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Abstract: In this study, the successful synthesis of bimetallic nickel/cobalt phosphide nanosheets
(Ni-Co-P NSs) via the hydrothermal method and the subsequent high-temperature phosphorization
process were both confirmed. Ni-Co-P NSs exhibited excellent electrocatalytic activity for the elec-
trochemical non-enzymatic DA sensing. The surface morphologies and physicochemical properties
of Ni-Co-P NSs were characterized by atomic force microscopy (AFM), field-emission scanning
(FESEM), field-emission transmission electron microscopy (FETEM), and X-ray diffraction (XRD).
Further, the electrochemical performance was evaluated by cyclic voltammetry (CV) and differential
pulse voltammetry (DPV). The metallic nature of phosphide and the synergistic effect of Ni/Co
atoms in Ni-Co-P NSs provided abundant catalytic active sites for the electrochemical redox reaction
of DA, which exhibited a remarkable consequence with a wide linear range from 0.3~50 µM, a
high sensitivity of 2.033 µA µM−1 cm−2, a low limit of detection of 0.016 µM, and anti-interference
ability. As a result, the proposed Ni-Co-P NSs can be considered an ideal electrode material for the
electrochemical non-enzymatic DA sensing.

Keywords: bimetallic nickel/cobalt phosphide nanosheets; phosphorization; synergistic effect of
Ni/Co atoms; electrochemical non-enzymatic DA sensing

1. Introduction

Dopamine (DA) is a vital catecholamine neurotransmitter in the central nervous sys-
tem of mammals. It primarily regulates human desire and transmits information related
to excitement and happiness, thereby influencing human emotions [1]. The secretion and
expression of DA occurs within highly specific regions of the human brain, including
the ventral tegmental area (VTA) of the midbrain, the substantia nigra pars compacta,
and the hypothalamic arcuate nucleus. Dopaminergic neurons located in the VTA are
believed to mediate natural motivation, reward prediction, and contextual learning [2,3].
Dopaminergic neurons in the substantia nigra pars compacta play a vital role in motor
symptoms, with their depletion leading to the characteristic motor dysfunction seen in
Parkinson’s disease [4,5]. Additionally, dopaminergic neurons in the hypothalamic arcuate
nucleus regulate the inhibition of the synthesis and secretion of prolactin, a protein hor-
mone involved in prolactin homeostasis of the body [6,7]. Clearly, it is urgent to develop
an accurate and efficient method for promptly detecting abnormal concentration levels of
DA, averting potential social, psychological, and economic burdens on individuals and so-
ciety. Several analytical methods have been developed to evaluate the concentration levels
of DA, such as fluorescence [8], colourimetric assays [9], electrochemiluminescence [10],
ultra-performance liquid chromatography-tandem mass spectrometry (UPLC/MS) [11],
and electrochemistry [12–14]. Among these methods, electrochemical approaches stand
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out as powerful and widely used tools due to their low cost, rapid analysis time, imme-
diate response, and ease of operation [15,16]. Electrochemical methods can be broadly
classified into two major sensing platforms: enzymatic and non-enzymatic. Enzymatic
electrochemical sensing offers advantages like high sensitivity and specificity. However,
constructing enzymatic electrochemical sensing platforms involves interactions between
enzymes and electrodes, which present limitations such as high cost, complex fabrication,
poor reproducibility, and susceptibility to environmental factors like pH and tempera-
ture [17,18]. The development of electrochemical non-enzymatic sensing platforms allows
for overcoming the limitations associated with current electrochemical enzymatic sensing.
These advancements address the issues related to enzymes mentioned above.

The choice of appropriate electrode materials plays a pivotal role in constructing an
electrochemical non-enzymatic sensing platform, determining the performance of electro-
chemical sensing. Previous reports suggest that an electrochemical sensing platform com-
prising transition metal compounds (TMCs), such as transition metal oxides (TMOs) [19],
sulphides (TMSs) [20], nitrides (TMNs) [21], and phosphides (TMPs) [22,23] could offer
universal design strategies for detecting DA electrochemically.

The properties of TMPs have drawn significant attention due to their natural abun-
dance, high conductivity, electrocatalytic activity, and favourable physicochemical charac-
teristics [24]. Among these compounds, the relatively low electronegativity of phosphorus
(P) (2.19), compared to sulphur (S) (2.58), nitrogen (N) (3.04), and oxygen (O) (3.44) pro-
motes a strong covalent bond between the transition metal and P atom. The relatively
strong metal–ligand covalence leads to a weaker attraction to the electrons in the third
orbitals of the transition metal atoms, which promotes excellent reaction kinetics for en-
hanced electrochemical performance, allowing outstanding electrocatalytic performance for
promising applications in water splitting [25], supercapacitors [26], CO2 reduction [27], and
battery [28]. When the transition metal elements increase to binary transition metal phos-
phides, it exhibits multiple oxidation states, fostering strong synergistic effects that enhance
electrochemical performance [29–31]. Previous studies have highlighted the adjustable
morphologies controlled by experimental synthetic factors, influencing the construction of
2D/3D hierarchical structures that offer increased active sites and efficient electron/carrier
transfer, achieving enhanced electrochemical performance [32,33].

In this study, bimetallic nickel/cobalt phosphide nanosheets (Ni-Co-P NSs) were
successfully synthesised using a facile hydrothermal method and subsequent the high-
temperature phosphorization treatment. Ni-Co-P NSs exhibited a 2D structural properties
and demonstrated excellent electrocatalytic performance compared to monometallic tran-
sition metal phosphides (NiP and CoP). The unique characteristics of the Ni-Co-P NSs,
attributed to the metallic nature of phosphide and the synergistic effect of Ni/Co atoms,
make them a promising electrode material for electrochemical non-enzymatic DA sensing.

2. Materials and Methods
2.1. Reagents

Cobalt (II) sulphate heptahydrate (CoSO4·7H2O), Nickel (II) sulphate hexahydrate
(NiSO4·6H2O), and sodium phosphate monobasic monohydrate (NaH2PO4·H2O) were
obtained by Alfa Aesar (Ward Hill, MA, USA). Glycerol and anhydrous ethanol (C2H5OH,
99.9%) were purchased from J.T. Baker (Phillipsburg, NJ, USA). Urea, Nafion® solution
(5 wt % in mixture of lower aliphatic alcohols and water), dopamine hydrochloride (DA),
uric acid (UA), and L-Ascorbic acid (AA) were purchased from Sigma-Aldrich (St. Louis,
MO, USA). The deionized water (DI water) was produced from the Milli-Q water purifica-
tion system of Millipore Co. (Bedford, MA, USA). All chemicals were analytical grade and
were used as received without further purification.

2.2. Synthesis of Nickel/Cobalt Phosphide Nanosheets (Ni-Co-P NSs)

The Ni-Co-P NSs were synthesised via a facile hydrothermal method and subsequent
high-temperature phosphorization treatment. Typically, 1.5 mmol NiSO4·6H2O, 3 mmol
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CoSO4·7H2O, and 0.15 g urea were fully dissolved into a solution containing 50 mL DI
water and 10 mL glycerol (v/v = 5:1). By stirring 20 min, hydrothermal process was carried
out at 170 ◦C in a Teflon-lined stainless autoclave (100 mL) in an oven for 20 h. The
resulting product was purified by repeated centrifugation and washing with DI water
and anhydrous alcohol three times, and then dried in an oven at 70 ◦C overnight to
obtain the Ni-Co precursor for subsequent phosphorization treatment. The subsequent
the high-temperature phosphorization process was conducted via thermal treatment in
a tube furnace by using NaH2PO2·H2O. The 40.0 mg obtained Ni-Co-Pre and 120.5 mg
NaH2PO2·H2O were weighed and spread on two different ceramic boats, respectively,
which were situated side by side at the centre of a tube furnace. The boat containing
NaH2PO2·H2O was placed in the quartz tube at the upstream side of the tube furnace
and another boat containing NiCo-Pre was placed at the downstream side of the tube
furnace. Subsequently, these samples in the tube furnace were calcined to 300 ◦C for
2 h in the Ar atmosphere with a heating rate of 2 ◦C min−1. Then, Ni-Co-P NSs were
obtained after naturally cooling to room temperature. The collected Ni-Co-P NSs was
ready for subsequent characterization. The schematic diagram of the synthesis of Ni-Co-P
NSs is shown in Figure 1. Moreover, to demonstrate Ni-Co-P NSs have a better catalytic
performance than monometallic Ni and Co phosphides, monometallic Ni phosphide can
be obtained without adding Co source (denoted as Ni-P) and monometallic Co phosphide
can be obtained without Ni source (denoted as Co-P).
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Figure 1. The schematic diagram for the synthesis of Ni-Co-P NSs.

2.3. Fabrication of Ni-Co-P NSs Electrode

The Ni-Co-P NSs electrode was prepared by drop casting of Ni-Co-P NSs suspensions
on the surface of the cleaned glassy carbon electrode (GCE, diameter 3 mm, Tokai Carbon,
Tokyo, Japan). First, the bare GCE was rigorously polished with 0.3 and 0.05 µm alumina
slurry, respectively, and cleaned with DI water and then dried at 70 ◦C in an oven for 20 min,
which was used for further modifications. For the fabrication of Ni-Co-P NSs electrode,
first, 2 mg of Ni-Co-P NSs was weighed and dispersed in 1 mL of 0.5 wt % Nafion® solution
via ultrasonic treatment for 30 min to form a homogeneous suspension. Then, suspension
(6 µL) was dropping cast on cleaned GCE and dried in the oven as a working electrode (to
be subsequently denoted as Ni-Co-P NSs/Nafion/GCE) for the following electrochemical
measurement. For comparison, monometallic Ni and Co phosphides (Ni-P and Co-P)
modified GCE were fabricated using the same method (denoted as Ni-P/Nafion/GCE and
Co-P/Nafion/GCE).
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2.4. Characterizations

The morphology was characterized by using the atomic force microscope (AFM,
SPA-400, Hitachi, Tokyo, Japan), field-emission scanning electron microscopy (FESEM,
JSM-7410F, JEOL, Akishima, Japan), and field-emission transmission electron microscopy
(FETEM, JEM-2100F, JEOL, Akishima, Japan). The crystal phase was characterized by
using the X-ray diffraction (XRD) (D8 Discover X-ray diffractometer with Cu Kα radia-
tion (Bruker, Karlsruhe, Germany)). Electrochemical measurements were performed by
using a three-electrode system composed of as-prepared Ni-Co-P NSs working electrode,
a platinum wire counter electrode, and an Ag/AgCl (3 M KCl) reference electrode by an
electrochemical analyser (Autolab, model PGSTAT30, Eco Chemie, Utrecht, The Nether-
lands). All electrochemical measurements were conducted in 0.1 M phosphate-buffered
saline (PBS) as the supporting electrolyte in the absence and presence of DA at ambient
temperature. Cyclic voltammetry (CV) curves and differential pulse voltammetry (DPV)
curves were performed between 0~0.8 V.

3. Results and Discussion

The morphologies of NiP, CoP, and Ni-Co-P NSs were characterised using FESEM,
FETEM, and AFM. FESEM and FETEM images of NiP, CoP, and Ni-Co-P NSs are shown
in Figure 2a–f. The FESEM images showcase a highly interconnected network of NiP,
CoP, and Ni-Co-P NSs. It can be observed that NiP displayed a nanosheets structure
and CoP displayed a nanosheet-nanowire structure. And the Ni-Co-P NSs also displayed
a mixture structure of 1D nanowires and 2D nanosheets, the 1D nanowires content in
Ni-Co-P NSs was much less than that of the 1D nanowires content in CoP, which were
well matched with those of the FETEM results. The mixture structure of 1D nanowires
and 2D nanosheets were intercrossed to construct the 3D well-interconnected networks,
suppling more abundant specific surface areas and active sites. This interconnected network
structure is expected to facilitate rapid electron and carrier transfer during electrochemical
processes, potentially leading to improved electrochemical responses. The AFM image
(Figure 2g) and the corresponding cross-section (Figure 2h), taken along the red solid line of
the Ni-Co-P NSs, confirm a consistent nanosheets (NSs) structure with an average thickness
of approximately 4 nm and an average width of 200 nm, which significantly augment the
electrode/electrolyte contact area, thereby promoting favourable electrochemical reaction
kinetics. The surface elements composition and distribution of Ni-Co-P NSs were analysed
using EDS (Figure 2i) and STEM analysis (Figure 2j) corroborated the well-distributed
presence of Ni (Figure 2k), Co (Figure 2l), and P (Figure 2m) elements across the surface
of the Ni-Co-P NSs. These findings establish the interconnected network consisting of
nanosheet-nanowire structure and the uniform distribution of Ni, Co, and P elements in
Ni-Co-P NSs, crucial for their electrochemical performance.

The XRD patterns of NiP, CoP, and Ni-Co-P NSs were compared with the standard
patterns of NiP (JCPDS No. 74-1385), CoP (JCPDS No. 29-0497), and NiCoP (JCPDS
No. 71-2336) [34] to characterize their structure and phase composition, as depicted in
Figure 3. All the observed diffraction peaks in NiP, CoP, and Ni-Co-P NSs match well
with the standard patterns, further confirming the successful synthesis of NiP, CoP, and
Ni-Co-P NSs. In addition, it can be seen that the XRD patterns of NiP and NiCoP peaks
were much sharper than that of CoP, indicating that the NiP and NiCoP have a higher
degree of crystalline. In the XRD pattern of Ni-Co-P NSs, the most pronounced diffraction
peak centred at 41.0◦ corresponds to the (111) plane of hexagonal NiCoP. Additionally, five
relatively weaker diffraction peaks at 44.9◦, 47.6◦, 54.4◦, 54.7◦, and 55.3◦ can be attributed
to the (201), (210), (300), (002), and (210) planes of hexagonal NiCoP, indicating the presence
of smaller crystallite sizes and lower crystallinity. This outcome validates the successful
synthesis of the 2D structure of Ni-Co-P NSs and confirms the formation of NiCoP in the
hexagonal phase.
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To assess the electrochemical properties for DA sensing, cyclic voltammetry (CV) was
conducted on bimetallic nickel/cobalt phosphide nanosheets (Ni-Co-P NSs), monometallic
Ni phosphides (Ni-P), and monometallic Co phosphides (Co-P). Figure 4 illustrates the
CV curves of Ni-Co-P NSs/Nafion/GCE, Ni-P/Nafion/GCE, and Co-P/Nafion/GCE in
0.1 M PBS (pH 7.0) in the absence (dotted lines) and presence (solid lines) of 0.1 mM DA,
using a scan rate of 50 mV s−1 within a potential window of 0–0.8 V. In the absence of
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DA, no oxidation or reduction peaks were observed across these electrodes. However,
upon the addition of 0.1 mM DA, well-defined redox peaks corresponding to the elec-
trochemical mechanism of DA emerged prominently at 0.12 and 0.31 V (vs. Ag/AgCl)
for Ni-Co-P NSs/Nafion/GCE. Figure 5 presents the electrochemical redox mechanism
of DA, involving a two-proton and two-electron transfer process, signifying the conver-
sion between DA and dopamine quinone (DAQ). At a typical physiological pH, DA is
positively charged (pKa 8.87), under oxidative conditions, DA undergoes deprotonation
(DA → DAQ), resulting in a relatively higher negative charge. Simultaneously, the P atoms,
with their lone pair of electrons, readily interact with H+ ions, becoming highly dense and
positively charged. The strong electrostatic interactions between the DA derivatives and
transition metal phosphides promote the electrochemical redox reaction of DA. However,
the weak reduction peak of DAQ to DA under reductive conditions might be attributed to
the strong adsorption of DAQ on the phosphides or the sluggish electron transfer between
the electrode/electrolyte interface [35–37]. As observed in Figure 4, the CV curve of Ni-
Co-P NSs/Nafion/GCE exhibited the most significant anodic current response to 0.1 mM
DA compared to Co-P/Nafion/GCE and Ni-P/Nafion/GCE. These comparative results
further validate that Ni-Co-P NSs/Nafion/GCE demonstrate a synergistic effect attributed
to the metallic nature of phosphide and Ni/Co atoms in bimetallic Ni-Co phosphides. This
synergy encompasses abundant catalytic active redox sites from Ni and Co metals, along
with the relatively low electronegativity of P, enhancing a high degree of covalency in
the Ni/Co-P bonding that can enables the fabricated Ni-Co-P NSs/Nafion/GCE to show
excellent electrochemical performance.
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The optimization of electrochemical DA sensing performance involved careful adjust-
ments in both the mass loading of Ni-Co-P NSs and pH levels to achieve optimal results.
In Figure 6a, the influence of Ni-Co-P NSs’ mass loading on anodic peak currents was
explored. Ni-Co-P NSs/Nafion/GCE at different mass loadings of Ni-Co-P NSs were
controlled by weighing 2–6 mg of Ni-Co-P NSs in 1 mL of 0.5 wt % Nafion to form a ho-
mogenous dispersion, and sequentially drop-casting the homogenous dispersion onto the
GCE. Figure 6a shows the CV curves of Ni-Co-P NSs at different mass loadings of Ni-Co-P
NSs in 0.1 M PBS (pH 7.0) in the presence of 0.1 mM DA at a scan rate of 50 mV s−1. The
inset of Figure 6a shows the plot of the anodic peak currents versus mass loading of the Ni-
Co-P NSs. As can be seen, the anodic peak currents increase when the loading of Ni-Co-P
NSs is increased from 2 to 4 mg. However, when the loading of Ni-Co-P NSs exceeds 4 mg,
the anodic peak currents gradually decrease due to the mass transfer limitation by excess
mass loading [38]. Thus, 4 mg was chosen as the optimised mass loading of Ni-Co-P NSs for
the following experiments. Figure 6b shows the CV curves of Ni-Co-P NSs at different pHs
(from pH 4 to 8) in the presence of 0.1 mM DA. The anodic peak potential shifted negatively
with increasing pH values, indicating the involvement of proton/electron transfer in the
electrochemical redox reactions of DA [39], as described in Figure 5. The corresponding
linear relationship between anodic peak potential (Epa) and pH was calculated as follows:
Epa (V) = 0.77 − 0.06 pH (R2 = 0.97463) (see the top left inset of Figure 6b). Furthermore,
the slope of 0.06 was close to the theoretical Nernstian value of 0.059 V/pH referring to
the electrochemical redox mechanism of DA involving two proton/electron transfer pro-
cesses [13,40]. Notably, the change of the anodic peak current was not evident from pH 4.0
to 7.0, and the sensing current dramatically decreased with the subsequent increase of pH
from 7.0 to 8.0. Moreover, the bottom-right inset of Figure 6b shows the plot of the anodic
peak currents versus pH. The best anodic peak current was found at pH 7.0, which works
well in physiological pH conditions to promote its practical use in electrochemical sensing
devices [41]. Based on the above-mentioned optimal experiments, 4 mg mass loading of
Ni-Co-P NSs and pH 7.0 (marked by the dashed circle in inset of figure) were chosen as
optimal parameters to further improve the electrochemical response towards DA sensing.

Figure 7a displays the CV curves of Ni-Co-P NSs/Nafion/GCE in 0.1 M PBS (pH 7)
in the presence of 0.1 mM DA at varying scan rates from 50 to 300 mVs−1. The redox
peak current increased with increasing scan rates. In Figure 7b, the relationship between
anodic and cathodic peak current (Ipa and Ipc) against the square root of the scan rates
(v1/2) within the range of 50–300 mVs−1 is depicted. It demonstrates a linear relationship
between both anodic and cathodic peak currents (Ipa and Ipc) and the square root of
the scan rate. The linear equations can be expressed as Ipa (µA) = 2.4316 + 1.6658 v1/2

((mVs−1)1/2) (R2 = 0.99903) and Ipc (µA) = 8.3246 − 1.4558 v1/2 ((mVs−1)1/2) (R2 = 0.99893),
indicating that the electrochemical redox behaviour of DA sensing is attributed to diffusion
processes [42].
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Under optimal parameters, the electrochemical performance of Ni-Co-P NSs/Nafion/GCE
for the electrooxidation of DA sensing was analysed using differential pulse voltammetry
(DPV) in 0.1 M PBS (pH 7) with various DA concentrations (0–50 µM) added to evaluate
the feasibility of the fabricated electrochemical sensor. The experimental parameters for the
DPV analysis technique were potential window = 0–0.8 V, scan rate = 20 mVs−1, modulation
time = 0.05 s, internal time = 0.2 s, and step potential = 0.004 V. Figure 8a shows the DPV
response at Ni-Co-P NSs/Nafion/GCE with increasing DA concentrations from 0 to 50 µM.
It is evident that the DPV response increased with the increase in DA concentration, and the
inset of Figure 8a shows an amplified view of the DPV responses in the low-concentration
region. The DPV responses within the concentration range of 0 to 50 µM were recorded
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to obtain the corresponding calibration plot, displayed in Figure 8b. The linear regression
equation between anodic peak current (Ipa) versus the concentrations of DA (Conc.) can be
expressed as Ipa (µA) = 0.19038 + 0.14516 Conc. (µM). The DA calibration curve was highly
linear from 0.3 to 50 µM (R2 = 0.99509). The sensitivity, limit of detection (LOD) based on
3 Sb/m, and limit of quantification (LOQ) based on 10 Sb/m (Sb is the standard deviation
of the blank signals for n = 3, and m is the slope of the calibration plot) are estimated
as 2.033 µA µM−1 cm−2, 0.016 µM, and 0.053 mM, respectively. The proposed Ni-Co-P
NSs/Nafion/GCE showed good comparability with some previous reports concerning
electrochemical non-enzymatic DA sensors based on different transition-metal (including
metal Ni, Co, or Ni/Co) compound materials (Table 1) [39,43–47].
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Table 1. Performance comparison of electrochemical DA sensing based on the different transition
meatal (Ni, Co, or Ni/Co) compound materials.

Electrode Materials Linear Range
(µM)

Sensitivity
(µA µM−1 cm−2)

Detection Limit
(µM) Reference

Ag-ZIF-67p/GCE 0.10~100 1.469 0.050 [39]

Ni@CNRs/GCE 0.50~30 0.379 0.056 [43]

Ni-BTC@Ni3S4/CPE 0.05~750 0.560 0.016 [44]

Ni-MOF/GCE 0.20~100 0.285 0.060 [45]

NiO/NiCo2O4/CPE 0.10~100 — 0.040 [46]

Ni2Co-LDH/GCE 1.30~420 0.148 1.250 [47]

Ni-Co-P NSs/Nafion/GCE 0.3~50 2.033 0.016 This Work

For electrochemical non-enzymatic DA sensing, anti-interference is an essential pa-
rameter to evaluate DA sensing performance in practical applications. In the physiological
environment, two common biomolecules, uric acid (UA) and ascorbic acid (AA), often
coexist with DA in human body fluids, and their oxidation potentials overlap on conven-
tional bare electrodes [48]. The proposed Ni-Co-P NSs/Nafion/GCE showed outstanding
electrocatalytic activity, which has been demonstrated to overcome signal interferences
from UA and AA with DA. According to previous reports [49,50], the UA concentration
in human blood plasma is controlled in the range of 140–420 µM, while in human cere-
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brospinal fluid, it is about 10 times lower due to limited transport pathways across the
blood–brain barrier, protecting the brain from blood. In addition, the AA concentration
in the human body ranges from about 200–500 µM. Figure 9 shows the interference test
of Ni-Co-P NSs/Nafion/GCE in 0.1 M PBS (pH 7.0) in the presence of 10 µM UA and
200 µM AA (covering normal levels in the human body) by adding different concentrations
of DA (5, 10, 30, and 50 µM). The DPV response of DA increased with increasing DA
concentrations in the presence of both UA and AA simultaneously. The response current of
UA and AA exhibited much weaker signals. By linear regression analysis, the relationship
between anodic peak current (Ipa) versus the concentrations of DA (Conc.) in the presence
of interfering substances can be expressed as Ipa (µA) = 0.21715 + 0.12436 Conc. (µM)
(R2 = 0.99094). Compared to the slope and intercept of linear regression in the absence (in
Figure 8) and presence (in Figure 9) of interfering substances with the determination of DA,
there were no significant difference between the linear regression correlation slopes and
intercepts, indicating that UA and AA do not interfere during DA sensing. Therefore, the in-
terference from UA and AA can be disregarded. The proposed Ni-Co-P NSs/Nafion/GCE
with excellent selectivity holds great promise for practical electrochemical DA sensing.
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Figure 9. Interference test of Ni-Co-P NSs/Nafion/GCE in 0.1 M PBS (pH 7.0) in the presence of
10 µM UA and 200 µM AA by adding different concentrations of DA (5, 10, 30, and 50 µM). Black
line is 0.1 M blank PBS.

To evaluate the practical applications of the proposed Ni-Co-P NSs/Nafion/GCE for
dopamine sensing, the electrodes were subjected to DPV responses by determining DA in
human serum. The human serum (from human male AB plasma, H4522) was purchased
from Sigma-Aldrich (St. Louis, MO, USA) and the various DA concentrations in human
serum samples were prepared by mixing 0.1 M PBS (pH 7.0) and human serum with the
gradual additions of DA concentration up to 10 µM (the human serum samples were diluted
5 times with PBS). It can be seen that the DPV responses increased linearly from human
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serum samples increasing DA concentrations (Figure 10a). The corresponding calibration
plot of DPV responses against DA concentrations was displayed in Figure 10b. This plot
displayed a good linear relationship between DPV responses and DA concentrations. In
addition, a known DA concentration (1 µM) was added to the human serum samples to
study the recoveries for repeated three times. The recoveries were obtained in the range of
93.8% to 96.6%, as shown in Table 2. However, the experiment results showed that the slope
calculated from related linear regression with the determination of DA in human serum
samples was higher than those calculated with the determination of DA in PBS, indicating
that some unwanted side effects on the DPV response from the human serum samples and
cannot be ignored. Based on this result obtained in this experiment, the proposed Ni-Co-P
NSs/Nafion/GCE had a relatively high DPV response for DA determination in human
serum samples that may be due to the biocompatibility and the adsorption capacity, which
agreed with the observations in previous report [51]. Human serum sample with a suitable
dilution using PBS is a commonly used procedure to avoid this unwanted side effects.
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Table 2. Real sample analysis.

Added Concentration
(µM)

Found Concentration
(µM)

Recovery
(%)

1 0.966 96.6

1 0.943 94.3

1 0.938 93.8

4. Conclusions

In this study, the successful synthesis of bimetallic nickel/cobalt phosphide nanosheets
(Ni-Co-P NSs) exhibited highly interconnected 2D nanosheet structure as well as the syn-
ergistic interactions between phosphide and bimetallic Ni/Co atoms, exposing abundant
specific surface areas and plentiful available active sites. It could facilitate rapid electron
and carrier transfer in order to exhibit a remarkable electrochemical performance toward the
electrochemical non-enzymatic DA sensing. The proposed Ni-Co-P NSs showed excellent
electrochemical performance (including the linear range from 0.3 to 50 µM, high sensitivity
of 2.033 µA µM−1 cm−2, low limit of detection (LOD) of 0.016 µM, and anti-interference
ability). In conclusion, the 2D architectural design of the proposed Ni-Co-P NSs may
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be a promising potential for practical application in the electrochemical non-enzymatic
DA sensing.
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