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Abstract: Operational amplifiers (op-amps) are widely used in circuit systems. The increasing
complexity of the power supply network has led to the susceptibility of the power supply port to
electromagnetic interference (EMI) in circuit systems. Therefore, it is necessary to investigate the
electromagnetic susceptibility (EMS) of op-amps at the power supply port. In this paper, we assessed
the effect of EMI on the operational performance of op-amps through the power supply port by a bulk
current injection (BCI) method. Firstly, we conducted the continuous sine wave into the power supply
port by a current injection probe and measured the change in the offset voltage under EMI. Secondly,
we proposed a new method of conducted susceptibility and obtained the susceptibility threshold
regularities of the op-amps at the power supply port under the interference of different waveform
signals. Our study provided conclusive evidence that EMI reduced the reliability of the op-amp by
affecting the offset voltage of op-amps and demonstrated that the sensitivity type of op-amps was
peak-sensitive at the power supply port. This study contributed to a deep understanding of the EMS
mechanism and guided the design of electromagnetic compatibility (EMC) of op-amps.

Keywords: electromagnetic environmental effect; electromagnetic interference (EMI); electromagnetic
susceptibility (EMS); operational amplifier (op-amp); susceptibility threshold; voltage follower

1. Introduction

Recent advances in the field of integrated chip-manufacturing processes have fostered
the ever-increasing need for the development of reliable and high-performance operational
amplifiers (op-amps). Op-amps have become one of the most common electronic devices
in the field of analog and control integrated circuits [1–3]. At the front end of the signal
transmission link, the op-amp can sense and amplify the function of the input signal [4–7].
At the end of the signal transmission link, the op-amp enhances the drive capability of the
system and performs impedance conversion. The architecture of the signal transmission
link system is presented in Figure 1.

As chips become more integrated and data processing becomes faster, the electro-
magnetic interference (EMI) of chips must be methodically considered [8–10]. In addition,
integrated circuits face more complex electromagnetic environments [3,11]. Op-amps as
analog integrated chips are more susceptible to EMI [12,13]. The reliability of the op-amps
directly affects the reliability of the whole circuit system. Therefore, some investigations
have attracted more concern to reduce and improve the reliability of op-amps. For in-
stance, 4H-SiC fabrication technology enables op-amps to operate at high temperatures
with reliable performance [14,15]. An op-amp architecture that reduces the EMI effects has
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less EMI-induced offset [16–18]. Pseudo-differential inverters are commonly utilized to
lessen the common-mode gain of the op-amps and enhance the differential mode gain to
improve the common-mode rejection ratio of the op-amps [19]. The op-amp with symmet-
ric topologies is capable of increasing immunity against EMI [20]. Due to the variety of
interference sources in the electromagnetic environment, it is usually difficult to establish a
very accurate electromagnetic environment model [21–25].
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However, integrated circuits have many internal logic circuits and buffers. Their state
switching can cause significant voltage drops and ripples in the distribution network, and
supply voltage fluctuations can lead to severe EMC problems [26,27]. Prior research has
neglected the impact of interference signal waveforms on the EMS properties of opera-
tional amplifiers. In addition, most people were concerned about the effect of injecting
interference signals at differential inputs on op-amps, while injecting interference into
power supply ports is lacking [28]. Furthermore, most research on power supply ports
has only examined electrostatic discharges and low-frequency industrial-frequency signal
interference, neglecting to address the impact of high-frequency signals on power supply
ports. Moreover, the relationship between the electromagnetic susceptibility of op-amps
and the type of interfering signals has yet to be investigated. We analyzed the effect of the
type of interfering signal on the susceptibility threshold regularity of op-amps from several
typical interfering signal waveforms.

In this paper, we focused on the EM characteristics of op-amps to conduct electro-
magnetic interference injected through the power supply port. Firstly, the continuous sine
wave was injected into the power supply port, and the reliability of the op-amp reduced as
the offset voltage increased significantly when the interference signal intensity exceeded
the susceptibility threshold. Secondly, to obtain the comprehensive EMS of op-amps, five
different waveforms were injected into the power supply port, respectively, and it revealed
that the stability of the EMS threshold was essentially related only to the peak value and
frequency of the interfering signal, not the duty cycle and bandwidth. The findings greatly
contributed to the design of an electromagnetic protection of the op-amp.

The innovations of this paper can be summarized as four major aspects: (i) It was
confirmed that EMI through the power port affected the op-amp’s performance parame-
ters; (ii) In the conducted susceptibility tests, we employed several different interference
signals from the interference in the two standards MIL-STD-461G and GJB 151B-2013
to investigate the electromagnetic susceptibility characteristics of the op-amps [29,30];
(iii) Electromagnetic susceptibility threshold regularities of op-amps were found under sig-
nal interference of different waveforms; (iv) We discovered that the op-amp’s susceptibility
type was a peak type, and that the duty cycle and offset frequency of the modulated signal
had little effect on the electromagnetic susceptibility thresholds of op-amps.

The rest of this article is structured as follows. In Section 2, we analyze the internal
circuit characteristics of op-amps. Subsequently, we investigate the impact of EMI on
the offset voltage of op-amps. Additionally, we conducted experiments to assess the
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susceptibility of op-amps to conducted EMI. In Section 3, we analyze the EMS characteristics
under various waveform signals. In Section 4, we analyze the susceptibility and the
difference between the proposed and the traditional test methods. Finally, we deliver the
major conclusions.

2. Device and Experiment
2.1. Characteristics of Operational Amplifier Devices

The op-amp model SF158MD was used to examine the EMS features of the op-amp.
The op-amp was a monolithic integrated circuit fabricated using a bipolar process. Further-
more, the SF158MD chip internally consisted of two independently operating low-power
op-amps. Considering that the dual op-amps inside the SF158MD chip were manufactured
using the same craft, we believed that the dual op-amps had the same susceptibility charac-
teristics, so we selected one of the op-amps as the object of investigation. Figure 2a depicts
this op-amp’s pin arrangement and function. The op-amp’s internal circuit consisted of
four main circuit modules: differential input stage, intermediate gain stage, buffer output
stage, and bias circuit. The op-amp’s functional block diagram is shown in Figure 2b.
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The SF158MD we used is the same type of operation amplifier as the LM158, LM358B,
and LM358BA devices. By referencing the chip manuals, we found they had the same func-
tional structure with similar differential input circuits, current mirror circuits, intermediate
stage amplifier circuits, bias circuits, and buffer output circuits. Therefore, we considered
that their simplified op-amp circuits are similar. Figure 3 shows the simplified op-amp
circuit diagram. The purpose of the current mirror in the input stage was to supply an
arbitrary DC bias current to the integrated circuit (IC). Simultaneously, the current mirror
ensured that the output current Iout1 was constant. The function of the differential input
stage was to amplify differential signals and convert them into single-ended signals. The
formula for calculating the PN junction currents of the two transistors passing through the
current mirror is as follows. 

Ic3 = Is3

(
e

Vbe3
VT

− 1
)

Ic4 = Is4

(
e

Vbe4
VT

− 1
)

VT =
KT
q

(1)

In the differential input stage, two pairs of matched transistors, Q1–Q2 and Q3–Q4,
constituted a symmetrical circuit structure. Ic1, Ic2, Ic3, and Ic4 were the collector currents
of the differential input stage transistors Q1, Q2, Q3, and Q4, respectively. Ib3 and Ib4
corresponded to the base currents of Q3 and Q4, respectively. Moreover, transistors Q3 and
Q4 constituted a current mirror. A transistor had two PN junctions, of which Is was the
reverse saturation current of the PN junctions, Vbe was the applied voltage across the PN
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junction, VT was the voltage equivalent of the temperature, K was Boltzmann’s constant, T
was the temperature in Kelvin scale, and q was the charge of the electron. Since Q3 and Q4
were matched, Vbe3 = Vbe4, and Is3 = Is4. As shown below, we can obtain the relationship
between the two currents, Ic3 and Ic4.

Ic3 = Ic4 (2)

We may construct the relationship equation for Ic1, Ib4, Ib3, and Ib4 using Kirchhoff’s
Current Law (KCL), as shown below.

Ic1 = Ib3+Ib4 + Ic4

Ib3 =
Ic3

β3

Ib4 =
Ic4

β4

(3)

β3 and β4 were the current amplification factors of transistors Q3 and Q4, respectively.
Under the assumption that these two triodes were matched, β3 and β4 were the equal
β3 = β4 = β. Formula (4) can be derived from Formulas (2) and (3).

Ic1 = Ic4(
2
β
+ 1) (4)

If β >> 2, we can obtain Ic1 = Ic3 = Ic4. This ensures that the current mirror provides a
consistent output current Iout1, which keeps the op-amp operating at a stable performance.
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Figure 3. The simplified op-amp circuit diagram.

2.2. Op-Amp Offset Voltage Test under EMI

The offset voltage was a crucial op-amp performance indicator of the op-amp and
directly determined the operating state of the op-amp. The voltage follower circuit was
chosen to analyze the effect of EMI at the power supply port on the op-amp’s offset
voltage. The op-amp of the voltage follower acted as a buffer and did not amplify the
signal. Moreover, the output voltage of the voltage follower was the same as the input
voltage. The influence of EMI on op-amps was more easily detected by a voltage follower
composed of op-amps. The op-amp’s offset voltage test circuit under EMI is shown in
Figure 4a. We connected the non-inverting input port of the op-amp to the ground while
monitoring the input voltage values V1IN+ and the output voltage values V1OUT. Under
ideal conditions, the input and output voltages of the follower were both 0 V. The inverting
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input of the test circuit was directly connected to the output port. RF and RI represented
the internal impedances of the wiring, which were small enough to be ignored. The block
diagram of the op-amp offset voltage test is shown in Figure 4b. The experimental block
diagram comprised the following components: digital multimeter, spectrum analyzer, radio
frequency (RF) signal generator, RF power amplifier, DC power supply, ferrite core, bulk
current injection probe, monitor probe, SF158MD op-amp, and waveform generator.
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2.3. Op-Amp Conducted Electromagnetic Susceptibility Test

To investigate the EMS characteristics of op-amps during operation, we devised a
voltage follower circuit to analyze the op-amp’s electromagnetic susceptibility (EMS). The
circuit schematic is depicted in Figure 5a. The input signal Vin, produced by the waveform
generator was used as the operational input signal for the op-amp. The inverting input
of the test circuit was directly connected to the output port. RF’ and RI’ represented the
internal impedances of the wiring, and the resistance value was small and negligible.
The interference signals were injected into the op-amp’s power supply port through the
injection probe. As long as the interference strength was below the EMS threshold, the
op-amp would remain functioning correctly, and the input signal’s voltage waveform
would be identical to the output signal’s voltage waveform, as depicted in Figure 5b.
Conversely, if the intensity of the interference surpassed the threshold of EMS, it would
result in the op-amp functioning abnormally. The op-amp’s abnormal operation increased
the peak-to-peak voltage waveform of the output signal, which differed significantly from
the voltage waveform of the input signal, as depicted in Figure 5c. The peak-to-peak
voltage of the input and output waveforms of the op-amp was 1.5 V when there was no
EMI. We stipulated that when the peak-to-peak voltage of the output waveform fluctuated
up and down by more than 0.5 V, the op-amp was considered to be in an electromagnetic
susceptibility. It meant that when the op-amp was electromagnetically susceptible, the
peak-to-peak voltage of the output waveform of the op-amp was more than 2 V or less
than 1 V. Figure 5c shows the output waveform of the op-amp under abnormal operating
conditions caused by EMI. Under the influence of electromagnetic interference, the output
waveform jitter changed and was no longer the same as the waveform in Figure 5b, and
the peak-to-peak voltage of the output signal waveform greatly exceeded the proposed 2 V.
At this point, the op-amp was in an electromagnetically sensitive state.
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In the op-amp EMS test, several different signal waveforms from the RF source were
injected into the power line of the op-amp by a bulk current injection probe. When
the interfering signal’s strength increased, the output waveform’s peak-to-peak voltage
exceeded 0.2 times the peak-to-peak voltage of the input signal. This indicated that the
interfering signal achieved the susceptibility threshold of the operational amplifier at the
frequency point. The conduction susceptibility tests utilized single-frequency continuous
wave signals, pulse-modulated (PM) signals, and frequency-modulation (FM) signals as the
interference signals for the op-amp. Table 1 displays the various types and characteristics
of the interference signals. The continuous wave was a sinusoidal signal that spanned
from 10 kHz to 400 MHz, representing an analog signal. Pulse-modulated signals exhibited
varying duty cycles and a pulse frequency of 1 kHz, which differed from the standards
presented in IEC 62132, MIL-STD-461G, and GJB 151B-2013 standards. Our test methods
were based on all three of these test standards. The FM signals were sinusoidal signals
modulated with variable frequency offsets. The fundamental waveform was a 10 kHz
sinusoidal signal, which represented conventional linear FM radar signals. The carrier
frequency range of pulse-modulated and FM signals was from 10 kHz to 400 MHz.

Table 1. Types and characteristics of the interference signals.

Interference Signal Types Interference Signal Characterizations

Continuous wave Continuous sine wave
Frequency band: 10 kHz–400 MHz

Pulse-modulated signals
Duty cycles:10–90%

Carrier frequency range: 10 kHz–400 MHz
Fundamental waveform: pulse signals

Frequency-modulation signals
Frequency offsets: 1 kHz–10 kHz

Carrier frequency range: 10 kHz–400 MHz
Fundamental waveform: sinusoidal signals

The block diagram of the EMS test that was performed on the operational amplifier
in this investigation is shown in Figure 6. The experimental block diagram comprised
the following components: oscilloscope, spectrum analyzer, radio frequency (RF) signal
generator, RF power amplifier, DC power supply, ferrite core, bulk current injection probe,
monitor probe, SF158MD operational amplifier, and waveform generator. The waveform
generator supplied a sinusoidal signal with a frequency of 200 kHz and a peak-to-peak
voltage of 1 V to the input port of the op-amp as its functional signal. The oscilloscope
observed the input signal waveform and output signal waveform of the op-amp in real-time.
The RF signal generator generated various interference signals, which were injected into
the operational amplifier’s power supply wires by a bulk current injection probe. Both the
injection probes and monitoring probes we used work efficiently in the 10 kHz–400 MHz
band. Concurrently, the strength of the interference signal linked to the op-amp supply
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wire was monitored using a spectrum analyzer and a current monitoring probe. The DC
power supply supplied 15 V to the op-amp. The ferrite core was shielded against EMI
for the DC power supply. The operational amplifier’s electromagnetic susceptibility test
platform and the experimental instrumentation’s connection are shown in Figure 7a, and
the test circuit board is depicted in Figure 7b.
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The EMS test of the op-amp was conducted in a microwave darkroom to prevent
electromagnetic interference from the external environment and maintain the reliability of
the experimental process. The op-amp’s EMS test’s preparation stage referred to MIL-STD-
461G and GJB 151B-2013. The EMS test procedure for op-amps was as follows.

(1) Preparation of the chip under test, the measuring instrument and the cables, and
connection of the op-amp to the measuring device according to Figure 6. The current
monitoring probe was placed 5 cm from the op-amp power supply port. The bulk cur-
rent injection probe was positioned at a distance of 5 cm from the monitoring probe.

(2) Configuration of the test platform: Microwave-absorbing materials were placed
around the test platform to reduce the impact of space electromagnetic fields on the
test and ensure the experiment’s reliability. We arranged the site of the experiment in a
microwave darkroom. The power supply could provide a stable power supply to the
operational amplifier and experimental equipment to ensure accurate measurements
of the operational amplifier and the measuring instrument.

(3) Calibration of the measuring equipment: We calibrated the bulk-current injection
probes, proper functioning of the operational amplifiers, and signal generator. The
signal generator was capable of providing several proposed interference signals.

(4) The susceptibility test of op-amps: Firstly, we increased the intensity of the interference
signal gradually by the bulk current injection probe until the op-amp appeared to be a
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susceptible phenomenon. Secondly, we recorded the susceptibility phenomenon and
the input power of the interference signal.

(5) Experimental data processing and susceptibility analysis: We recorded the strength of
the interference signal during susceptibility testing, established susceptibility thresh-
old curves, and investigated its EMS properties.

3. Results
3.1. Offset Voltage Test Results

The voltage values of the input and output ports of the voltage follower were set as
0.02 mV and 0.6 mV, respectively, in the absence of the EMI signal. The voltage ∆V = |V1out
− V1IN+| was the output offset voltage of the op-amp. Figure 8 depicts the EMI effect on the
offset voltage of the op-amp. In the experiments, a 380 MHz interference signal was coupled to
the connecting cable of the op-amp power supply port through the injection probe. When the
interfering signal intensity was less than 28 dBm, the input and output signal voltages and the
op-amp offset voltage were near 0 V. However, when the intensity of the interference signal
exceeded 28 dBm, the offset voltage was substantially raised, which reduced the reliability of
the op-amp. An op-amp with the EMI could produce an offset voltage of more than 200 mV,
which was significantly different from normal operating conditions. The work confirmed that
EMI at the op-amp’s power port affects its performance parameters.
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3.2. Conducted Susceptibility Test Results

A continuous sine wave with a frequency of from 10 kHz to 400 MHz was injected into
the power port of the op-amp as an interference signal. There were differences in suscep-
tibility thresholds at different frequency points. The op-amp was hardly susceptible to it
when injecting interfering signals with frequencies below 10 MHz. When the frequency of
the interfering signal was around 230 MHz and in the high-frequency band from 310 MHz
to 400 MHz, it was more likely to make the op-amp electromagnetically susceptible. Under
the current test conditions, the op-amp was not electromagnetic susceptible when the fre-
quency of the interfering signal was lower than 10 MHz, so the susceptibility thresholds in
the range from 10 kHz to 10 MHz were not shown on the threshold curves. On the contrary,
the frequency bands in which the op-amps became electromagnetically susceptible were
able to be shown on the threshold curves. The EMS threshold curve of the op-amp in the
presence of sinusoidal signal interference is demonstrated in Figure 9.
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Figure 9. The EMS threshold curve of the op-amp subjected sinusoidal signal interference.

The pulse-modulated signals with a pulse period of 1 ms, and duty cycles of 10% and
50% were considered interference signals. Figure 10 illustrates the electromagnetic suscepti-
bility threshold from 10 kHz to 400 MHz. The op-amp was hardly susceptible to it when the
frequency of interfering signals was below 50 MHz. The EMS threshold curves subjected to
pulse modulation (PM) signal interference were similar to the previously mentioned con-
tinuous sine wave signal interference. All of them had lower susceptibility thresholds near
the 200 MHz frequency point and within the frequency range from 310 MHz to 400 MHz.
The EMS threshold curves of the op-amp under pulse-modulated interference signals with
different duty cycles are presented in Figure 10a. The sinusoidal continuous wave signal
was regarded as the basic interference signal, and the single frequency point was selected
based on the susceptibility threshold curve when the sinusoidal continuous wave was used
as the interference signal. The minimum value of the electromagnetic susceptibility thresh-
old for sinusoidal signal interference received by the op-amp corresponded to a frequency
point of 380 MHz, which means that this frequency point was the most susceptible to the
effects of EMI. Therefore, we chose this particular 380 MHz frequency point to analyze the
electromagnetic susceptibility characteristics of the op-amp.
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Figure 10. (a) The EMS threshold curves of the op-amps under pulse-modulated interference signals
with various duty cycles. (b) EMS threshold curve of the op-amp under pulse-modulated interference
signals with various duty cycles at 380 MHz.
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We performed EMS tests at a fixed carrier frequency of 380 MHz and selected pulse-
modulated signals with a duty cycle of from 10% to 90% in 10% steps as the interference
signals. According to the experimental results, the EMS thresholds of the op-amp remained
constant under the interference of pulse-modulated signals with various duty cycles. The
EMS threshold curve of the op-amp under pulse-modulated interference signals with
different duty cycles at 380 MHz is presented in Figure 10b.

Figure 11a shows the EMS threshold curves of the op-amp under the interference of
sinusoidal frequency modulation (FM) signals with a frequency offset of 1 kHz and 9 kHz,
respectively. The op-amps were hardly susceptible to it when the frequency of interfering
signals was below 40 MHz. The carrier frequencies of interference signals had harmonic
components at 40 MHz, 80 MHz, 120 MHz, and 200 MHz. The threshold of op-amps had
less susceptibility near these frequency points and was more susceptible to EMI. Figure 11b
illustrates the EMS threshold curve of an op-amp when the sinusoidal FM signal with
different frequency offsets and a fixed carrier frequency of 380 MHz were the interfering
signals. The susceptibility threshold of the op-amp remained essentially constant under the
interference of sinusoidal FM signals with different frequency offsets.
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Figure 11. (a) The EMS threshold curves of the op-amp due to interference by sinusoidal frequency
modulation signal interference with various frequency offsets. (b) EMS threshold curve of the op-amp
due to interference by sinusoidal frequency modulation signal interference with different frequency
offsets at 380 MHz.

Figure 12 shows that the monitored value measured by the monitor probe reflected
the amount of energy coupled to the cable by the actual interference signal. The monitoring
power can reflect the frequency selection characteristics of the op-amp, and the interference
signal intensity of the RF source output can also reflect the susceptibility at different
frequencies. The monitoring power and the output power of the RF source all reflect the
electromagnetic susceptibility characteristics of the op-amp, so the output signal intensity of
the RF source is chosen as the susceptibility threshold. We found that the monitoring values
in the low-frequency band (<80 MHz) were almost all larger than −10 dBm, while the
monitoring values in the high-frequency band (>230 MHz) were less than −20 dBm. Based
on the comparison of the values of the monitoring probe, the interference signal in the low-
frequency band may be coupled to the power supply cable of the op-amp more efficiently.
However, the interference signal in the high-frequency band was more difficult to couple
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to the power supply cable of the op-amp. At the same time, we found that the op-amp had
a higher susceptibility threshold at low frequencies and a lower susceptibility threshold at
high-frequency bands. Although it was challenging for high-frequency interference signals
to be coupled to the power supply cable of the op-amp, the op-amp was more susceptible
to electromagnetic susceptibility from high-frequency interference signals, which could
compromise their reliability.
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Figure 12. The EMS threshold thresholds in the presence of a single-frequency interference and
monitoring values of monitoring probes.

4. Discussion
4.1. Susceptibility Analysis

As seen in the results in Section 3, we obtained the EMS threshold regularities for
op-amp under interference signals with varying waveform parameters, such as frequency,
modulation types, duty cycles, and frequency offsets. According to the experimental data
in Figures 8–10, the op-amp had lower susceptibility thresholds to the high-frequency band
signals, which meant that the op-amp was more easily affected by the high-frequency
bands’ interference. However, the interfering signals in the high-frequency band were
more difficult to couple to the cable compared to the signals in the low-frequency bands
in Figure 12. The reason why the op-amp operated abnormally was that the EMI signals
coupled into the op-amp through the power supply cable and generated a DC shift [31].
EMI led to a non-linear reaction in the diode formed by the silicon PN junction in the
op-amp. The non-linear response resulted in the production of a DC shift, as the interfering
signals were rectified and converted into a DC signal.

Moreover, if the frequency of the high-frequency interference signals was much higher
than the op-amp’s bandwidth, the parasitic capacitances between the PN junction of the
transistors inside the op-amp must be considered. The simplified op-amp circuit diagram
under EMI is shown in Figure 13. is1 and is2 represented the currents coupled into the
op-amp by the interfering signal. {(Ccb1, Cbe1), (Ccb2, Cbe2), (Ccb3, Cbe3), (Ccb4, Cbe4), (Ccb5,
Cbe5), (Ccb6, Cbe6), (Ccb7, Cbe7)} represented the parasitic capacitance between the two PN
junctions of {Q1, Q2, Q3, Q4, Q5, Q6, Q7} transistors, respectively. The parasitic capacitance
disrupted the symmetrical balance of the differential amplification circuit, resulting in an
unstable output from the current mirror. This instability ultimately produced a DC shift in
the op-amp, negatively impacting its performance.
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4.2. Differences in Test Methods 

Within an intricate electromagnetic setting, all disruptive signals would ultimately 

impact the operational amplifier through the printed circuit board (PCB) traces or wire 

conduction, despite the electromagnetic interference being sent or emitted into the circuit 

system. Consequently, in this work, we proposed a novel BCI measurement methodology 

to investigate the susceptibility properties of the op-amp power supply port. According 

to IEC Standard 62132, various conventional methods for integrated chips mainly include 

direct power injection (DPI), a transverse electromagnetic (TEM) cell, a gigahertz 

transverse electromagnetic (GTEM) cell, and bulk current injection (BCI) [32,33]. TEM and 

GTEM are both radiated emission immunity tests, and they do not accurately analyze the 

EMS of the power supply ports of op-amps. BCI and DPI are both conducted emission 

immunity measurement methods. The DPI test method required additional design and 

processing of the test board, which was expensive. Moreover, the DPI test method cannot 
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method can obtain the electromagnetic susceptibility profiles of the op-amp in more 

dimensions by using signals with different waveforms as interference signals. There were 

no specialized cable ducts to fix the cables and to keep the cables 5 cm above the reference 

plane at the time of the test conditions. Throughout the test, to ensure that the test 

conditions were as consistent as possible, we did not stop the test and did not move the 

cables. However, it was hard to achieve repeatable susceptibility thresholds if repeat tests 

were conducted again after removing the test conditions. Because of the change in cable 

placement, the loop impedance was affected. This was also a shortcoming of this article. 

However, instead of focusing excessively on the frequency points of susceptibility and the 

magnitude of the susceptibility threshold, we paid more attention to the relationship 

between the waveform characteristics of different interfering signals and the susceptibility 

threshold curves. Therefore, this shortcoming had little effect on our investigation.  

  

Figure 13. The simplified op-amp circuit diagram under EMI.

4.2. Differences in Test Methods

Within an intricate electromagnetic setting, all disruptive signals would ultimately
impact the operational amplifier through the printed circuit board (PCB) traces or wire
conduction, despite the electromagnetic interference being sent or emitted into the circuit
system. Consequently, in this work, we proposed a novel BCI measurement methodology
to investigate the susceptibility properties of the op-amp power supply port. According
to IEC Standard 62132, various conventional methods for integrated chips mainly include
direct power injection (DPI), a transverse electromagnetic (TEM) cell, a gigahertz transverse
electromagnetic (GTEM) cell, and bulk current injection (BCI) [32,33]. TEM and GTEM
are both radiated emission immunity tests, and they do not accurately analyze the EMS of
the power supply ports of op-amps. BCI and DPI are both conducted emission immunity
measurement methods. The DPI test method required additional design and processing
of the test board, which was expensive. Moreover, the DPI test method cannot conduct
tests in the chip’s actual working environment. On the contrary, the BCI test method can
directly carry out conducted susceptibility tests in the actual working environment of the
chip without the need to design and process PCBs. Moreover, the BCI test was easy to
operate. Standard BCI tests use a single pulse-modulated signal as the interference signal,
so they cannot check how sensitive op-amps are to different electromagnetic environments.
Compared to the traditional BCI method, the suggested method can obtain the electro-
magnetic susceptibility profiles of the op-amp in more dimensions by using signals with
different waveforms as interference signals. There were no specialized cable ducts to fix the
cables and to keep the cables 5 cm above the reference plane at the time of the test condi-
tions. Throughout the test, to ensure that the test conditions were as consistent as possible,
we did not stop the test and did not move the cables. However, it was hard to achieve
repeatable susceptibility thresholds if repeat tests were conducted again after removing the
test conditions. Because of the change in cable placement, the loop impedance was affected.
This was also a shortcoming of this article. However, instead of focusing excessively on the
frequency points of susceptibility and the magnitude of the susceptibility threshold, we
paid more attention to the relationship between the waveform characteristics of different
interfering signals and the susceptibility threshold curves. Therefore, this shortcoming had
little effect on our investigation.
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5. Conclusions

In this paper, we investigated the susceptibility properties of an op-amp through the
power supply port. We injected interference signals by conduction at the power supply
port to study the effects of EMI on the offset voltage. Moreover, we injected several
different waveforms of interference signals into the power supply cables to investigate
the effects of different waveforms on the electromagnetic susceptibility thresholds of the
op-amp. We had shown that the op-amp’s offset voltage changed dramatically when
the interfering signal intensity exceeded 28 dBm. We found that the op-amp was not
susceptible when the interfering signal frequency was less than 50 MHz. However, in
the high-frequency band of from 300 MHz to 400 MHz, the susceptibility thresholds
of the op-amps were all below 25 dBm and were more susceptible to EMS than in the
low-frequency band. Moreover, the results revealed that the EMS of the op-amp was
a type of “peak” susceptibility. The stability of the EMS threshold of the op-amp was
essentially related only to the peak value and frequency of the interfering signal, not
the duty cycle and bandwidth. This approach could obtain the EMS boundary of op-
amps more comprehensively, which provides an effective method for evaluating the EMS
characteristics of the op-amp. In addition, the comprehensive EMS boundary provides
theoretical support for the electromagnetic protection of the circuit system.
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