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Abstract: Pastes containing reduced graphene oxide (rGO) and LiCl-Mn(NO3)2·4H2O are screen-
printed on a carbon cloth substrate and then calcined using a nitrogen atmospheric-pressure plasma
jet (APPJ) for conversion into rGO-LiMnOx nanocomposites. The APPJ processing time is within
300 s. RGO-LiMnOx on carbon cloth is used to sandwich H2SO4, LiCl, or Li2SO4 gel electrolytes
to form hybrid supercapacitors (HSCs). The areal capacitance, energy density, and cycling stability
of the HSCs are evaluated using electrochemical measurement. The HSC utilizing the Li2SO4 gel
electrolyte exhibits enhanced electrode–electrolyte interface reactions and increased effective surface
area due to its high pseudocapacitance (PC) ratio and lithium ion migration rate. As a result, it
demonstrates the highest areal capacitance and energy density. The coupling of charges generated by
embedded lithium ions with the electric double-layer capacitance (EDLC) further contributed to the
significant overall capacitance enhancement. Conversely, the HSC with the H2SO4 gel electrolyte
exhibits better cycling stability. Our findings shed light on the interplay between gel electrolytes and
electrode materials, offering insights into the design and optimization of high-performance HSCs.

Keywords: supercapacitor (SC); atmospheric-pressure plasma (APP); flexible electronics; reduced
graphene oxide (rGO)

1. Introduction

Atmospheric-pressure plasmas (APPs) are a favorable alternative to vacuum plasmas
as they do not require an expensive vacuum pump and chamber. As an APP is not limited by
the dimensions of a vacuum chamber, it enables flexible processing with various substrate
sizes [1]. APPs can be used for various applications including surface cleaning, altering
surface physical and chemical properties, modifying surface topography, and depositing
materials [2,3]. A nitrogen APP can be used for the nitrogen doping of materials [4,5].

Supercapacitors (SCs) have attracted much interest because they afford advantages
including high power density, rapid charging and discharging rates, and exceptional
cycling stability [6]. In SCs, electric double-layer capacitance (EDLC) and pseudocapaci-
tance (PC) can be used as energy storage mechanisms. An SC in which both EDLC and
PC mechanisms are used simultaneously is called a hybrid supercapacitor (HSC) [7–9].
Flexible HSCs can be fabricated through using flexible substrates and flexible electrode
materials. Flexible HSCs can be applied in fields such as wearable devices and foldable
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displays, where they provide greater freedom and flexibility in the manufacturing and inte-
gration of electronic devices [10–12]. Graphene is a two-dimensional material with excep-
tional properties; therefore, graphene plays a crucial role in fields such as supercapacitors
and multiple plasmon-induced transparency metasurfaces, highlighting its multifaceted
applications [13–16]. Adding reduced graphene oxide (rGO), a flexible electrode material
renowned for its high conductivity and flexibility, can enhance the overall performance of
HSCs through providing a porous structure that offers a greater surface area for charge stor-
age [17–21]. Carbon cloth, as a flexible substrate, has a highly porous 3D structure formed
by the interlaced arrangement of fibers; this facilitates rapid electron and ion transport for
HSC devices. This porous structure provides a larger surface area, enabling more efficient
charge storage and release. Additionally, the interwoven fiber arrangement enhances the
mechanical strength and flexibility, making carbon cloth an ideal substrate material for
fabricating flexible HSCs [22]. Adding lithium ions in the electrolyte can enhance the elec-
trochemical stability and specific capacitance of the HSC, because lithium ions have a higher
migration rate and can undergo fast and reversible ion insertion/extraction reactions on the
electrode material surface. This enhances the charge storage capacity and cycle life of the
HSC [23]. For flexible HSCs, gel electrolytes offer mechanical flexibility with ion transport
capability. Additionally, they can reduce or eliminate the risk of electrolyte leakage. The
controllable gel state ensures a stable and confined electrolyte system. These factors make
gel electrolytes advantageous in specific applications where reliable ion conductivity and
minimal leakage risk are desired [24–26].

This study focuses on the ultrafast (<300 s) fabrication of HSCs with rGO-LiMnOx
nanocomposite electrodes using a nitrogen atmospheric-pressure plasma jet (APPJ). HSCs
with three different gel electrolytes, H2SO4, LiCl, and Li2SO4, are evaluated and compared.
Based on the performance characteristics of HSC materials under different gel electrolyte
conditions, we study the compatibility between gel electrolytes and electrode materials,
aiming to identify superior material combinations for optimal synergistic effects. This
research contributes to the design and optimization of high-performance HSCs.

2. Experimental
2.1. Preparation of rGO-LiCl-Mn(NO3)2·4H2O Pastes

RGO-LiCl-Mn(NO3)2·4H2O pastes were prepared via mixing 0.05 g of rGO (thickness:
<5 nm, sheet size: 0.1–5 µm; Golden Innovation Business Co., Ltd., Taipei City, Taiwan),
0.04 g of LiCl (lithium chloride, anhydrous, 99%, Alfa Aesar, Ward Hill, MA, USA), 0.3 g
of Mn(NO3)2·4H2O (manganese (II) nitrated tetrahydrate, 98%, Alfa Aesar, Ward Hill,
USA), 3.245 g of terpineol (anhydrous, #86480, Aldrich, Munich, Germany), 1.5 g of ethanol,
1.75 g of ethyl cellulose (#46070, Sigma, Munich, Germany), and 2.25 g of ethyl cellulose
(#46080, Sigma, Munich, Germany) [27]. The mixture was stirred at 850 rpm for 24 h using
a magnetic stirrer and then condensed using a rotatory evaporator at 55 ◦C for 6 min to
obtain the pastes.

2.2. Fabrication of HSCs

RGO-LiCl-Mn(NO3)2·4H2O pastes were screen-printed onto carbon cloth three times,
and they finally covered an area of 1.5 cm × 2 cm. After screen-printing, the pastes were
dried in an oven at 100 ◦C for 10 min [28]. Next, the carbon cloth was treated with a
nitrogen APPJ for 180 and 300 s. The temperature of the substrate reached approximately
620 ◦C (nitrogen flow rate = 46 slm) during the APPJ process [4]. The APPJ treatment
process burned out the ethyl cellulose and modified the materials in the selected area [29].
After APPJ processing, rGO-LiMnOx nanocomposites were formed on the carbon cloth.
Three types of gel electrolytes were used in the HSCs: H2SO4, LiCl, and Li2SO4. For the
H2SO4 gel electrolyte, 1.5 g of polyvinyl alcohol (PVA; 99+% hydrolyzed, Aldrich), and
15 mL of 1 M H2SO4 were mixed using a magnetic stirrer at a rotation speed of 200 rpm
in a water bath at 80 ◦C until the solution became clear without any sediment. Then, the
mixture was stirred at room temperature at 850 rpm for 1 h. Similarly, to prepare the LiCl
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gel electrolyte, 1.5 g of PVA and 15 mL of 1 M LiCl were mixed at 90 ◦C until the solution
became clear, and then, it was stirred at room temperature for 1 h [30]. For the Li2SO4 gel
electrolyte, two solutions were prepared: 1.5 g of PVA and 10 mL of DI water were mixed
at 90 ◦C until the solution became clear, and 3 g of BMIMCl (1-butyl-3-methylimidazolium
chloride, 98%, Sigma), 1.65 g of Li2SO4 (lithium sulfate, anhydrous, 99%, Alfa Aesar), and
5 mL of DI water were mixed at 90 ◦C until the solution became clear. The two solutions
were mixed at 90 ◦C and then freeze-dried for 24 h [31].

For HCs with H2SO4 and LiCl gel electrolytes, 0.5 mL of the gel electrolyte was spread
on an rGO-LiMnOx carbon cloth electrode and left to dry at room temperature for 24 h. This
process was repeated three times. Finally, two electrodes coated with the gel electrolyte
were placed together with the gel sides facing each other to create a sandwich-type HSC.
The fabrication process of the gel electrolyte HSCs is shown in Figure 1. For Li2SO4 gel
electrolyte HSCs, the Li2SO4 gel electrolyte was deposited on an rGO-LiMnOx carbon cloth
electrode before freezing it for 24 h. Next, another layer of mixed solution was dropped
and covered with the frozen solution. Finally, two pieces of samples were combined and
frozen again for another 24 h.
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Figure 1. Fabrication process of gel electrolyte HSC.

2.3. Characterization of rGO-LiMnOx and HSCs

After APPJ treatment, the electrode material transformed into rGO-LiMnOx. The
structure of rGO-LiMnOx was analyzed using scanning electron microscopy (SEM, JSM-
7800F Prime, JEOL, Tokyo, Japan). The water contact angle of rGO-LiMnOx on carbon
cloth was measured using a goniometer (Model 100SB, Sindetake, Taipei City, Taiwan).
X-ray photoelectron spectroscopy (XPS, Sigma Probe, Thermo VG Scientific, Waltham, MA,
USA) analysis was conducted using an Al-Kα source (1486.6 eV) to investigate the surface
chemical bonding state.

Cyclic voltammetry (CV; potential window: 0−0.8 V, potential scan speed:
2−200 mV s−1), galvanostatic charging/discharging (GCD; potential window: 0−0.8 V,
constant current: 4, 2, 1, 0.5, and 0.25 mA), and electrochemical impedance spectroscopy
(EIS; 0.1–100,000 Hz) experiments were performed for HSCs with H2SO4, LiCl, and Li2SO4
gel electrolytes using an electrochemical workstation (PGSTAT204, Metrohm Autolab,
Utrecht, The Netherlands).

3. Results and Discussion
3.1. SEM Inspection

Figure 2 shows SEM images (magnification: 80×) of the bare carbon cloth, untreated
pastes, and APPJ-treated pastes. After screen-printing the pastes, the space between the
carbon fibers was filled with the pastes. The SEM images in Figure 3 (magnification: 5000×)
show that after APPJ treatment, most of the ethyl cellulose was burned off, and the pastes
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were converted into rGO-LiMnOx. The SEM images in Figure 4 (magnification: 50,000×)
show that surface particles tend to aggregate after APPJ processing.
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3.2. Water Contact Angles of rGO-LiMnOx

Figure 5 shows the water contact angle results for the screen-printed pastes and rGO-
LiMnOx after APPJ treatment. The pristine carbon cloth exhibits a high water contact angle
of 137.1◦, indicating that it is hydrophobic. A previous study suggested that pure rGO
exhibits hydrophobic characteristics [32]. In contrast, the as-deposited and APPJ-treated
samples exhibited hydrophilic behavior, with water droplets completely penetrating the
substrates during testing [33,34]. The difference in hydrophilicity can be discerned through
observing the droplet penetration time. For as-deposited pastes on carbon cloth, the droplet
takes approximately 70 s to penetrate the substrate; for APPJ-treated samples, the droplet
immediately penetrates the substrate. These results indicate that the precursors of lithium
manganese oxides are hydrophilic. The reactive plasma species generated by the APPJ
can penetrate the porous structure of the carbon cloth, leading to more thorough surface
modification. This, in turn, results in the long-lasting hydrophilicity of the carbon cloth [35].
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3.3. XPS Results of rGO-LiMnOx

The C1s spectrum can be resolved into four peaks representing different chemical
bonds: C–C, C–O, C=O, and O–C=O at binding energies of 284.8, 286.3, 287.6, and 288.9 eV,
respectively [36,37]. The analysis of the C1s peak in Figure 6 and Table 1 showed that in
addition to the C–C bond of the carbon cloth, the deposited carbon cloth shows peaks
related to the C–O, C=O, and O–C=O bonds. The C–O, C=O and O–C=O bonds primarily
originate from interactions between the oxide and the substrate. Some oxygen from the
environment also participates in the reaction during the APPJ process. Furthermore, after
nitrogen APPJ treatment, the oxygen content decreased, especially in the form of the C–
O bond, and the main peak reverted to the C–C bond, indicating the presence of ethyl
cellulose and the oxidation and evaporation caused by the APPJ treatment [38].
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Figure 6. XPS C1s spectra of (a) carbon cloth and (b) untreated pastes on carbon cloth and APPJ-
treated samples for (c) 180 s and (d) 300 s.

Table 1. XPS analysis of the C1s spectra in Figure 6, providing the atomic ratio of carbon bond-
ing states.

C–C (at%) C–O (at%) C=O (at%) O–C=O (at%)

Carbon cloth 100 - - -
As-deposited 32.28 46.59 10.33 10.80

APPJ-180 s 52.88 24.75 14.08 8.29
APPJ-300 s 61.02 23.43 8.08 7.47

The O1s spectrum can be resolved into four peaks representing different chemical
bonds: Mn–O–Mn, Mn–O–H, C–O, and C=O at binding energies of 530.4, 531.9, 533, and
534.2 eV, respectively [39]. In the deposited carbon cloth, the high proportion of C–O bond
components is attributed to the surface coverage of ethyl cellulose, similar to the findings
in the C1s analysis. At elevated temperature, structural water is released, and the deposited
manganese oxide is dehydrated. As shown in Figure 7 and Table 2, as the APPJ treatment
temperature increased to 620 ◦C, the presence of Mn–O–H bonds decreased. This results in
a significant reduction in the hydroxide composition, with anhydrous Mn–O–Mn becoming
the dominant oxide species [40].
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Figure 7. XPS O1s spectra of (a) carbon cloth and (b) untreated pastes on carbon cloth and APPJ-
treated samples for (c) 180 s and (d) 300 s.

Table 2. XPS analysis of the O1s spectra in Figure 7, providing the atomic ratio of carbon bond-
ing states.

Lattice Oxygen
Mn–O–Mn (at%) Mn–O–H (at%) C–O (at%) C=O (at%)

Carbon cloth - - 100 -
As-deposited 6.73 50.76 42.49 0.02

APPJ-180 s 23.41 47.55 3.60 25.43
APPJ-300 s 60.11 28.49 6.35 5.05

Figure 8 shows that the paste exhibits obvious Li1s peaks before and after APPJ
treatment. After APPJ treatment, the increased binding energy, which is better at a treatment
time of 300 s than at that of 180 s, indicates the stronger interaction between Li atoms and the
HSC electrode material. This enhanced interaction enables more efficient charge adsorption
and storage in the material, thereby increasing the energy density and charge storage
capacitance of the HSC.

As shown in Figure 9, the Mn3s spectrum exhibits a doublet pattern, with a high-spin state
(2p3/2) observed at a lower binding energy and a low-spin state (2p1/2) observed at a higher
binding energy. According to the conventional linear equation (VMn = 7.875 − 0.893∆E3s),
the average Mn valences are 3.946 for the as-deposited sample, 2.597 for that treated with
APPJ for 180 s, and 2.785 for that treated with APPJ for 300 s, as shown in Table 3 [41].
According to the analysis results of O1s, the APPJ treatment caused the oxidation state
adjustment of the manganese oxide surface, in which the Mn–O–H bonding decreased
and the lattice oxygen (Mn–O–Mn) increased. These changes indicate that the degree of
oxidation of manganese ions changed from a high oxidation state (Mn4+) to a low oxidation
state (Mn3+). Samples treated with an APPJ for 300 s showed a higher average valence than
that of samples treated with an APPJ for 180 s, suggesting that manganese was in a higher
oxidation state, having lost more electrons and formed more bonds with oxygen atoms.
This indicates a relatively higher degree of oxidation.
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Figure 8. XPS Li1s spectra of (a) carbon cloth and (b) untreated pastes on carbon cloth and APPJ-
treated samples for (c) 180 s and (d) 300 s.
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Figure 9. XPS Mn3s spectra of (a) carbon cloth and (b) untreated pastes on carbon cloth and APPJ-
treated samples for (c) 180 s and (d) 300 s.

Table 3. Average valence of Mn based on the XPS analysis of the Mn 3s spectra shown in Figure 9.

Mn–O–H (at%) C–O (at%) C=O (at%)

∆E3s (eV) 4.4 5.81 5.7
Average valence of

Mn 3.946 2.597 2.785
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As shown in Figure 10, the Mn 2p core-level spectrum contains two distinct peaks:
Mn 2p3/2 and Mn 2p1/2. The binding energy values of these two peaks can be used to
calculate the spin-orbital splitting value. The Mn 2p3/2 binding energy in the sample falls
within the range of binding energies observed in Mn2O3 (641.6 eV) and MnO2 (642.6 eV).
This finding suggests the concurrent presence of both Mn3+ and Mn4+ species in the
sample [42].
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Figure 10. XPS Mn2p spectra of (a) carbon cloth and (b) untreated pastes on carbon cloth and
APPJ-treated samples for (c) 180 s and (d) 300 s.

3.4. XRD

Figure S1 presents the XRD patterns of carbon cloth, as-deposited pastes containing
rGO-LiCl-Mn(NO3)2·4H2O, and the pastes treated with APPJ. In XRD analysis, before and
after the APPJ treatment, there are no distinct peaks observed for the lithium manganese
oxide material. Only the diffraction peak of the carbon cloth appears. This suggests that
the rGO-LiMnOx material may possess a structure with low crystallinity.

3.5. CV of HSCs

CV measurements provided insights into the electrochemical behavior and capacitance
performance of the HSCs. As shown in Figure 11, the CV curves obtained for each HSC
under different gel electrolytes and fabrication processes were analyzed and compared.
The areal capacitance, CA, is calculated as

CA =
1

Av∆V

∫ Vc

Va
I(V)dV (1)

through integrating the current (I) with respect to the potential (V) over the potential
range and dividing it by the potential scan rate (v) and effective electrode area (A) [43].
Tables 4–6 sequentially represent the areal capacitance of HSCs fabricated using H2SO4,
LiCl, and Li2SO4 gel electrolytes at different scan rates. The areal capacitance increased
with decreasing scan rate and improved significantly after APPJ treatment. The best areal
capacitance was achieved when using Li2SO4 gel electrolyte, and the largest area under the
CV curve was observed with APPJ treatment at 620 ◦C for 300 s. When scanned at a rate of
2 mV/s, it results in an areal capacitance of 86.42 mF/cm2. The increase in capacitance at
lower scan rates is attributed to two main factors. First, at lower scan rates, ions are given
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sufficient time to engage in the redox reaction, thus contributing to PC. Second, ions have
more time to adsorb/desorb on the electrode surface, thus contributing to EDLC. Figure S2
and Table S1 (please see the Supplementary Material/File for more information) show the
capacitance contribution ratio calculated using the Trasatti analysis method [44]. Trasatti
analysis indicates that, compared to H2SO4, LiCl and Li2SO4 exhibit a higher proportion
of PC. In LiCl and Li2SO4, lithium ions with high migration rates easily intercalate into
the electrode material during charge/discharge cycles, thereby increasing the effective
surface area for electrochemical reactions. This leads to a larger interface between the
electrode material and the electrolyte, facilitating more sites for the Faradaic reactions
involving lithium ion intercalation/extraction. As a result, the PC generated via the
insertion of lithium ions combines with the EDLC, resulting in a significant overall increase
in capacitance. In addition, the enhanced capacitance and energy density following surface
modification primarily arises from the improved wettability of the electrode material,
leading to an increased number of accessible sites for the formation of the electric double
layer (EDL) [45]. Overall, the Li2SO4 gel electrolyte HSC treated with an APPJ at 620 ◦C
for 300 s shows the highest areal capacitance, demonstrating the effectiveness of these
factors in enhancing the electrochemical performance of the system. Table S3 (please see
the Supplementary Material/File for more information) compares the electrochemical
performance of different rGO-LiMnOx/rGO-MnOx-based supercapacitors.

Table 4. Areal capacitance of HSCs using H2SO4 gel electrolyte, calculated based on CV results.

Areal Capacitance (mF/cm2)

APPJ Treatment
Potential Scan Rate (mV/s)

200 mV/s 20 mV/s 2 mV/s

As-deposited 2.55 2.81 2.32
APPJ-180 s 17.32 29.92 38.26
APPJ-300 s 20.60 43.91 57.76

Table 5. Areal capacitance of HSCs using LiCl gel electrolyte, calculated based on CV results.

Areal Capacitance (mF/cm2)

APPJ Treatment
Potential Scan Rate (mV/s)

200 mV/s 20 mV/s 2 mV/s

As-deposited 0.53 0.74 1.34
APPJ-180 s 17.26 36.52 51.96
APPJ-300 s 23.33 46.04 59.95

Table 6. Areal capacitance of HSCs using Li2SO4 gel electrolyte, calculated based on CV results.

Areal Capacitance (mF/cm2)

APPJ Treatment
Potential Scan Rate (mV/s)

200 mV/s 20 mV/s 2 mV/s

As-deposited 2.22 2.81 3.37
APPJ-180 s 17.60 44.92 65.13
APPJ-300 s 21.15 56.47 86.42
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Figure 11. CV curves obtained for HSCs using 1 M (a) H2SO4, (b) LiCl, and (c) Li2SO4 gel electrolytes.
Comparison of areal capacitance at different potential scan rates of (d) 200 mV/s, (e) 20 mV/s, and
(f) 2 mV/s. (a-1–a-3) are CV curves of H2SO4 gel-electrolyte SCs with scan rates of 200 mV/s, 20
mV/s, and 2 mV/s, respectively. (b-1–b-3) are CV curves of LiCl gel-electrolyte SCs with scan rates
of 200 mV/s, 20 mV/s, and 2 mV/s, respectively. (c-1–c-3) are CV curves of Li2SO4 gel-electrolyte
SCs with scan rates of 200 mV/s, 20 mV/s, and 2 mV/s, respectively.
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3.6. GCD of HSCs

The electrochemical performance of HSCs was evaluated using GCD analysis under
five constant currents. The areal capacitance, CA, is calculated as

CA =
2IdTd
A∆V

(2)

where Id is the charging/discharging current; Td, the discharging time; A, the electrode
area; and ∆V, the potential scan window [44]. The discharge curve can be segmented into
three regions: an abrupt potential drop caused by the HSC’s internal resistance, a rapid
potential decrease attributed to the EDLC effect, and a gradual potential decay region
resulting from PC behavior [46,47]. As shown in Figure 12, the GCD curves obtained
for HSCs using different gel electrolytes and fabrication processes were analyzed and
compared. A charge–discharge curve with an isosceles triangle shape is characteristic of
EDLC. However, the figures suggest that the charge storage mechanism involves surface
redox reactions rather than pure EDLC [48]. This confirms the results obtained from the CV
analysis. As shown in Figure 12(c-1,c-2), when using the Li2SO4 gel electrolyte, the charging
curve exhibits a smaller slope, indicating a more significant presence of oxidation–reduction
reactions and slower reaction rates during charging. Tables 7–9 present the areal capacitance
values obtained from the calculations using GCD results. The HSC using the Li2SO4 gel
electrolyte with APPJ treatment at 620 ◦C for 300 s exhibits the highest performance,
with an areal capacitance of 69.16 mF/cm2 when discharged at a current of 0.25 mA. A
lower charging/discharging current implies that the HSC’s charging/discharging process
is slower. This allows reactions to occur for a longer duration on the electrode surface,
resulting in more charge transfer and electrochemical reactions. The ions in the electrolyte
can undergo more complete adsorption and desorption on the electrode surface, thereby
increasing the available surface area of the electrode and resulting in an increased calculated
areal capacitance. These results as well as those of the previous CV analysis indicate that
the Li2SO4-gel-electrolyte HSC exhibits better performance compared to that of HSCs with
the other two gel electrolytes; however, it does not provide an optimal areal capacitance at
a scan rate of 200 mV/s. This suggests that the HSC with the Li2SO4 gel electrolyte may
have a lower ion conductivity, leading to incomplete reactions at higher scan rates and
resulting in a smaller areal capacitance [49].

Table 7. Areal capacitance of HSCs using H2SO4 gel electrolyte, calculated based on GCD results.

Areal Capacitance (mF/cm2)

APPJ
Treatment

Discharging Current

4 mA 2 mA 1 mA 0.5 mA 0.25 mA

APPJ-180 s 28.56 32.46 36.62 40.86 46.28
APPJ-300 s 32.81 39.42 45.42 51.23 58.09

Table 8. Areal capacitance of HSCs using LiCl gel electrolyte, calculated based on GCD results.

Areal Capacitance (mF/cm2)

APPJ
Treatment

Discharging Current

4 mA 2 mA 1 mA 0.5 mA 0.25 mA

APPJ-180 s 24.28 31.19 37.85 44.62 52.28
APPJ-300 s 36.27 44.70 49.16 55.22 62.27
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Table 9. Areal capacitance of HSCs using Li2SO4 gel electrolyte, calculated based on GCD results.

Areal Capacitance (mF/cm2)

APPJ
Treatment

Discharging Current

4 mA 2 mA 1 mA 0.5 mA 0.25 mA

APPJ-180 s 36.55 44.16 51.00 60.05 62.76
APPJ-300 s 46.25 55.96 62.96 66.82 69.16
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Figure 12. GCD curves obtained for HSCs using 1 M (a) H2SO4, (b) LiCl, and (c) Li2SO4 gel
electrolytes under five constant currents: 4 mA, 2 mA, 1 mA, 0.5 mA, and 0.25 mA. (a-1,a-2) are plots
obtained forH2SO4 gel-electrolyte SCs treated by APPJ for 300 s and 180 s, respectively. (b-1,b-2) are
plots obtained for LiCl gel-electrolyte SCs treated by APPJ for 300 s and 180 s, respectively. (c-1,c-2)
are plots obtained for Li2SO4 gel-electrolyte SCs treated by APPJ for 300 s and 180 s, respectively.

3.7. Ragone Plot

The Ragone plot shown in Figure 13 was analyzed based on the GCD measure-
ment results. The energy density and power density were respectively calculated using
Equations (3) and (4) as

EA =
CA × ∆V2

7.2
(3)

PA =
3.6 × EA

T
(4)

where EA is the energy density; CA, the areal capacitance calculated using the GCD method;
∆V, the potential scan window; PA, the power density; and T, the discharging time [50].
As shown in Table 10, the HSC using the Li2SO4 gel electrolyte with APPJ treatment at
620 ◦C for 300 s has the highest performance, with an energy density of 6.15 µWh/cm2

when discharged at a current of 0.25 mA. Under a discharging current of 4 mA, the highest
power density of 1.07 mW/cm2 was achieved.
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Figure 13. Comparison of Ragone plots for H2SO4, LiCl, and Li2SO4 gel electrolyte HSCs treated
with APPJ for (a) 180 s and (b) 300 s.

Table 10. Energy density of HSCs using H2SO4, LiCl, and Li2SO4 gel electrolytes, calculated based
on GCD results.

Energy Density (µWh/cm2)

Discharging Current

4 mA 2 mA 1 mA 0.5 mA 0.25 mA

H2SO4
APPJ-180 s 2.54 2.89 3.26 3.63 4.11
APPJ-300 s 2.92 3.50 4.04 4.55 5.16

LiCl
APPJ-180 s 2.16 2.77 3.36 3.97 4.65
APPJ-300 s 3.22 3.97 4.37 4.91 5.54

Li2SO4
APPJ-180 s 3.25 3.93 4.53 5.34 5.58
APPJ-300 s 4.11 4.97 5.60 5.94 6.15

3.8. Stability of HSCs

The stability of HSCs was evaluated through a 1000-cycle CV test with a potential
scan rate of 20 mV/s. As shown in Figure 14, the HSC with H2SO4 gel electrolyte and
APPJ treatment at 620 ◦C for 300 s exhibits the highest capacitance retention rate of 82.1%
after 1000 cycles. With LiCl and Li2SO4 gel electrolytes, the capacitance retention rate was
approximately 70% or higher. The rate of decay decreased and then leveled off as the
number of cycles increased. As shown in Video S1, the fabricated HSC was charged to
power an LED and thereby demonstrate its energy storage capability.

3.9. EIS of HSCs

From the EIS analysis in Figure S3 (please see the Supplementary Material/File for
more information), it can be observed that the slopes of the impedance curves for the three
types of gel electrolytes are close to 45 degrees, indicating an approximation to PC behavior.
Among them, the slope of the H2SO4 curve is larger compared to the other two, suggesting
a higher contribution of EDLC, consistent with the results of Trasatti analysis. Additionally,
lithium sulfate exhibits smaller values of Rs and Rct, corresponding to a higher electron
propagation speed and enhanced redox reaction compared to the other electrolytes [51,52].
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Among those HSCs, the one with the Li2SO4 gel electrolyte exhibited the highest areal 
capacitance and energy density. However, it showed relatively poor stability in stability 
testing. By contrast, the HSC with the H2SO4 gel electrolyte exhibited a lower areal capac-
itance and energy density but better capacitance retention rate. 
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4. Conclusions

We demonstrate that it is feasible to fabricate electrodes of HSCs through screen-
printing pastes containing rGO and LiCl-Mn(NO3)2·4H2O onto a carbon cloth substrate,
followed by treatment with a nitrogen APPJ. H2SO4, LiCl, and Li2SO4 gel electrolyte HSCs
were successfully fabricated using APPJ-processed rGO-LiMnOx electrodes. Electrochemi-
cal testing revealed that the areal capacitance of the HSCs increased after APPJ treatment,
and both energy density and cycling stability improved with longer APPJ treatment times.
Among those HSCs, the one with the Li2SO4 gel electrolyte exhibited the highest areal
capacitance and energy density. However, it showed relatively poor stability in stabil-
ity testing. By contrast, the HSC with the H2SO4 gel electrolyte exhibited a lower areal
capacitance and energy density but better capacitance retention rate.
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