver are first introduced. Then, a current control scheme using the
concept of phase angle shifting to achieve a fast dynamic current tracking feature is explained. The
proposed current control technique with a fully digital control scheme is then addressed. Next,
dynamic mathematical models of the laser diode driver system and controllers are derived, and the
quantitative design detail of the controller is presented. To confirm the correctness of the proposed
control scheme, a simulation study on a typical control case is performed in PSIM 9.1 software
environment. To verify the effectiveness of the proposed LD driver, a digital signal processor is
then used as the control core to construct a hardware prototype implementation for performing
experimental tests. Results obtained from simulation and hardware tests show highly satisfactory
driving performances in the laser diode’s output current command tracking control.

Keywords: high-power fiber laser; laser diode driver; power semiconductor device (PSD); full-bridge
phase-shift converter

1. Introduction

The breakthrough in high-power fiber laser technology in recent years is an important
milestone in the history of laser development. Fiber laser technology can be applied in many
fields, including long-range wireless power transfer, communication, cutting, lithography,
heat treatment, military weapons, and more. In particular, high-power lasers are currently
used in thick steel welding for the manufacturing of vehicles, ships, and aircraft and the
assembly of wind turbine discs and shafts. The advantages of laser welding include deep
penetration, low heat input, high speed, fast cooling, and focused heating [1,2]. Laser
welding is superior to electron beam welding because of its immunity against a magnetic
field or vacuum environment, but it results in porosity in the object [3]. Laser paint stripping
(LPS) allows non-contact paint and coating removal and is highly efficient, low-damage,
simple to control, low-pollution, and immune to environmental issues [4]. Laser surface
hardening (LSH) makes the surface of an object hard and wear-resistant while avoiding
increased thickness. This technique results in low distortion of the hardened object, and
it is fast, accurate, highly reproducible, and clean [5]. Three-dimensional printing, also
known as additive manufacturing (AM), is highly competitive in the customization of
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products such as aerospace equipment, dental material, and microchannel heat sink. It is
time- and cost-saving and low-waste [6–9]. Other important techniques include selective
laser melting (SLM) [10] and laser metal deposition (LMD) [11].

Currently, most of the pumping sources adopt high-power semiconductor laser tech-
nology, also known as diode lasers, with wavelengths mostly in the range of 800 to 980 nm.
High flexibility, durability, efficiency, reliability, and small size are the main advantages
of a laser diode (LD). The quality and the control mechanism of an LD’s pumping source
directly affect the performance of the LD’s optical output. Since an LD is easily damaged
by overshoot or oscillation induced by switching devices, the design of the driving circuit
is especially important. It is required that the driver supplies a smooth current. There are
currently two driving modes for an LD: continuous mode (CM) and pulse mode (PM). In
general, PM is more favorable because it yields greater efficiency. However, it is crucial
to deal with overshoot and oscillation at the rising edge of a pulse, and the time delay
between reference signal and actual output [12].

Complete discussions and design examples of the pumping sources required for
fiber lasers are rarely found in the literature. At present, most of the patents on LD
drivers (LDDs) are aimed at low-power applications; exclusive high-power LDD circuit
design is even rarer. K. Jin and W. Zhou [13] reviewed recent progress of wireless laser
power transmission. It was pointed out that conventional linear drivers which employ
linear current regulators had low efficiencies and bulk volumes, and thus switched mode
LDDs were a good alternative. It was also suggested that PM driving yielded a better
performance. In [14], a Gallium Nitride (GaN) power transistor application used in driving
high-performance lidar performed well, and it was mentioned that the two best LDDs
for a lidar driving application are the capacitive discharge driver and the FET-controlled
driver. The advantages of capacitive discharge drivers included no thermal runaway and a
longer minimum pulse width, while the main advantage of FET-controlled drivers was the
higher maximum pulse repetition frequency (PRF). The method of driving high-power LD
arrays with a PM power supply was proposed in [14]. The power supply consisted of a
capacitor and a linear current regulator, and the proposed simple “micro-current pre-start”
control was effective for the elimination of overshoot and oscillation. A 25.6 kW prototype
was built and used to verify the control method. W. Zhou and K. Jin [15] evaluated
the efficiencies of CM driving and PM driving using a buck-boost converter and a buck
converter in parallel for the LD module M1F4S22-808-50C-SS2.7 by DILAS, where PM
yielded better performances in both simulation and implementation tests. In [16], a 50 A,
800 kHz PM current drive based on a single-stage switched-mode power supply (SMPS)
was built for two 2 V LDs in series. The absence of linear stages reduced power loss. A
GaN-based synchronous buck converter and a Si-based equivalent were studied in [17]
for the GaN’s application in high-power LDDs. Losses were reduced by optimizing the
dead-time, yielding highly promising results at a 700 kHz switching frequency in a 11 A,
300 W prototype.

This paper aims to present the design details of a 600 W continuous wave (CW) LDD.
The Section 2 will first explore the characteristics and equivalent load of the tested LD
module. The design of the LDD configuration and the required control algorithm will
be explained in the Section 3. In the Section 4, the operating modes of the proposed
driving circuit will be analyzed, and the control scheme will be explained. Then, the
necessary mathematical models will be derived for further quantification design of the
controller. Lastly, PSIM models of the complete LDD system along with its controller will
be established and used for simulation studies in which a scenario with a series of step
output variations is planned. Results obtained from experimental tests with the developed
hardware will be presented in the Section 5. Finally, this paper will be concluded in the
Section 6.
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2. Characteristics and Equivalent Load of the LD Module

In the testing phase of LDD development, if an actual LD module is used, it is likely
that the module will be damaged, and the price of a high-power LD module is very high.
Therefore, this paper uses an equivalent load made up of a number of diodes connected in
series and parallel in place of the LD. In addition, this method allows adjustable module
parameters for adapting different LD specifications. Commercial LD modules come in
a variety of types and with different V-I and P-I characteristics. In other words, there is
no specific load model that can emulate all types of LD modules. At present, most of the
related papers have focused on the LD’s performance and on how to improve the optical
power or reduce the threshold current for LDs; the V-I characteristics and its equivalent
circuit have not been discussed specifically. In this paper, we first use LD data from DILAS
to carry out a characteristic curve analysis. An equivalent load is then built to replace the
LD for follow-up implementation of this work. The characteristics of a general LD can be
roughly described as shown in Equation (1). If we consider the equivalent resistance of the
LD resonant cavity rs, Equation (1) can be expressed as Equation (2). Figure 1 shows the
characteristics of a DILAS 200 W LD. It is noted that the power conversion efficiency of the
DILAS LD module is about 47.5%. This means that an output of 100 W LD optical power
requires about 200 W input of electrical power, as shown in Figure 1.

I = I0(T)[exp(eV/nKBT)− 1]; (1)

V = (nKBT/e) ln{[I/I0(T)] + 1} − Irs, (2)

where I represents LD current, I0(T) represents reverse saturation current, n represents
the material ideal coefficient, KB represents the Boltzmann constant, e represents electron
charge, V represents voltage across the LD, T represents ambient temperature, and rs
represents resonant cavity equivalent resistance.
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Figure 1. The V-I and optical power curves of a DILAS 200 W LD.

3. LDD System Configuration

The V-I characteristics of an LD are similar to those of a general light-emitting diode
(LED), so their driving and control techniques should also be similar, including a voltage
clamp for protection and constant current control. However, the power of an industrial
LD is much higher than that of a general LED, and the voltage output is low, so circuit
configurations for general <200 W LEDs are not applicable in this case. The LDD driver
presented in this paper is rated at 600 W, with the output voltage and current 12 V and
50 A, respectively, and is also commonly used in server power (SP) applications. Feasible
configurations of a high-efficiency driving circuit topology in LDD applications include an
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LLC DC-DC converter, a series resonant (SR) DC-DC converter, and a full-bridge phase-shift
(FB-PS) DC-DC converter, as shown in Figure 2. Because the output voltage requirement of
the LD module is normally very low, in order to achieve high efficiency, the secondary side
should adopt synchronous rectification. Furthermore, it is required that the output current
is adjustable, and so resonant converters are less suitable because frequency adjustment
is required to enable an adjustable current, which narrows the adjustment range of the
system gain. Moreover, the efficiency of a resonant converter system will deteriorate when
it deviates from its resonance point.
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In this paper, the objective LD module demands a high current rise/fall rate (less than
1 ms). As a result, a fast current control technique is necessary. In this aspect, an FB-PS
converter can adjust the current output to control the load power by adjusting the phase
shift and duty ratio. It should be noted that the power flow control of the FB-PS DC-DC
converter is within a single quadrant, which is less favorable for fast current-fall control of
general loads; however, the LD module already has fast current-fall characteristics. Based
on this, the FB-PS DC-DC converter topology was chosen as the proposed LDD circuit
configuration. By controlling the phase shift angle between the leading leg and lagging
leg, the LDD’s output power can be controlled as desired. Secondly, to improve the quality
of current adjustment for the LD module, it is necessary for the control to incorporate
parameter adaptation, which is, in fact, hard to achieve with an analog circuit. As a result,
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the first and second stage of the proposed LDD circuit are integrated and controlled with a
fully digital control scheme. In addition to parameter adaptation, some energy management
strategies can also be integrated to reduce power losses, meeting Energy Star’s energy
consumption requirements.

4. FB-PS DC-DC Converter Design and Simulation

Figure 3 shows the circuit configuration of the proposed FB-PS DC-DC converter.
The primary side is connected to a DC bus, normally the DC terminal of an AC/DC
module, and the secondary side is connected to the LD module or its emulator. The main
components of this circuit include four power switching devices, i.e., QA to QD, a center-
tapped transformer, T1, two synchronous rectification switches, Q1 and Q2, a filter inductor,
Lo, and a capacitor, Co, and an external resonant inductor (Llk) and a capacitor (Cr), which,
with the parasitic capacitor of the power switch, form a resonant circuit, enabling zero-
voltage switching (ZVS) of the power switches. The control method of FB-PS converters is
different from that of conventional FB converters. The difference is that conventional FB
converters adopt pulse width modulation (PWM), while for FB-PS converters the pulse
phase modulation (PPM) is used in this design case.
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Figure 3. Schematic of the proposed LDD using the FB-PS DC-DC converter.

To design a secondary side rectifier, this study adopts a center-tapped rectifier and
replaces conventional rectifier diodes with low impedance MOSFETs to decrease power
losses. The control of synchronous rectifier switches can be divided into two types: the first
is self-driven control, where an auxiliary coil is added in order to directly drive the switches
on the secondary side; the second method is through PWM. Considering the flexibility for
future implementation, PWM is adopted in this paper.

4.1. Operating Status Analysis of the FB-PS DC-DC Converter

Figure 4 shows the operating waveforms of the different signals of the FB-PS con-
verter. In a complete switching cycle, there are twelve operating statuses according to the
behaviors of the switching devices. However, the twelve operating statuses can be divided
into two groups (statuses 1–6 and statuses 6–12) because they show a symmetrical form.
Therefore, only statuses 1–6 are described here.
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4.1.1. Operating Status 1 (t0 − t1)

During the first operating status, QA and QD on the primary side and Q2 on the
secondary side are on. Figure 5 shows the paths of current flows. Before t0, the transformer
primary side voltage equals the input voltage (VP = Vin). During this interval, output
inductor current ILo gradually increases.
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4.1.2. Operating Status 2 (t1 − t2)

During the second operating status, only QD on the primary side is on. Figure 6 shows
the paths of current flows. At t1, energy stops flowing to the secondary side. However, the
transformer and output inductor maintain the current flows. As a result, LO discharges,
and thus the current gradually decreases.
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Figure 6. Current flows during operating status 2.

4.1.3. Operating Status 3 (t2 − t3)

During the third operating status, QB and QD on the primary side are on. Figure 7
shows the paths of current flows. At t2, QB will be turned on first. When VDS of QB de-
creases to zero, QB is turned on, achieving ZVS. During this period, VP = 0, and the
secondary side keeps freewheeling through D1 and D2 , while most of the current flows
through D2 and ILo continues to decrease.
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Figure 7. Current flows during operating status 3.

4.1.4. Operating Status 4 (t3 − t4)

During the fourth operating status, only QB on the primary side is on. Figure 8 shows
the paths of current flows. At t3, QD is off, so the current flows in CD and CC. During
this period, VP equals the voltage across CD, so it increases from zero to Vin, while the
voltage across CC gradually discharges to zero. On the secondary side, the output inductor
maintains the current flows, so D1 and D2 are both off. As in the previous period, ILo
gradually decreases, while IQ2 decreases and IQ1 increases.

4.1.5. Operating Status 5 (t4 − t5)

During the fifth operating status, QB and QC on the primary side and Q1 on the
secondary side are on. Figure 9 shows the paths of current flows. At t4, because the voltage
across CC equals zero, DC is first turned on. When VDS has decreased to zero, a driving
signal is inputted to turn QC on, achieving ZVS. During this period, Vp equals −Vin. On
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the secondary side, the output inductor maintains the power flows, so D1 and D2 are both
on, while Q1 is on, and Q2 is off. Because primary side current is not able to support the
load current yet, ILo gradually decreases, while IQ2 decreases, and IQ1 increases until the
primary side current decreases to zero at t5.
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4.1.6. Operating Status 6 (t5 − t6)

During the sixth operating status, QB and QC on the primary side and Q1 on the
secondary side are on. Figure 10 shows the paths of current flows. At t5, Ip has decreased to
zero and starts to become negative, and Vp equals −Vin. During this time, QB and QC are
on, while Q1 is on, and Q2 is off. On the secondary side, the inductor continues to discharge,
and ILo continues to decrease and has completely switched from flowing through Q2 to
flowing through Q1.
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4.2. Control Architecture

The control architecture of the proposed FB-PS DC-DC converter is shown in Figure 11,
where the turn ratio is defined as follows: N = Np/Ns. The control of the two switching
legs adopts phase shift control. The leading leg (leg A) is used as the preference phase (0◦),
and the trigger of the lagging leg (leg B) and its phase shift is produced by the proposed
current controller. In this case, the load is an LD module; therefore only the phase shift is
always larger than zero.
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4.3. Transfer Function Derivation

The transfer function of the proposed FB-PS DC-DC converter can be obtained using
small signal models derived from the main operating statuses, i.e., operating statuses 1–4
which cover all the converter’s dynamics in the switching operations of all power electronic
switches. The complete system transfer function is also required to take into consideration
how the resonant inductor and rectifier inductor affect the secondary side duty cycle. It
should be noted that when the energy of the FB-PS DC-DC converter is transferred from
the primary side to the secondary side of the high-frequency transformer, there will be a
reduced working duty cycle (∆D) due to the influence of the resonant inductance. This
will affect the effective duty cycle (Deff) of the secondary side of the transformer. Taking
the reduced duty cycle into account, the small signal model of the FB-PS DC-DC converter
can be obtained. Refer to Figure 11 for the parameters and notations in the following
derivation. Figure 12a shows the derived AC signal model of the FB-PS DC-DC converter,
and Figure 12b shows the Laplace transform of the converter model. It is noted that the
Laplace transform of the model shown in Figure 12b was taken at the secondary side of the
transformer, with the primary side voltage reflexed to the secondary side. During operating
status 1, VSD1 = VSD2 = VD. Primary and secondary side voltages, filter inductor voltage,
capacitor current, and input current can be expressed as Equations (3)–(7), respectively.

Vp = Vin − 2Rds·iLo /N; (3)

VS2 = Vp/N = Vin/N − 2Rds · iLo /N2; (4)
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VLo (t) = Lo[diLo (t)/dt] = −VD + VS2 − Vo(t)
−Rdcr · iLo (t)
= −VD + Vin(t)/N − Vo(t)− Rdcr · iLo (t);

(5)

iCo (t) = Co[dVCo (t)/dt] = iLo (t)− [Vo(t)/RL]; (6)

iin(t) = iLo (t)/N, (7)

where VP represents primary side voltage, Vin represents input voltage, Rds represents
switch on resistance, iLo represents output inductor current, N represents turn ratio, VS2
represents secondary side voltage, VLo represents output inductor voltage, LO represents
output inductance, VD represents voltage across the body diode of S2, Vo represents out-
put voltage, Rdcr represents DC resistance of the output inductor, iCo represents output
capacitor current, Co represents output capacitance, VCo represents output capacitor volt-
age, RL represents load resistance, and iin represents input current. During operating
status 2, filter inductor voltage, capacitor current, and input current can be expressed as
Equations (8)–(10), respectively.

VLo (t) = Lo[diLo (t)/dt] = −VD − Vo(t)− Rdcr · iLo (t); (8)

iCo (t) = Co[dVCo (t)/dt] = iLo (t)− Vo(t)/RL; (9)

iin(t) = 0. (10)
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Figure 12. (a) AC signal model of FB-PS converter and (b) Laplace transform of the model.

During operating status 3, filter inductor voltage, capacitor current, and input current
equations are the same as during operating status 1. During operating status 4, according
to the inductor volt-second balance law and the capacitor ampere-second balance law, all
the above obtained equations are used to obtain the following average values. Here, we
define the amount of time taken by statuses 1–4 in a switching cycle as d1(t) through d4(t),
respectively. We know that d1(t) + d2(t) + d3(t)+ d4(t) = 1, and d2(t) + d4(t) = 1 − d1(t) − d3(t).
Then, we let d1(t) = d3(t) = d(t). As a result, Equations (8)–(10) are expressed as (11)–(13),
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respectively, and the average current in a switching cycle is expressed as Equation (14). The
definition for each of the perturbation terms of the parameters can be found in Appendix A.

⟨VLo (t)⟩Ts
= Lod⟨iLo (t)⟩Ts

/dt
=

[
−VD + Vin(t)/N − Vo(t)−

(
Rdcr + 2Rds/N2)iLo (t)

]
2d(t)

+[−VD − Vo(t)− Rdcr · iLo (t)] · [1 − 2d(t)]
= 2Vin(t) · d(t)/N − 4Rds · iLo (t) · d(t)/N2

−VD − Vo(t)− Rdcr · iLo (t)
= 0;

(11)

⟨iCo (t)⟩Ts
= Cod⟨VCo (t)⟩Ts

/dt
= [iLo (t)− Vo(t)/RL]d1(t) + [iLo (t)− Vo(t)/RL]d2(t)
+[iLo (t)− Vo(t)/RL]d3(t) + [iLo (t)− Vo(t)/RL]d4(t)
= iLo (t)− Vo(t)/RL = 0;

(12)

⟨iin(t)⟩Ts
= iLo (t)[d(t) + d(t)]/N

= 2iLo (t) · d(t)/N;
(13)

⟨iin(t)⟩Ts
= iLo (t)[d(t) + d(t)]/N

= 2iLo (t)d(t)/N
. (14)

Next, to obtain the small signal model, the parameter’s perturbation terms are consid-
ered, higher order terms are ignored, DC terms are removed, and the duty cycle reduction,
∆D, is taken into consideration. This process yields the small signal model and the Laplace
transform of the model in Figure 12. According to Figure 12b, Equation (15) can be obtained:

V̂o(s)/d̂(s)
= RL

(
2Vin/N − 4Rds · ILo /N2) · (sCoResr + 1)/A,

(15)

where
A = s2CoLo(RL + Resr)
+s[CoRL(Rdv + Rdsc) + CoResr(Rdv + Rdsc + RL) + Lo]
+(Rdc + Rdsc + RL),

(16)

Rdv = 2Rd − 4RdsRd ILo /NVin, (17)

Rdsc = Rdcr + 4RdsD/N2. (18)

Resr represents equivalent series resistance. Finally, the relationship between the duty cycle
and output current can be described as follows:

Îo(s)/d̂(s) =
(

2Vin/N − 4Rds · ILo /N2
)
(sCoResr + 1)/A, (19)

and the phase shift angle, θ, can be expressed as follows:

θ = [180/(Ts/2)] · DTs/2 = 180 · D. (20)

4.4. Controller Design for the Proposed LDD

In this design case, the proportional plus integral (PI) controller is used to design
the current loop controller, Gc(s). Here, the phase margin is designed at 76◦ and the
crossover frequency fc is selected at 2.7 kHz. The designed current controller is shown in
Figure 13. Here, kc is the sensing factor of the real-time output current (Io) of the FB-PS
DC-DC converter. Some key design equations of controllers can be found in Appendix A.
The objective of the designed current controller, Gc, is to output a control signal that is
equivalent to the phase shift (θ) of the controlled two switching legs of the FB-PS converter,
according to the tracking error of the output current (Io), i.e., θ = (i ∗o − io

)
.Gc.
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Figure 13. The proposed current controller.

4.5. Controller Quantification Design

The design specification of the proposed LDD with an FB-PS converter is as follows:
DC 12 V output voltage, DC 390 V input voltage, 50 A rated output current, 600 W rated
power, 65 kHz switching frequency, and 96% conversion efficiency. According to the
previous derivation, the controller is designed as shown in Equation (21). The current loop
Bode plot shown in Figure 14 verifies that the controller parameter satisfies the requirement
for system stability and the dynamic specifications of the FB-PS converter. It is noted that
a control system with good performance should have a phase margin above 45◦. In this
study, the PM of the current controller is finally designed at 76◦ to achieve the stability and
dynamic specification set for the proposed FB-PS DC-DC converter.

GC = 17.9483(s + 5.987k)/s. (21)
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4.6. PSIM Simulation of the FB-PS DC-DC Converter

To verify the correctness of the controller designed for the LDD, a simulation study
is used. Figure 15 shows the PSIM simulation model of the proposed LDD on the FB-PS
DC-DC converter. The simulated output condition sequence of the LDD is planned as
follows: full load (50 A), no load (0 A), half load (25 A), full load, half load, and no load.
The time duration for each output condition is 0.2 s. The sequence diagram is shown in
Figure 16. Figures 17–21 show the simulation results.
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Figure 17. (a) Current output/voltage output/phase shift and (b) current command and feed-
back/control error.
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Figure 18. (a) 0–25 A rise time, (b) 25–50 A rise time, (c) 50–25 A fall time, and (d) 25–0 A fall time.
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Figure 19. Ripples at (a) 25 A and (b) 50 A.
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Figure 20. Primary side currents and voltages at (a) 25 A and (b) 50 A.
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Figure 21. ZVS of the four switches at 50 A output. (a) the first pair, and (b) the secondary pair.

5. FB-PS DC-DC Converter Implementation
5.1. System Configuration and Hardware Test Environment

To further verify the performance of the proposed LDD, software–hardware integrated
implementation and analysis are conducted with a 600 W prototype circuit using a digital
signal processor (DSP) as the control core. The arrangement of the hardware system
implementation is as follows: a programmable AC power supply is used to emulate a
single-phase AC power source from the grid; the digital control unit consists of a PC and a
TI TMS320F28335 DSP controller; a multi-output voltage regulator provides ±15 V, 5 V, and
3.3 V power supplies for the ICs and the sensing circuits; a voltage-clamping diode circuit
is used to ensure input of 0–3 V for the AD module in the DSP; parameter monitoring is
realized with an isolated RS232 communication interface; and the oscilloscope in PSIM is
used for real-time observation. It is noted that a commercial high-power LD module is very
expensive and dangerous. For security reasons, an equivalent load using a high-current,
high-speed diode array (LD equivalent load) whose specifications are the same as the
200 W, 976 nm LD module from DILAS is utilized. A digital oscilloscope is used to measure
voltage and current waveforms in real time. Figure 22 presents the full experimental system
of the proposed LDD on a FB-PS DC-DC converter. Figure 22 shows the PCB layout, and
Figure 23 is a photograph of the experimental hardware.
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5.2. Experimental Test on LDD Switching Characteristics

To perform the full-load open-circuit test, the equivalent LD module using a 0.25 Ω is
first carried out. Figure 24 shows the waveforms of the trigger signals of QA–QD and their
respective Vds. Each time division of the horizontal axis is 5 µs. Channel 1 shows trigger
signal, Vgs, and channel 2 shows drain to source voltage, Vds.
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5.3. Experimental Test on LDD Driving Performance

For comparison purposes, the LD’s output current commands for the experimental
test are the same as those in the simulation scenario. Figures 25 and 26 show the measured
waveforms. The results show good similarity to the simulation results, and thus the
hardware design and the proposed control scheme are proven feasible and effective.
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fall time.

6. Conclusions

With advanced beam integration technology, the power output of fiber laser modules
can easily exceed 100 kW, and the development of potential applications of fiber laser and
the related driving technologies are highly anticipated. The laser power output of a high-
power fiber laser system is usually regulated by an appropriately designed pumping source,
whose control quality will directly affect the performance of the fiber laser system. This
paper has presented a complete design example of a programmable 600 W continuous wave
(CW) LDD that is aimed at driving an LD module with 200 W optical power. The proposed
LDD is developed based on a switching mode FB-PS DC-DC converter with a digital control
scheme, capable of outputting a 50 A step current command in less than 1 ms. In this study,
the design specification of the conversion efficiency set for the proposed LDD is 96% at the
rated power. Based on the records obtained from our experimental tests, the conversion
efficiency of the proposed LDD system is 96.5% at the rated power (600 W, 50 A/12 V), and
a peak efficiency of 97% is observed at the output power of 450 W (about 75% rated power).
This paper has explained the detailed working principles of the proposed LDD circuit, the
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dynamic model derivation of the system, and the quantitative design and verification of
the controller. The correctness of the designed controller and overall performance of the
LDD are verified through PSIM simulation studies and experimental tests with a hardware
prototype circuit to confirm compliance with the design goals. The current control case and
related measurements presented are sufficient to demonstrate that the performance of the
proposed circuit and control scheme satisfies various control functions and specifications in
LDD applications. It is important to note that the circuit configuration and control scheme
for tracking the LD current command proposed in this paper provide an important design
reference for engineers in related fields.
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Abbreviations

Vin DC input voltage
Cin Input capacitor
QA,B,C,D,1,2 Switching devices of the converter
DA,B,C,D,1,2 Intrinsic diode of the switching devices
CA,B,C,D,1,2 Drain-source capacitance of the switching devices
Llk Resonant inductor
VP Primary side voltage
IP Primary side current
T1 High-frequency transformer
IQ1,2 Currents of switches Q1,2
LO Output inductance
CO Output capacitor
Vo Output voltage
RLOAD Load resistance
NP Turn number of the primary side
NS Turn number of the secondary side
VS1 Secondary side upper part voltage
VS2 Secondary side lower part voltage
S1,2 Secondary side switches
VD Voltage across the body diode of switches
LD Laser diode
Io Output current
I∗o Command of the output current
V̂in Small signal of the input voltage
Vin Average value of the input voltage
ˆiin Small signal of the input current

Vqa,qb,qc,qd Drain to source voltage of the four switches
iin Input current
N Turn ratio of the transformer
d̂ Small signal of duty
De f f Effective duty
ˆiLo Small signal of the output inductor current

iLo Output inductor current



Micromachines 2024, 15, 31 19 of 20

V̂Lo Small signal of the output inductor voltage
VLo Output inductor voltage
Rds Switch on resistance
D Duty cycle
ˆiCo Small signal of the output capacitor current

iCo Output capacitor current
Resr Equivalent series resistance
V̂o Small signal of the output voltage
Rd Equivalent resistance of diode
Ts Switching period
Gc(s) Current controller
fc Crossover frequency
kc Sensing factor of the output current
ILD Average current of the LD
VLD Average voltage of the LD
Vconi The controlled phase shift
ILDc LD current command signal
ILDf Feedback signal of the LD current
Vpri Primary side voltage
Ipri Primary side current
I(QA),I(QB),I(QC),I(QD) Drain to source current of the four switches

Appendix A

Definitions of variables in the equations for mathematical model derivations:

⟨VLo (t)⟩Ts
= VLo + V̂Lo (t). (A1)

⟨iLo (t)⟩Ts
= ILo + îLo (t). (A2)

⟨Vin(t)⟩Ts
= Vin + V̂in(t). (A3)

⟨d(t)⟩Ts
= D + d̂(t). (A4)

⟨Vo(t)⟩Ts
= Vo + V̂o(t). (A5)

⟨VCo (t)⟩Ts
= VCo + V̂Co (t). (A6)

⟨iin(t)⟩Ts
= Iin + îin(t). (A7)

Key equations in the controller design of the FB converter:

HC(2π fC) = GainHC∠HC. (A8)

boostangle = PM −∠GC(2π fC)− 90◦. (A9)

z = 2π fC/ tan(boostangle). (A10)

GC(temp) = (s + z)/s. (A11)

GainGC = 1/
(

GainHC · GainGC(temp)

)
. (A12)

GC =
[
GainGC (s + z)

]
/s (A13)
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