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Abstract: The research on the remote control of manipulators based on flexible sensor technology
is gradually extensive. In order to achieve stable, accurate, and efficient control of the manipulator,
it is necessary to reasonably design the structure of the sensor with excellent tensile strength and
flexibility. The acquisition of manual information by high-performance sensors is the basis of ma-
nipulator control. This paper starts with the manufacturing of materials of the flexible sensor for
the manipulator, introduces the substrate, sensor, and flexible electrode materials, respectively, and
summarizes the performance of different flexible sensors. From the perspective of manufacturing, it
introduces their basic principles and compares their advantages and disadvantages. Then, according
to the different ways of wearing, the two control methods of data glove control and surface EMG
control are respectively introduced, the principle, control process, and detection accuracy are summa-
rized, and the problems of material microstructure, reducing the cost, optimizing the circuit design
and so on are emphasized in this field. Finally, the commercial application in this field is explained
and the future research direction is proposed from two aspects: how to ensure real-time control and
better receive the feedback signal from the manipulator.

Keywords: manipulator control; flexible sensor; manufacturing process; gesture recognition; EMG
control; data gloves

1. Introduction

Robots have gradually played an important role in machine manufacturing, electric
power, the nuclear industry, metallurgy, light industry, and other fields. As a kind of mobile
robot, the remote control of manipulators has been widely studied by scientists; a manip-
ulator is a device that can imitate the actions of human hands to grasp, carry objects, or
operate tools [1]. In order to achieve these functions, a system is usually used to control the
operation of the manipulator, which is called the manipulator control system, and generally
includes flexible electronics (for data acquisition), computer processing modules (for data
processing), and transmission modules (for signal transmission). Through this control
system, to complete the remote operation of the manipulator, the use efficiency of the
manipulator can be improved. Traditional remote control can be based on machine-vision
technology, which captures people’s hand movements through the camera, uploads the
images or videos to the computer for analysis and processing, obtains the hand movement
information, and sends it to the manipulator to perform corresponding actions, and com-
pletes gesture recognition and tracking [2–4]. However, the problem with this method is
that it is greatly affected by environmental factors such as light. Compared with the control
method based on vision technology, the control method based on flexible sensor technology
through a data glove [5] or through electromyography (EMG) [6] is more widely used. This
method has higher detection accuracy and a stable information collection process.

Of course, this is related to the development of flexible sensors. A flexible sensor is
one of the basic components of wearable devices. It is made of various flexible materials,
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with skin friendly, flexible, and comfortable characteristics, and it is a sensing device
that can collect the measured information and convert the measured information, such
as the large amount of elastic strain [7], etc., into electrical signals or other signals. Due
to the continuous development of manufacturing materials, the continuous progress of
manufacturing processes, and the increasing maturity of flexible sensor technology, the
flexible sensor designed for manipulator control has higher sensitivity and stronger stability.
In view of this, the use of wearable flexible sensors to collect information from the human
hand and control the movement of the manipulator has become a hot research topic. It is
widely used in fruit and vegetable picking, medical rehabilitation, assistance for the elderly
and disabled, and hazardous electrical work.

Using the Web of Science (WOS) database to search the literature using the keywords
“flexible sensing technology” and “gesture recognition”, we find that there are related
papers published every year and the number of papers is increasing. The literature growth
trend of manipulator-control research based on flexible sensor technology over the years is
shown in Figure 1. In the early stage, due to the immaturity of flexible sensing technology,
the previous research mainly focused on machine-vision technology or the combination of
flexible sensors and machine vision for gesture recognition, resulting in a small number of
related research papers. In later stages, research on flexible sensing technology made some
progress due to the continuous development of multidisciplinary fields, such as digital
communication and artificial intelligence. Relevant interdisciplinary studies continue to
emerge, eventually leading to a sharp increase in the amount of literature in this field.

Micromachines 2023, 14, x FOR PEER REVIEW  2  of  34 
 

 

Of course, this is related to the development of flexible sensors. A flexible sensor is 

one of the basic components of wearable devices. It is made of various flexible materials, 

with skin friendly, flexible, and comfortable characteristics, and it is a sensing device that 

can collect the measured information and convert the measured information, such as the 

large amount of elastic strain [7], etc., into electrical signals or other signals. Due to the 

continuous development of manufacturing materials, the continuous progress of manu-

facturing processes, and the increasing maturity of flexible sensor technology, the flexible 

sensor designed for manipulator control has higher sensitivity and stronger stability. In 

view of this, the use of wearable flexible sensors to collect information from the human 

hand and control the movement of the manipulator has become a hot research topic. It is 

widely used in fruit and vegetable picking, medical rehabilitation, assistance for the el-

derly and disabled, and hazardous electrical work. 

Using the Web of Science (WOS) database to search the literature using the keywords 

“flexible sensing  technology” and “gesture  recognition”, we find  that  there are  related 

papers published every year and the number of papers is increasing. The literature growth 

trend of manipulator-control research based on flexible sensor technology over the years 

is shown in Figure 1. In the early stage, due to the immaturity of flexible sensing technol-

ogy, the previous research mainly focused on machine-vision technology or the combina-

tion of flexible sensors and machine vision for gesture recognition, resulting  in a small 

number of related research papers. In later stages, research on flexible sensing technology 

made some progress due to the continuous development of multidisciplinary fields, such 

as  digital  communication  and  artificial  intelligence. Relevant  interdisciplinary  studies 

continue to emerge, eventually leading to a sharp increase in the amount of literature in 

this field. 

 

Figure 1. Literature growth trend of manipulator-control research using flexible sensors over the 

years. 

By  searching  the  literature using  the keywords “flexible  sensing  technology” and 

“gesture recognition” and adding the keywords “material”, “data glove”, “myoelectric”, 

and “algorithm”, a literature proportion distribution diagram can be obtained as shown 

in Figure 2. It can be seen from Figure 2 that 39% of the literature focuses on materials for 

manufacturing flexible sensors. This indicates a significant interest in how materials affect 

sensor performance. In addition, 23% of the literature is dedicated to algorithmic research 

by optimizing existing algorithms or creating new ones to address issues such as control 

and detection accuracy. However, there is no significant difference in the number of stud-

ies on  the  two different control methods,  indicating that  the search  for optimal control 

methods  is ongoing. However,  recognition difficulty,  sensitivity,  recognition accuracy, 

and stability determine the quality of the control method. In order to solve these problems, 

Figure 1. Literature growth trend of manipulator-control research using flexible sensors over
the years.

By searching the literature using the keywords “flexible sensing technology” and
“gesture recognition” and adding the keywords “material”, “data glove”, “myoelectric”,
and “algorithm”, a literature proportion distribution diagram can be obtained as shown
in Figure 2. It can be seen from Figure 2 that 39% of the literature focuses on materials for
manufacturing flexible sensors. This indicates a significant interest in how materials affect
sensor performance. In addition, 23% of the literature is dedicated to algorithmic research
by optimizing existing algorithms or creating new ones to address issues such as control
and detection accuracy. However, there is no significant difference in the number of studies
on the two different control methods, indicating that the search for optimal control methods
is ongoing. However, recognition difficulty, sensitivity, recognition accuracy, and stability
determine the quality of the control method. In order to solve these problems, relevant
research is mainly carried out by improving the design scheme, upgrading the preparation
materials, and optimizing the process flow. Through the design of the microchannel and
microstructure, a flexible sensor with higher sensitivity, faster response, and more stable
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operation will be produced. It will also strengthen the research of some preparation
materials and improve the control sensitivity and stability of flexible sensors by improving
the properties of materials. The process directly determines the quality of design products
and the exploration, improvement, and promotion of the process level is also an important
issue that needs continuous research.
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According to the results of the literature search, we found that, although many scholars
have done a lot of research in this area in recent years, there are few literature reviews on
robot control systems based on flexible sensor technology and they are concentrated in the
last five years. Xu et al. [8] summarized the progress of flexible sensors that can be used for
gesture recognition interactions, focusing on the performance of flexible devices constructed
using functional nanomaterials. Similarly, the review [9] specifically summarized the
performance, fabrication, and application of flexible sensors made of carbon nanotubes
(CNTs). Yin et al. [10] detailed the mechanism of designing various flexible sensors based
on different mechanisms and material-selection strategies but lacked a specific description
of the gesture–recognition interaction process. Pan et al. [11] summarized the number
and changing trend of literature on data-glove technology but did not include the content
of recognition control using an EMG signal. Si et al. [12] believed that accurate gesture
recognition can be achieved by placing sensors on fingers or integrating them into data
gloves, but did not summarize the recognition process.

Therefore, according to the different research focuses emphasized by different review
papers, this paper decides to focus on the relevant contents of materials, processes, and
control methods, and summarize the sensor integration and accuracy of different methods.
The main contributions mainly include the following aspects:

(1) This paper provides a comprehensive summary of research on the flexible sensor
technology of a manipulator control system, which includes manufacturing materials,
manufacturing processes, and control methods;

(2) This paper provides an overview of two related sensor information acquisition tech-
nologies: direct acquisition of EMG signals from skin surfaces and integration of
gesture change information into data gloves;

(3) To summarize the existing problems from the three aspects of material, process, and
control, respectively, and to provide a reference for future research in this area from a
commercialization perspective.

The remaining contents of this paper are as follows: the second part mainly introduces
the components of the flexible sensor, the types of manufacturing materials of each module,
and the manufacturing process of the flexible sensor; the third part introduces two different
types of manipulator control based on flexible sensor technology; and the fourth part
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summarizes the problems from different aspects. Finally, the paper summarizes the whole
text and looks forward to the future research on manipulator control.

2. Materials and Processes for Fabricating Flexible Sensors

Comfort, stretchability, skin affinity, and micro are the important characteristics of
wearable flexible sensors. The selection of flexible materials with high stretchability and
good electrical conductivity is crucial for flexible sensors. Different flexible sensors use
different materials but the whole consists of three components: substrate material, sensing
material, and flexible electrode. There are many methods for manufacturing flexible sensors,
such as dipping and coating, lithography, inkjet printing, screen printing, etc. The following
is a brief introduction to the two aspects of materials and processes.

2.1. Materials

As shown in Figure 3, commonly used substrate materials are mainly polydimethyl-
siloxane (PDMS), polyimide (PI), thermoplastic polyurethane (TPU), and other polymer
materials such as paper; sensing materials are carbon-based nanomaterials (CBN), such as
carbon-based nanoparticles, carbon nanotubes (CNT), and graphene (GO); and conductive
materials are generally carbon nanomaterials, metal nanomaterials, organic polymers, and
so on.
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2.1.1. Substrate Material

The flexible substrate is an indispensable part of the flexible pressure sensor. In
order to meet the requirements of the flexible sensor, the properties of flexibility, corrosion
resistance, stability, thinness, and light have become the key indicators for the selection of
the flexible substrate. The main parameters that determine these indices include the thermal
expansion coefficient (TE), moisture barrier property (MBP), radius of curvature (ROC),
degradability (DA), and Young’s modulus (YM). Commonly used substrate materials
are mainly polydimethylsiloxane (PDMS) [14–17], polyimide (PI) [18,19], thermoplastic
polyurethane (TPU) [20–25], and other polymer materials such as paper, each of which has
great application potential in the fabrication of flexible sensors with different functions.
The physical properties and advantages/disadvantages of common substrate materials are
compared in Table 1.
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Table 1. Comparison of physical properties and advantages/disadvantages of common substrate
materials.

Main Substrate
Materials TE MBP ROC DA YM Highlight Advantages Disadvantages

PDMS + + +++ + -
There is a relatively

wide range of
application scenarios.

Poor mechanical properties, low
surface hardness,
easily scratched.

PI + + ++ + ++ Excellent mechanical
properties.

High transparency, low
adsorption to material.

TPU +++ + +++ + ++ High strength
and elasticity.

High production cost, cannot be
used in high-temperature

environment.

PET + + +++ + ++ High stability and
wear resistance. Strict processing conditions.

Paper + - +++ +++ +++ Biodegradable
and reusable.

Paper print pattern has
many limitations.

Textiles - + + ++ +++ Excellent permeability.
Conductive layer is difficult to

distribute uniformly on the
substrate surface.

‘-’ means bad; ‘+’ means good; ‘++’ means better; ‘+++’ means excellent.

PDMS, as the most commonly used flexible substrate material, has been widely used
by researchers in electronic skin, flexible circuits, superhydrophobic surfaces, microfluidic
chips [26–28], and other fields due to its easy availability, low modulus, strong mechanical
compliance, nontoxicity, extremely high tensile property, good biocompatibility, and, most
importantly, customizable surface chemistry [29]. Ordinary PDMS elastomers have limited
stretchability, adhesion, and flexibility, and can be improved to have better properties by
some physical or chemical treatment of the material. However, the main disadvantage
is that it is not degradable after disposal, which causes environmental pollution. By
modifying the morphology of the PDMS microstructure, Zeng et al. [13] fabricated a highly
sensitive flexible pressure sensor with a sensitivity of 14.26 kPa−1 and a response time of
less than 50 ms, as shown in Figure 4a. As shown in Figure 4b, Cai et al. [30] proposed a
self-powered tactile sensor based on PDMS/MXene. The best sensitivity reaches 0.18 V/Pa
at 10–80 Pa and 0.06 V/Pa at 80–800 Pa, respectively, higher than most other self-powered
tactile sensors, the different sensitivity under low and high pressure is related to wrinkles.
It can be used to monitor complex human physiological signals, showing great potential
for disease detection and health assessment. By using liquid metal eutectic gallium indium
(EGaIn) as the conductive layer and PDMS-MPU0.4-IU0.6 as the encapsulation and support
layer, Kang et al. [31] fabricated a new class of stretchable and autonomous self-healing
electrodes, which show great improvement in toughness, stretchability, and stability, as
shown in Figure 4c. Similarly, Li et al. [32] designed a new polymer chain based on PDMS
by taking advantage of the fact that the iron bond is easily broken and reformed. This Fe-
Hpdca-PDMS polymer shows good mechanical strength and a very high tensile property,
which gives the elastomer excellent ductility and self-healing properties and can be used as
a support material for self-healing artificial muscle actuators. Jeong et al. [16] demonstrated
a simple method to adjust the mechanical compliance, elongation at break, and adhesion to
human skin of PDMS by adding different amounts of ethoxylated polyethyleneimine (PEIE)
additives to the mixture of silicone base and crosslinker of the PDMS-based elastomer and,
then, fabricated a flexible electronic device for detecting finger movements, as shown in
Figure 4d.
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of a flexible sensor attached to a human chest to measure respiratory rhythms, reprinted from [13],
copyright (2019), with permission from ACS Publications. (b) shows the triboelectric tactile sensor
based on wrinkled PDMS/MXene composite films, reprinted from [30], copyright (2020), with
permission from Elsevier. (c) shows the self-healing of the PDMS-MPU0.4-IU0.6 film, which can take
place even underwater, reprinted from [31], copyright (2018), with permission from Wiley. (d) shows
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Polyimide (PI) has excellent thermal stability. Its chemical properties can remain stable
in the range of −240 ◦C to 260 ◦C; although PI material is not malleable, it can be bent,
has excellent mechanical properties and corrosion resistance, and is an ideal material for
flexible sensor substrate. The problem with PI is that its color is yellow. This makes it
highly transparent and also reduces its adsorption capacity on flexible materials. In 2018,
Kim et al. [37] fabricated a nanocrack sensor on the PI substrate by a stretching method,
which has a high sensitivity to strain and low response (the strain coefficient exceeds 10,000
and the response time is only 5 ms at 2% strain), and has good application potential in
motion monitoring, as shown in Figure 4e.

Polyurethane (PU) can be used in the manufacture of flexible sensors, which have
the properties of temperature resistance, wear resistance, high strength and elasticity, and
can provide good ductility for flexible sensors. As shown in Figure 4f, Wang et al. [33]
fabricated a highly sensitive strain sensor by embedding TPU fiber film in carbon black
(CB) particles with the adjustable support network, which has broad application prospects
in intelligent terminal, electronic skin, voice measurement, human motion monitoring, etc.
Zhou et al. [34] designed a stretchable strain sensor with a cracked structure by spraying
CNT ink coating on a TPU fiber mat. The sensor can detect a subtle and wide range of
human motion with its excellent sensitivity and good stability, as shown in Figure 4g.

In addition, polyethylene terephthalate (PET) is also one of the commonly used
polymers for manufacturing flexible sensors, it has good flexibility, excellent electrical
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insulation, and can maintain stable physical properties over a wide temperature range but
its heat resistance is inferior to PI. Most of the substrate materials mentioned above are
thermosetting resins and the flexible sensor parts made of them are difficult to recycle or
degrade. With the widespread use of flexible sensors, a large amount of electronic waste
will be generated. Therefore, in order to reduce the environmental impact, there is an urgent
need for some renewable or recyclable materials, such as paper, as substrate. In addition,
in some special applications of flexible sensors, paper, and some synthetic textiles are also a
suitable choice as the base material of flexible sensors because this is likely to minimize
the design complexity of the system. Liu et al. [35] fabricated a flexible and degradable
paper-based strain sensor by dip-coating the paper substrate in an aqueous suspension
of carbon black (CB) and carboxymethyl cellulose (CMC), as shown in Figure 4h. It has
high stability and can be used to monitor various human movements. There are five major
limitations of the current paper-based microfluidic system: (1) the conductors cannot be
interconnected: holes must be drilled between the different layers of paper and the patterns
on the different layers must be aligned so that the printed conductors can be connected
between the different layers of paper; (2) the flow of water-based liquids is slowed down:
conventionally printed carbon and silver electrodes are hydrophobic, which can cause
their flow to slow down or stop; (3) paper surface area is limited: the viscous ink does not
penetrate into the paper substrate, so the inner surface of the paper is not used; (4) poor
contact adhesion and stability: The ink does not adhere well to the bare paper, and it is
easily broken or torn; and (5) the blockage of the hole in the paper: after the electrode
is printed on the paper, the aqueous solution cannot pass through the printed electrode.
Hamedi et al. [38] demonstrated a technology fabric that overcomes these five limitations
by fabricating circuits and microfluidic structures on paper. Hu et al. [36] used single-wall
carbon nanotube (SWNT) inks to fabricate highly conductive textiles by an extremely
simple “dip and dry” process, which exhibited excellent flexibility and stretchability, as
shown in Figure 4i. Based on these flexible substrate materials, the flexible sensor has the
characteristics of softness, stretchability, bendability, wearability, etc., and is widely used in
smart textiles to stabilize and integrate multifunctionality beyond clothing [39].

2.1.2. Sensor Material and Flexible Electrode

The materials used for the sensor and the flexible electrode are very similar. The
sensing material is one of the key materials of the flexible strain sensor, which can convert
the external pressure/strain signal of the sensor into an electrical signal. In recent years,
researchers have generally fabricated flexible strain sensors with good mechanical proper-
ties based on CBN. CBNs include carbon-based nanoparticles, CNT, GO, etc. Due to their
unique electrical properties and good piezoresistive sensitivity, CBNs are the main materi-
als for fabricating flexible electrodes. Flexible electrodes are an important part of flexible
sensors and are developed from various conductive materials. Currently, the main materi-
als are not only CBN but also metal nanoparticles. Carbon materials have special electrical
conductivity and structural diversity, overcoming the inherent performance limitations of
traditional transparent electrode materials. Among metal nanoparticles, some noble metal
nanoparticles or nanowires, such as gold, silver, and nickel, and nanoparticle/nanowire
composites, are widely used as flexible electrode materials for wearable sensors [40–43]. In
addition, there are some emerging materials, such as organic polymers, liquid metals, ionic
hydrogels, etc.

Carbon nanotubes (CNT), as one of the new materials with great potential, have excel-
lent properties, such as light weight, good conductivity, and high surface utilization due to
their perfect hexagonal interconnection structure. The tube diameter of CNT is controllable,
and it can be applied to the production of large-area, low-cost flexible sensors through
simple processing and synthesis. The mass-produced carbon nanotubes are compatible
with large-area solution processing technology; carbon nanotubes can be directly deposited
on flexible materials or stretchable substrates, and are widely used as electrode materials
for flexible strain and pressure sensors [44]. Lipomi et al. [45] reported a type of skin-like
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pressure and strain sensors based on transparent elastic films of CNTs, which can be made
stretchable by applying strain along each axis and then releasing the strain. Jung et al. [46]
fabricated a dry electrocardiogram (ECG) electrode based on CNT–PDMS composites,
which can be easily connected to conventional ECG devices, and demonstrated its long-
term wearable monitoring capabilities as well as its robustness to motion and sweat. In
general, significant structural deformation of the material can achieve significant changes in
the electrical signal to meet the requirements of flexible sensors for high sensitivity. On this
basis, it is also necessary to maintain the integrity of the elastomer structure during large
deformation to meet the tensile requirements; therefore, a possible scheme to improve the
mechanical and electrical properties of CNT is to apply vertically aligned carbon nanotubes.
Paul et al. [47] designed a vertically aligned carbon nanotube (VACNT)–PDMS composite
structure as the sensing material of the stretchable sensor, as shown in Figure 5a. The sensor
has excellent strain deformation ranging from 0.004% to 30%. Boutry et al. [48] fabricated a
bionic electronic skin formed by CNT top and bottom electrodes embedded in a PU elastic
substrate, which has excellent electrical stability when mechanical deformation is applied,
can control the robotic arm to perform various tasks, and can measure and discriminate
forward and tangential pressures in real time.
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Figure 5. Example of a carbon nanotube-based sensor application. (a) is the optical photograph of the
as-synthesized VACNT-PDMS thin-film sensor, reprinted from [47], copyright (2021), with permission
from ACS Publications. (b) is the photograph of the 3D graphene films used for rapid finger bending
detection, reprinted from [49], copyright (2018), with permission from Wiley. (c) Schematic illustration
of the assembly of graphene and QDs on a flexible substrate, reprinted from [50], copyright (2019),
with permission from Science Advances. (d) shows the relative change in sensor resistance with
finger bending, reprinted from [51], copyright (2018), with permission from Elsevier. (e) shows the
graphene paper pressure sensor with excellent sensitivity, reprinted from [52], copyright (2017), with
permission from ACS Publications. (f) shows the photos of the strain sensor on the index finger,
reprinted from [53], copyright (2020), with permission from Wiley. (g) shows the photograph of the
schematic of the whole sensor system with an illustration of the magnified image, reprinted from [54],
copyright (2019), with permission from PubMed Central. (h) is the photograph of the transparent
and stretchable capacitive touch sensor, reprinted from [55], copyright (2017), with permission from
American Chemical Society. (i) is the photograph of five stretchable strain sensors attached to the
finger joints of the glove, reprinted from [56], copyright (2015), with permission from American
Chemical Society.
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Graphene (GO) has the characteristics of being thin and transparent, having good
electrical and thermal conductivity, and being a very promising flexible strain sensor
material. Graphene has two preparation methods: the chemical vapor deposition method
and the natural graphite stripping method. The graphene prepared by the chemical vapor
deposition method [57] may have insulating impurities during the preparation process,
resulting in poor electrical conductivity. Tolerable strain is usually less than 1%. The
graphene prepared by the natural graphite stripping method has the advantages of large-
scale production and low cost, which is more conducive to practical application [58–60].
As shown in Figure 5b, by transferring the obtained 3D graphene films (3D-GFs) to a
flexible PDMS substrate, a reversible change in resistance under large strain or bending was
achieved by Pan et al. [49]. The highly sensitized piezoresistive strain sensor can produce a
fast response to finger bending. Polat et al. [50] used graphene sensitized by semiconductor
quantum dots (GQDs) to construct a photosensitive wearable sensor for the material and
a number of prototypes are presented for monitoring key physiological characteristics,
including heart rate, arterial oxygen saturation (SpO2), and respiratory rate, as shown in
Figure 5c.

Reduced graphene oxide (rGO) has been widely used in the fabrication of flexible
sensors due to its excellent electrical conductivity, good mechanical properties, and ease
of processing. [61–64]. Du et al. [65] uniformly coated the reduced graphene oxide on the
surface of nonwoven fabric (NWF)to prepare a graphene NWF (GNWF) flexible sensor,
which has good reproducibility in response to stretching, bending and compression, can
respond to a series of human movements of different degrees, and can monitor finger, wrist,
and other parts of the pulse, breathing, and other small movements. By Lu et al. [51], rGO
and PDMS were deposited on the substrate to form the highly conductive piezoresistive
pressure sensor after thermal reduction treatment. The assembled pressure sensors had
excellent sensing characteristics and successfully detected various physiological activi-
ties and subtle physiological signals, including walking, running, elbow bending, finger
bending, breathing, speaking, and blood pulse, as shown in Figure 5d. By mixing tissue
paper with GO solution, and converting the GO sample into reduced graphene oxide (rGO)
paper by the thermal reduction method, a graphene paper pressure sensor with excellent
performance in the range of 0–20 kPa was obtained by Tao et al. [52], which can be applied
in pulse detection, breathing detection, voice recognition, and various intense motion
detection. As shown in Figure 5e, a dry and self-adhesive strain sensor consisting of a
sensing layer and an adhesive layer has been fabricated by Wang et al. [53]. The sensing
layer is made of nonadhesive water-dispersible polyurethane (WPU) composites of rGO
and CNTs. The adhesive strain sensors are used to monitor body movements with large or
small strains, including movements of the fingers, wrists, knees, ankles, and muscles, as
shown in Figure 5f.

Compared to carbon-based materials, metal nanomaterials have unmatched electrical
conductivity. In 2019, Li et al. [66] fabricated a pressure sensor based on micro-nanowires
densely stacked with gold nanoparticles using the imprinting method. The entire assembly
process takes only 1 min; the optimal detection limit of the pressure sensor is as low as
25 Pa and it can be applied to any part of the human body. Its high sensitivity ensures
its application in real-time monitoring of daily human motion and as an electronic skin
for prosthetics. Kim et al. [54] demonstrated a flexible and transparent sensor fabricated
by maskless laser processing of Ag nanodendrites and spray coating of Ag nanowires, as
shown in Figure 5g, capable of sensing both pressure and position. Zhao et al. [67] combined
the natural viscoelastic material of thermoplastic polyurethane (TPU) nanofibers with the
conductive material of silver nanowires (AgNWs) to fabricate a capacitive pressure sensor
with the characteristics of high sensitivity, fast response time, and low detection limit. Choi
et al. [55] used a selective patterning process to embed stretchable and transparent silver
nanowire/reduced graphene oxide (AgNWs/rGO) electrode wires into a polyurethane
(PU) dielectric layer on the PDMS substrate. A transparent stretchable capacitive touch
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sensor is fabricated, as shown in Figure 5h. The stretchless touch-sensing function of this
sensor has great potential in wearable electronic devices and human–machine interfaces.

Organic polymer materials, another conductive material for flexible tensile sensors
after carbon nanomaterials and metal nanomaterials, have gradually become one of the
best raw materials for the fabrication of components in the field of sign language gesture
recognition due to their unique properties. A flexible piezoelectric haptic sensor array
based on polyvinylidene fluoride (PVDF) film was proposed by Yu et al. [68] to measure
the triaxial dynamic contact force distribution. The array consists of six haptic units. In
each unit, a PVDF film is sandwiched between four square top electrodes and one square
bottom electrode, forming four piezoelectric capacitors to measure pressure changes. Due
to their excellent flexibility, the sensor arrays can be easily integrated into curved surfaces,
such as robotic and prosthetic hands. Rahimi et al. [56] presented a highly stretchable,
flexible piezoresistive strain sensor by transferring and embedding the carbonized pattern
produced by laser-carbonized polyimide into an elastomeric substrate (such as PDMS or
Ecoflex), whose performance far exceeds that of many other previously reported piezoresis-
tive conductive composites and conductive particle films. It can be attached to a latex glove
to monitor the finger flexion angle in real time for sign language gesture recognition, as
shown in Figure 5i. Zhao et al. [69] reported the use of stretchable optical waveguides for
strain sensing in a prosthetic hand. The photonic strain sensors were integrated into a fiber-
reinforced soft prosthetic hand and various active sensing experiments were performed to
feel the shape and softness of three tomatoes and select the ripe one. To solve the problem
of poor flexibility and stretchability of electronic skin, Wang et al. [70] fabricated stretch-
able transistor arrays using polymer semiconductors. The tactile sensor they developed
has extremely high sensitivity and excellent stretchability and can accurately detect the
position of small artificial ladybugs, showing a high degree of stability even under pressure
and deformation.

2.2. Processing Technologies for Flexible Components

There are many ways to prepare flexible sensors, such as dipping and coating, lithog-
raphy, inkjet printing, screen printing, 3D printing, spinning, thermal drawing, etc. The
characteristics of the different processing methods are shown in Table 2. The following
describes the most common traditional preparation processes used in flexible sensors
integrated into data gloves or hands to sense pressure, strain, and EMG signals.

Table 2. The advantages and disadvantages of the various processing technologies.

Processing Technologies Advantage Disadvantage

Dipping and coating Simple and easy operation.

Coated conductive layer only covers the surface of
the substrate, which has a negative effect on the

durability of the material and reduces the comfort of
the flexible device.

Lithography Suitable for mass production, high
precision scenarios. The process is time-consuming, complex, and costly.

Inkjet printing
Can produce high-resolution printing, low

material waste, suitable for large
area deposition.

High ink requirements, require low viscosity ink, not
suitable for large area printing, not suitable for

making complex and multilayer electrodes.

Screen printing Simple setup, easy to prepare large area
sensor array.

Screen printing pattern resolution is limited, screen
plate is easy to jam, difficult to clean.

3D printing
Ability to create any geometric shape,
enabling the manufacture of complex

structures, precise size control.

Slow manufacturing process, not suitable for mass
production, limited design flexibility.
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Table 2. Cont.

Processing Technologies Advantage Disadvantage

Spinning Can form a thin, uniform film on a
flat substrate.

Spin coating wastes a lot of raw materials; when
performed on large substrates, easy to make uneven

due to different centrifugal speed at
different positions.

Thermal drawing High stability, suitable for large
scale preparation.

Requires the drawn material to maintain a specific
structure at the drawing temperature.

2.2.1. Dipping and Coating

Dipping and coating are typically used when the base material is fabric. In order to
impart sensitive or conductive properties to the fabric, conductive composite materials
are often combined with the fabric by dipping or coating and other processes to form
fabric sensors that can accurately sense external pressure or tension and are usually used
as flexible sensors to measure the movement of the human hand or elbow joint.

The dipping or coating process has been used in some of the previous literature. As
shown in Figure 6a, Lu et al. [51] first dipped the polyester nonwoven fabric (PNWF)
substrate in a GO solution, then reduced the coated GO–PNWF, and bonded the aluminum
foil to the rGO–PNWF composite as an electrode. The rGO–PDMS–PNWF pressure sensor
was prepared by combining the mixture of PDMS resin and hardener with the composite
material, which can detect various physiological activities and subtle physiological signals.
Ge et al. [71] provide an electronic fabric based on intertwined sensor electrodes, which
has the ability to simultaneously map and quantify the mechanical stresses induced by
compression, lateral strain, and flexion. This stretchable electronic fabric, with multiple
force-mapping properties and high durability, has potential applications in wearable artifi-
cial skin for humanoid robotics, biomedical prostheses, and physiological analysis devices.
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Figure 6. Different process methods for the preparation of flexible sensors for the detection of finger
movements. (a) Dipping and coating, reprinted from [51], copyright (2018), with permission from
Elsevier. (b) Lithography, (1) SU-8 mold; (2) PDMS casting; (3) PDMS mold; (4) Pre-strain PDMS;
(5) Pre-strain relax after O2 plasma treatment; (6) Sodium dodecyl sulfate (SDS) surface functionali-
zation; (7) Ag wrinkled electrodes on the PDMS substrate after Ag sputtering; (8) CNTs/PDMS
elastomer dielectric layer; (9) Ag wrinkled electrodes on the PDMS substrate; (10) Flexible pressure
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sensor, reprinted from [17], copyright (2021), with permission from PubMed Central. (c) Inkjet
printing, (I) Ultrathin Cytop layer deposited on substrate by spin coating; (II) Printing pure solvent
to etch the Cytop layer; (III) Printing oxide precursor into surface-energy pattern; (IV) Formation of
oxide film after annealing, reprinted from [72], copyright (2017), with permission from American
Chemical Society. (d) Screen printing, reprinted from [73], copyright (2019), with permission from
American Chemical Society. (e) Screen printing, reprinted from [74], copyright (2019), with permission
from Elsevier. (f) 3D printing, reprinted from [75], copyright (2014), with permission from Wiley.

2.2.2. Lithography

Lithography is a commonly used traditional fabrication process that is relatively
complex, costly, and suitable for mass production. The minimum size of graphics produced
by lithography can be as small as nanometers, which is suitable for application scenarios
that require very high accuracy [76]. The principle of lithography is to use a photoresist to
transfer the pattern from the mask plate to the silicon wafer or other media layer and to
obtain a specific pattern shape after exposure and development [77]. Lithography processes
can use different photoresists (also known as resists) and there are two different processes,
namely positive resist lithography and negative resist lithography [78]. As shown in
Figure 6b, Cui et al. [17] reported a new type of capacitive flexible pressure sensor, which
has the characteristics of high sensitivity, fast mechanical response, wide working pressure
range, durability, and good repeatability, etc. The whole preparation process is simple
and easy to operate and the resulting strain sensor can effectively detect the position and
distribution of finger pressure. The method is found to be compatible with conventional
nanomanufacturing technology, which can save costs in practical applications for large-
scale production. Bae et al. [79] fabricated a graphene strain sensor by active ion etching,
and embossing on elastic plastic, or stretchable rubber substrate. The graphene film was
patterned by lithography. The wreath structure enabled the sensor to monitor complex
motion or deformation of body parts.

2.2.3. Inkjet Printing

Inkjet printing is usually controlled by a computer program. Compared with tradi-
tional fabrication technology, inkjet printing technology has gradually shown its great
potential in the field of large-size, high-density flexible electronics due to its advantages of
low cost, environmental friendliness, wide substrate applicability, high degree of graphic
freedom, high precision, and noncontact [80]. Whether the performance of the flexible
sensor of inkjet printing is excellent depends on whether the stability of the conductive ink
of inkjet printing is good. At present, inkjet printing conductive inks mainly include trans-
parent oxide ink, carbon ink, and metal ink, the advantages and disadvantages of which
are listed in Table 3. As with the flexible sensor manufacturing materials, the difference in
inkjet printing materials will make the stability, sensitivity, and stretchability of the sensor
different, so there is a difference in the perception of human hand movement.

Table 3. Comparison of three inkjet print materials.

Type of Material Main Materials Advantage Disadvantage References

Transparent oxide ink
Tin-doped indium oxide
(ITO), Aluminum-doped

ZnO(AZO)

Good light transmission
and stability Not as conductive as metal [72,81,82]

Carbon ink CNT and GO
Excellent performance, very
low sintering temperature,

low material cost

Poor thermal stability and
complicated process [83–85]

Metallic ink Gold, silver, copper, etc. Comprehensive performance
is the best Relatively expensive [86–90]
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2.2.4. Screen Printing

Screen printing is performed by tilting a squeegee to deposit ink on a screen in a
specific pattern on the substrate [91]. In recent years, screen printing electronics technology
has developed rapidly, mainly because inkjet printing generally requires the conductive
material in the ink to be less than 100 nm. Screen printing ink requirements are not as
stringent as inkjet printing, making screen printing more conducive to the fabrication of
large-area sensor arrays. To overcome the limitations of elastic electronics, such as cost,
toxicity, or inability to pattern on a wide range of substrates, Tang et al. [73] developed
an ink consisting of liquid metal particles and desirable polymer solutions for screen
printing, which can be tuned to print on different surfaces and avoid toxic organic solvents
in most cases, as shown in Figure 6c. Yoon et al. [74] used screen printing to fabricate a
low-cost and stretchable Ag nanoparticle (NP) electrode on polyurethane (PU), as shown
in Figure 6d. The resulting strain sensor has high stretchability, shows a stable response in
the 20% strain range, and can be applied to the skin of human hands to measure changes in
hand motion resistance. Liu et al. [92] designed a printable nanocomposite with a pearl-
inspired hierarchical structure, diffusible components, and rich dynamic interactions for the
construction of a healable and durable strain sensor. This strain sensor was fabricated by a
screen-printing technique with the printing force, speed, and angle between the squeegee
and stencil specifically optimized for the GO-AgNW-based inks, which can repeatedly
and effectively self-heal with simple water treatment, greatly extending its lifetime and
cycle life (over 10,000 cycles). Tian et al. [93] prepared Ag nanodendrite (ND) inks with
good printability for a variety of substrates, which can be directly screen-printed onto
nitrile rubber to fabricate strain sensors. Their different strain ranges and sensitivities
can be obtained simultaneously by printing versatile geometric patterns. Finally, a smart
glove based on PSSs is used to monitor human movements (finger bending, wrist bending,
walking, etc.) and gesture actions.

2.2.5. 3D Printing

In today’s rapidly changing science and technology, it is difficult for traditional pro-
cesses to process flexible sensors with complex functional structures, which greatly restricts
the function of flexible sensors; so, 3D printing technology has gradually attracted peo-
ple’s attention. 3D printing technology is a new type of 3D functional device fabrication
technology, which can fabricate flexible devices with complex geometric shapes through
layer-by-layer assembly based on 3D digital models [94]. Based on the classification of
materials, 3D printing can be divided into five aspects: 3D printed molds, the flexible sensor
substrate and sensor body, the sensing element, the flexible and stretchable electrodes,
and fully 3D printed tactile sensors [95]. Christ et al. [96] used dual nozzle 3D printing
technology to fabricate uniaxial and biaxial strain sensors with conductive pattern designs
that could be incorporated into wearable gloves to measure finger curvature. Such sensors
have potential applications in wearable electronics, soft robotics, and prosthetics. Yin
et al. [97] constructed an ionic conductive hydrogel using the 3D printing technology of
photopolymerization. Based on the transparent and highly elastic hydrogel, a capacitive
sensor was developed that could sense pressure and strain and determine skin position by
collecting body signals. Muth et al. [75] reported an embedded 3D printing method, shown
in Figure 6f, where conductive ink is extruded directly through a deposition nozzle into an
elastic reservoir, where the ink forms a resistive sensing element and the reservoir serves
as a substrate material, creating a highly stretchable strain sensor that can be embedded
in a data glove to measure gesture changes. Leigh et al. [98] presented the formulation
of a simple conductive thermoplastic composite called “carbomorph” and its use in a
low-cost 3D printer to print electronic sensors capable of sensing mechanical bending and
capacitance changes.
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2.2.6. Spinning

Spin coating is a method of obtaining a small film size by using centrifugal force
to diffuse the material and distribute it uniformly on a flat substrate. For some specific
materials, the thickness of the film is mainly determined by the concentration of the
material, the viscosity, the volatility of the solvent, and the rotational speed of the spin
coater [99]. Spinning is typically followed by an annealing process that evaporates residual
solvents, sinters nanoparticles/nanowires, and transforms the spin-coated film into a final
transparent electrode. Spin coating is typically followed by an annealing process that
evaporates residual solvent, sinters nanoparticles/nanowires, and then transforms the
spin-coated film into the final transparent electrode. Moschogiannaki et al. [100] mixed
CoV2O6 nanoparticles (40 mg), ethyl cellulose (Fluka, 30–70 mPa·s), and a-terpinol (Aldrich,
90%) and spun the uniformly ground solution onto the glass substrate. The film to equip
the finger-fork electrode was obtained by spinning the coating at 700 rpm for 10 s and then
at 3000 rpm for 30 s. The surface morphology and film thickness of the sensor material
were observed by scanning electron microscope, and it was concluded that the spin-coated
sensor on the glass substrate had a higher response at room temperature. The response
and recovery times were 94 s and 74 s, respectively. In addition, traditional spin-coating
techniques are constantly being optimized to create high-performance devices. For example,
Yuan et al. [101] proposed an “eccentric” spin-coating method in which the center of the
substrate is moved 20–40 mm away from the rotation axis of the spin-coating machine. The
centrifugal force in this improved technique is different from that in center spin coating.
The solution is diffused radially outward to promote the unidirectional orientation of the
prepared off-center spin-coating (OCSC) films. However, although the spinning process is
very low cost, it has no chance of being used in mass production because of the solution
loss caused by the spin coating process.

2.2.7. Thermal Drawing

Thermal drawing (TD) is a process that thermally stretches fibers of complex geometry
and multiple materials to a size of 100 microns [102]. Liu et al. [103] proposed a flexible
optical fiber temperature sensor made by thermal stretching of a variety of materials,
which demonstrated sufficient sensitivity over a temperature range of 0–285 ◦C with a
fast response and recovery time of 11.6 and 14.8 s, respectively, in addition to being sewn
onto everyday fabrics and gloves. It has a highly stable performance in response to body
temperature changes and touch temperature detection. The composite material can obtain
excellent melting point and fluidity through the hot drawing process but it needs to be
clad with some special materials to achieve this. For example, Lee et al. [104] prepared and
fabricated macro preforms of poly (vinylidene fluoride-trifluoroethylene) (VDF-TrFE) and
carbon black (CB)–polypropylene (PP) composites by thermal drawing process to fabricate
highly flexible piezoelectric fibers. They proposed a polypropylene polymer with high-
yield stress. The amorphous poly (vinylidene fluoride-trifluoroethylene) (P(VDF-HFP))
polymer is used as the coating material for this piezoelectric fiber. Since the melting point
of this material is 120 ◦C, in order to overcome the incompatibility between the polymer
and its internal composite at tensile temperature, the material geometry and TD parameters
were optimized to produce fibers with a length of more than 80 m. After annealing
and polarization, the resulting fiber showed extremely excellent strain characteristics.
However, the interfaces between different fiber components obtained by thermal stretching
are thermodynamically unstable due to their different surface tensions [105,106], which
requires further processing of these fibers by some methods (e.g., laser and heat treatment),
which can produce another type of microstructured multimaterial fibers [107].

3. Application of Flexible Sensor Technology to Manipulator Control

The continuous development of various flexible substrate materials, sensor materials,
and conductive materials has laid the foundation for the production of flexible sensors with
various functions. With the continuous progress of preparation technology, the application
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fields of flexible sensors are expanding. Based on the research on the manufacturing
materials and technology of flexible sensors, this paper introduces the application of
flexible sensors in the field of manipulator control.

The development of robots requires the combination of knowledge and technology
from various fields, such as manufacturing, sensor technology, and artificial intelligence.
The requirements of the robot for high intelligence, good flexibility, and strong versatility
are constantly being realized. The manipulator can respond to changes in hand posture
using data-glove control or surface EMG control based on flexible sensors. The data-glove
control method usually takes the flexible sensor element as the core component, which is
designed as an intelligent electronic device integrated into the data glove for robot hand
control. The surface electromyographic signal is used to control the manipulator through
pattern recognition of the collected information.

3.1. Flexible Sensor Integrated into Data Glove for Manipulator Control

Researchers often use flexible sensors integrated into data gloves to capture changes
in gesture state, which are then transmitted to the manipulator via an external connected
device for gesture simulation. The first glove-based systems were developed in the 1970s
and a number of different designs have been proposed since then. Early glove prototypes
included the Sayre Glove, the Massachusetts Institute of Technology (MIT)-LED glove,
and the Digital Entry Data Glove [108]. Beginning in 1987, American scientists began to
apply flexible printing technology to data-glove research and it slowly became popular.
The first commercially available data glove appeared in 1987, an improved version of
the first DataGlove developed by Zimmerman in 1982 [109,110]. The technology was
similar to that used in the Sayre Glove in 1977. In 1990, Eglowstein [111] reported on three
commercial hand trackers: VPL Research’s DataGlove, Exos’ Dexterous Hand Master, and
Mattel’s Power Glove. In 1999, LaViola [112] conducted a survey of hand posture and
gesture-recognition techniques and technologies.

In general, the position of the flexible sensor on the data glove is divided into three
parts: (1) the installation of the finger joint to measure the amount of movement in the
metacarpophalangeal (MCP) and proximal interphalangeal (PIP) joints as the gesture
changes; (2) the installation on the fingertips to measure pressure; and (3) the carpal
movements were detected in each part of the palm, as shown in Figure 7 [113]. The number
of sensors is related to the degree of freedom to be measured and, in general, a position
requires a flexible sensor.

The flexible sensor integrated into the data glove mainly has two types, piezoresistive
and fiber optic, according to the different sensing principles. The flexible piezoresistive
sensor is a type of flexible pressure sensor, which can convert the external pressure or strain
stimulus signal into an electrical signal by the piezoresistive mechanism. There are also
two types of flexible strain sensors: resistive and capacitive. The resistive sensor converts
the external signal (pressure, strain, etc.) into a change in resistance for detection. The
capacitive sensor converts the measured pressure into a change in capacitance value as
a sensitive element. The fiber optic sensor is based on the photoelectric principle, which
converts the optical signal into an electrical signal that can be measured and recorded
to achieve detection. Table 4 shows the advantages and disadvantages of the various
flexible sensors.
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Table 4. Comparison of different flexible sensors.

Type of Flexible Sensor Advantage Disadvantage

Flexible strain/
pressure sensor

Resistive Sensing mechanism is simple, easy to
extract the signal.

Poor repeatability, high hysteresis, high
power consumption.

Capacitive Operating principle is simple and clear.

Susceptible to interference, noise is higher,
when using capacitors as sensing elements,

it is difficult to achieve high density and
high-resolution sensing requirements.

Piezoresistive High sensitivity, fast response.

Difficult to preserve the materials,
materials must be polarized before they

can be used, the conditions of polarization
treatment are very strict.

Flexible fiber optic sensor High spatial resolution, no electrical
interference, fast response, low cost.

Overall structure lacks flexibility, high
dependence on elastomer.

For different sensor technologies, the choice of the right material for the research
is also important. Clauser et al. [114] proposed a stretch-sensing soft glove composite
of silicone and textile layers to interactively capture hand poses with high accuracy and
without the need for an external optical setup. Sundaram et al. [115] designed a scalable
tactile glove that, in combination with deep convolutional neural networks, represents the
sensors distributed over the hand and can be used to identify individual objects, estimate
their weight, and explore the typical tactile patterns that occur when objects are grasped.
Based on the poly(acrylamide) (PAAm) hydrogel, a strain sensor with high stretchability
and sensitivity was designed and fabricated by Hang et al. [116]. Then, a smart glove
was fabricated by the coupling of multiple strain sensors and the corresponding circuit.
The smart glove is capable of expressing and recognizing American Sign Language and
can be used to wirelessly control a robotic hand through hand gestures. A biologically
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inspired soft robotic thumb rehabilitation system has been developed by Maeder-Yorkto
et al. [117], which is capable of reproducing the motion path of a thumb during opposition
grasping. The integration of this with a lightweight hand fixation and a compact control
system resulted in a promising prototype for a wearable, home-based, task-oriented thumb
rehabilitation device. A multisensor glove controller was designed by Jhang et al. [118] to
control a mobile robot and a six-axis robotic arm for industrial operations. The user can
monitor the situation in front of the mobile robot arm and record the trajectory and position
coordinates, thus achieving the functions of remote control. Pu et al. [119] developed a
triboelectric quantization sensor for joint motion and constructed a synchronous control
system for a manipulator capable of grasping objects. Using the sensor on the data glove
to measure the bending or opening angle of the finger, and then finding the mapping
relationship between the sensor measurement data and the change in hand posture, the
researchers continue to work on finding this more accurate mapping relationship. A more
detailed summary of the sensor technology used in data gloves is shown in Table 5.

Table 5. Characteristic parameters of data gloves.

Category of Sensor Technology Main Materials References

Flexible strain/pressure sensor

Silicone and carbon black A textile glove [114]
Mixture of Ecoflex 00-30 and carbon black

nanoparticles Data glove [120]

Multiwalled carbon nanotube Data glove [121]
Silicone resin A textile base glove [122]

Piezoresistive yarn Human–Machine Interface Glove [123]
Elasticized fabric CyberGlove [124]
Polyamide/Lycra SensoriGlove [125]

NinjaFlex Data glove [126]
GO Data glove [127]

Silver nanoparticles–double covered yarn
(AgNPs–DCY) composite yarn An electronic data glove [128]

Flexible fiber optic sensor

Flexible grating strip Data glove [129]
Flexible grating strip Data glove [130]

Optical fiber 5DT Data glove [131]
LED phototransistor 5DT Data glove [132]

Flexible silicone rubber fiber Data glove [133]
Plastic multimode Fiber CK-20 Data glove [134]

Optical fiber cable VPL Data glove [135]

There are many ways to integrate flexible sensors into data gloves. The most common
attachment method is fabric filling [134,136,137], in which strain and fiber optic sensors are
placed between multiple layers of fabric in fabric gloves. This method is easy to use, but
the gloves can become bulky and interfere with gesture changes. Some data gloves made of
flexible materials, such as silicone gloves, can use the method of printing ink directly onto
the glove [138], which solves the weight problem of the glove, but the ink may volatilize or
degrade under the influence of air, affecting the accuracy of gesture recognition. Of course,
conductive yarns can also be used to directly weave knitted sensor data gloves [139] and
there are many studies on the performance of such knitted sensors and their potential for
gesture recognition. In addition, depending on the material of the flexible sensor and the
structure of the glove, methods such as gluing [140,141], stitching [142], carabiner [143],
and tape [144] can be used. At the same time, when installing the sensor, it is necessary
to secure the sensor to the outer surface of the glove to ensure that there is no relative
movement between the sensor and the glove. This can make the data glove more accurate
for measuring finger curvature [134]. During installation, it is also necessary to determine
the stress distribution on the glove and determine the best location for installation to
extend the life of the data glove without compromising dexterity [141]. It is also necessary
to eliminate the interaction between sensors in different positions when the number of
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integrated sensors on the data glove is large. In [140], a linear regression model is used to
improve this integration.

As integration continues to improve, more and more research has been conducted on
robots that receive the motion information collected from human hands and mimic human
hands to perform the corresponding action with increasing accuracy. Nassour et al. [140]
proposed a versatile soft-sensing glove using commercially available silicone tubing to
house the conductive fluid. Fourteen sensors were attached to the glove to measure
flexion–extension and abduction–adduction, successfully replicating hand movements. The
machine-learning algorithms were used to estimate the angles of the joints in the hand and
also to identify 15 gestures, with a classification accuracy of 0.885. Pan et al. [145] presented
a wireless smart glove based on multichannel capacitive pressure sensors that can detect
10 American Sign Language gestures at the edge of the glove. In this system, 16 capacitive
sensors are fabricated on a glove to capture the hand gestures. The highest test classification
accuracy achieved by our system is 99.7%. Maitre et al. [146,147] proposed a new prototype
of a data glove that is simple, cheap, reproducible, and efficient (∼100% correct predictions)
for object recognition by abstracting the entire theory of gesture recognition. In real
life, such a device could be very useful to monitor the evolution of hand dysfunction in
Alzheimer’s disease. To solve the problem of separating meaningful dynamic gestures, Lee
et al. [148] proposed a gesture-spotting algorithm based on deep learning that detects the
beginning and end of a gesture sequence in a continuous data stream. The three algorithms
(gesture spotting, sequence simplification, and gesture recognition) were unified into a
real-time gesture-recognition system and tested with 11 dynamic finger gestures in real
time. Ayodele et al. [149] proposed a piezoresistive data glove using convolutional neural
networks (CNN) on six capture classification scenarios. Based on the CNN algorithm, the
average classification accuracy was 88.27% and 75.73% for visible and invisible objects,
respectively. By sewing reduced graphene oxide (RGO)-coated fibers onto a textile glove,
Huang et al. [150] fabricated a flexible and low-cost data glove that was used to monitor the
movement of ten finger joints of a hand. Experimental results show the good stability and
repeatability of the data glove, with recognition accuracies of 98.5 and 98.3% in different
test scenarios. Figure 8 shows the images of gesture recognition manipulators based on
different sensor technologies.
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(e) reprinted from [132], copyright (2022), with permission from Sensors. (f) reprinted from [153],
copyright (2017), with permission from American Chemical Society.

3.2. Manipulator Control Application Based on Surface EMG Signal

The flexible sensor has excellent performance, is convenient and flexible, and can be
made into flexible electronic devices to obtain rich and diverse signals from the human
body by wearing on the hand as a command source to control the robot hand. Among
them, surface electromyography (EMG) is a noninvasive method of recording EMG signals.
The EMG signals from the muscles of the forearm can be used to detect hand grips and
gestures. The surface EMG signal is relatively easy to record. With the development of
sensor technology, the EMG signal of the forearm of the human body is collected by flexible
wearable sensors to identify the posture change of the hand and to realize the following or
synchronous posture change of the manipulator and the hand.

Siomau et al. [154] processed the electrical nerve signals collected from the surface
of the residual limb muscles and used them to control the prosthesis for different move-
ments. By assuming that there are distinguishable and repeatable signal patterns between
different types of muscle activation, the prosthesis-control problem was reduced to a
pattern-recognition problem and verified. Lopes et al. [155] created a soft, ultra-thin,
stretchable electronic skin by printing patterns on temporary tattoo paper using a desktop
laser printer and then coating it with silver ink and a eutectic gallium indium (EGaIn)
liquid metal alloy that self-adheres to the human epidermis to collect EMG signals to
control robotic prostheses. Huang et al. [156] created a scalable human–machine interface
test platform based on a four-layer design that provided eight-channel sensing, collected
acceleration, angular velocity, and surface EMG signals, and controlled the translational
rotation and grasp of the robotic arm, respectively, via the platform’s Bluetooth data com-
munication function. Leigh et al. [157] propose a wearable machine–joint interface device
that enhances our innate capabilities by providing additional machine joints, enabling
“collaborative interaction” where the movement of the machine joints can be controlled
through an interface with our muscle signals as a direct extension of our body.

The movement intention issued by the brain triggers the excitation of the motor cortex
of the brain, which sends movement instructions to the α motor neurons of the spinal
cord and, then, transmits the relevant movement information to the muscles of the human
forearm, resulting in the release of calcium ions in the muscles, causing the muscle to
contract to produce a biological current, which reaches the surface of the skin through the
tissue fluid and sebum, showing a current difference between the surface electrodes [158].
The EMG signal is collected by measuring the current difference through the electrode.
Then, the signal is preprocessed and the feature is extracted to realize the functions of
filtering and noise reduction. Finally, the data is trained and the pattern is classified. The
classification results are sent to the manipulator, which performs the appropriate action
by controlling the toggle drive motor. Like the human hand, the manipulator has five
fingers, each finger is independently driven by a motor, and each finger joint is connected
by a toggle mechanism. Upon receiving the signal, the controller drives the motor to
rotate, which simultaneously drives the middle and the end joints to rotate, allowing the
mechanical finger to bend and extend along a fixed path. The identification process is
shown in Figure 9.

First, the surface EMG signal is recorded on the skin using a surface electrode. When
applying the electrode, the skin should first be wiped with alcohol to ensure good contact
between the electrode and the skin. Second, the sampling time should not be too long each
time and the electrode should be removed after sampling to avoid allergic reactions to the
skin caused by contact with the electrode. Then, the arrangement of the electrodes directly
affects the strength of the EMG signal. Currently, there are three different arrangements:
(1) according to the experimental requirements, after the target muscle to be sampled is
fixed, the electrodes are applied in pairs [159]; (2) the electrode is evenly distributed on the
skin surface in a ring structure according to a certain law; and (3) the electrodes are closely
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arranged to collect the EMG information in all directions [160]. In addition, studies have
shown that a stronger EMG signal can be obtained by placing the sensing electrode in the
muscle belly and a weaker EMG signal can be obtained by placing the electrode at the edge
of the tendon or muscle group [161].
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The surface EMG signal is very weak and has poor stability, so it is necessary to
pre-process the signal. This step helps to improve the quality of the signal, which can
be mainly divided into two steps: signal segmentation and signal filtering [162]. In the
process of signal acquisition, the signals of different channels are superimposed on each
other, which will cause the characteristics of the signals between channels to be similar,
resulting in identification errors, and this interference is called signal crosstalk [163]. Signal
segmentation can effectively solve the crosstalk problem, help to extract features, and
reduce the dimension of data. The specific method is to use windowing technology to
define the size and step size of the EMG waveform during data acquisition. The input data
points are defined as the window size and the step size is the different data points between
two consecutive windows. Kunapipat et al. [164] built a support vector machine (SVM)
model to classify gestures. When the overlap window size was 100 samples, the overlap
was 50% and the maximum average classification accuracy was 91.28%. Similarly, Tepe
et al. [165] used the windowing technique in the data preprocessing stage and confirmed
that the subspace K nearest neighborhood (SKNN) method achieved a classification success
rate of 95.8% in the 100 ms 50% overlap window. Wen et al. [166] investigated the influence
of the window size and step size of the input EMG signal on the sensitivity and accuracy
and finally concluded that the optimal window size and step size of the multi-input deep
convolutional neural network were 120 and 20 data points, respectively. Chen et al. [167]
set the sliding window length to 150 sample points (73.2 ms) in the preprocessing of EMG
signal data and the accuracy rate of gesture recognition exceeded 98%. Signal filtering is to
eliminate interference and noise reduction The specific operation is, first through the signal
conditioning circuit, using the difference of the signal collected from different channels as
the signal input to filter out the common mode interference, and then through the filter to
remove the noise outside 10~500 Hz [168]. For example, Li et al. [169] used a 50 Hz comb
filter to eliminate power frequency interference, which is the interference signal generated
by alternating current in electrical equipment through electromagnetic radiation and is
the main noise in the whole frequency range of EMG. In addition, the algorithm based on
wavelet transform is also used for signal filtering, because it is suitable for various signals.
Wavelet decomposition is to decompose the EMG and, then, set a certain threshold to
quantify a certain frequency; and the waveform after the threshold quantization is basically
the useful EMG signal in the original signal [170,171].

In order to control the manipulator by surface EMG, the most important thing is
to extract and classify the EMG feature. The EMG feature extraction methods usually
require time domain analysis, frequency domain analysis, and time–frequency domain
combination analysis. The time domain features mainly include mean absolute value,
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root mean square, and so on. The frequency domain features include power spectral
density, mean frequency, median frequency, and autoregressive coefficient. Time–frequency
domain analysis mainly includes short-time transformation, Winger–Ville transformation,
and so on. The classification methods of the EMG signal mainly include neural network,
fuzzy algorithm, probability estimation-based algorithm, support vector machine (SVM),
principal component analysis (PCA), linear discriminant analysis (LDA), and so on.

More specifically, an automatic recognition algorithm for identifying hand move-
ments from surface EMG signals has been proposed by Fatimah et al. [172]. Two publicly
available datasets are used to test the effectiveness of the proposed algorithm. With an
average accuracy of 99.49% on the UCI dataset and 93.53% on the NinaPro DB5, the pro-
posed method outperforms the state-of-the-art algorithms. The differences between the
electromyography (EMG) patterns of normal subjects and amputees were investigated by
Campbell et al. [173]. Using previously collected EMG data for different wrist, finger, and
grip potentials of 20 able-bodied subjects and 10 amputees, the results of unsupervised
cluster analysis show that a simple linear classifier can discriminate able-bodied and am-
putee subjects with 90% accuracy using multiple gesture EMG. Four machine-learning (ML)
algorithms, support vector machine (SVM), random forest (RF), bagged tree, and extreme
gradient boosting (XGBoost) were used by Alam et al. [174] to classify hand gestures using
an electromyography (EMG) dataset; the prediction accuracy of these algorithms was
compared with long short-term memory (LSTM). XGBoost provided the highest accuracy,
of approximately 97%, while LSTM provided a superior accuracy of nearly 99%, which
promises to provide physiologically natural upper limb movement control. The reason
why LSTM provides higher accuracy is because LSTM achieves better classification by
learning more parameters and selectively remembering them over a long period of time.
Lucas et al. [175] proposed a supervised classification method for multichannel surface
EMG signals, using a support vector machine (SVM) to classify them in the multichannel
representation space, and applied the method to the classification of six hand movements.
The mean misclassification rate (mean ± S.D.) for the classification of eight channels in six
subjects was 4.7 ± 3.7%. Alkan et al. [176] used discriminant analysis and a support vector
machine (SVM) classifier to classify recorded EMG signals generated by the biceps and
triceps muscles for four different movements. The SVM classifier gives a very good average
accuracy rate (99%) for four movements, which can be used to classify EMG signals for
prospective arm prosthesis-control studies. A homemade four-channel sEMG amplifier
circuit was designed by Baspinar et al. [177] to measure sEMG signals. Seven different
movements were classified and their classification performances were compared. The
classification rates of artificial neural network (ANN) and Gaussian mixture model (GMM)
classifiers were compared. For other EMG acquisition devices, their classification methods,
and recognition accuracies are listed in Table 6.

Table 6. Accuracy of different classifiers used to classify EMG.

Method of Classification Recognition Accuracy References

Nonlinear Logistic Regression (NLR)classifier 99% [178]

Recurrent Neural Networks (RNN),
Knowledge-based postprocessing model

(Sequential decision algorithm)
4% better than the others [179]

Fast Independent component Analysis (FastICA) algorithm real-time decomposition 86%
offline decomposition94% [180]

scaled conjugate algorithm
Levenberg algorithm

96.8%
98.8% [181]

Trbaggboost algorithm 97.04% [182]
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Table 6. Cont.

Method of Classification Recognition Accuracy References

ANN 83% [183]

LDA able-bodied 95%
amputee 87% [184]

SVM
87.88% [185]

95.32 ± 1.35% [186]

4. Existing Issues and Solutions

This paper reviews the research on manipulator control based on flexible sensor tech-
nology and summarizes the existing problems in this field from three aspects: materials,
processing technology, manipulator-control system design, and the corresponding solutions.

4.1. Problems and Solutions Related to Materials

Flexible sensor materials cover almost all categories of organic or inorganic materials,
including liquids, gels, and solids. In order for flexible sensors to be better embedded
in data gloves or to fit on the arm, flexible materials must have improved mechanical
properties, biocompatibility, and electrical conductivity. Researchers aim to achieve this
by preparing composite materials, microstructuring substrate materials, or modifying the
structure of existing materials.

(1) Preparation of the composite materials: the core component of the flexible sensor is
the composite material formed by mixing the conductive sensing material with the base
material, which has a strong relationship with the sensitivity, linear range, and response
time of the sensor. For example, it is difficult for simple carbon-based materials to form
an ordered arrangement at the macro level, and a disordered arrangement will weaken
the conductivity of the material itself. The use of composite materials is an effective way
to maintain good conductivity in flexible sensors under high strain. Traditional electrode
materials cannot meet the demand for flexibility, so researchers can effectively solve this
problem by using composite materials as electrodes and developing stretchable capacitive
sensors. If the composite material is not strong enough, it may affect the stability of the
flexible sensor and special processing methods are usually used to improve the stability of
the sensor;

(2) The problem of limited substrate elasticity is solved by microstructuring: The sub-
strate material not only affects the elastic deformation performance of the sensor but also
has a critical effect on the sensing performance. The microstructure of the substrate material
is one of the important methods to improve the performance of the sensor. The microstruc-
tured substrate film can not only improve the elastic deformation performance of the sensor
but also make the flexible sensor have higher sensitivity and faster response time than the
unstructured flexible substrate film. The traditional microstructure is mainly obtained by a
lithography process. The micropattern mold is first prepared by the manufacturing process.
Then, the required solvent is spin-coated on the mold after stirring and degassing. Finally,
the microstructured base material is stripped after curing. In addition, by changing the
structure of the existing material, the flexible sensor can have better mechanical properties.
In the case of nonstretchable rigid materials, special processes can also be used to make
them flexible and able to withstand a certain amount of strain.

4.2. Problems and Solutions in the Preparation Process

The choice of printing process is the key to low-cost, rapid, and large-scale production
of flexible sensors. At present, various printing processes are endlessly emerging, to a large
extent to solve the traditional lithography technology caused by high manufacturing costs,
a complex preparation process, not having large-scale production conditions, and other
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problems. However, the printing process also has some impact on the sensitivity of flexible
sensors, mainly in the following aspects:

(1) The materials used in printing are different and changing the ratio of materials
can give the sensor different resistivity, resulting in different circuit conductivity. (2) The
viscosity of the material has a certain impact on the shape of the sensor circuit; if the ink
viscosity is too large, it will lead to poor ink transfer in the printing process and paste plate.
If the viscosity is too low, the ink is too thin and it will cause printing or migration and ink
infiltration. (3) In some printing resistances, the pattern design of the screen will directly
affect the accuracy of printing. (4) In the whole process, there will be a small deviation
from the design value, that is the manufacturing tolerance, mainly due to the temperature
and humidity in the air, and some uncontrollable factors in the preparation process, so as
to reduce the preparation tolerance as much as possible, and then improve the sensitivity.

In summary, the quality of the printing process directly affects the performance of the
electronic device, and the preparation process needs to be further optimized.

4.3. Manipulator Control System Problems

Both data-glove-based manipulator control and human EMG-based manipulator
control have room for improvement in terms of cost, type of information collected, and
recognition accuracy.

(1) Cost problem of the data glove: although there are already many data-glove products
in the market, and researchers are constantly innovating in this field, data glove will
incur a lot of costs during the production process, including the cost of materials
required to manufacture the glove itself and the flexible sensor and the cost of external
circuit boards or some other hardware production, which makes it difficult to put this
device into practical use in large numbers. In the future, the cost of using data gloves
will be reduced and their development in the market will be more convenient;

(2) The category bottleneck problem of manual movement information collected by
the data glove: the generation of an electromyographic signal is due to the hungry
excitation of the cerebral cortex, while the manual movement information collected
by the data glove is the pressure or angle change generated when the gesture changes,
obviously the electromyographic signal is more abundant;

(3) Improving the sensitivity/accuracy: first of all, the type of material used has an
impact on its accuracy. For strain sensors, the better the piezoresistive properties
of the material, the better the performance of the sensor; for pressure sensors, the
electrical conductivity of the materials greatly affects the accuracy of signal conversion
in collecting useful information and, then, affects the accuracy of detection. The
photoelectric properties of the material affect the sensing performance of the optical
fiber sensor. Secondly, the design of the circuit affects the sensitivity/accuracy. The
acquisition system generally uses the computer as the hardware platform and the
A/D converted EMG signal is sent to the computer by the data acquisition circuit for
postprocessing. The higher the sensitivity of the circuit design, the better the circuit
design must be to improve the sensitivity. Finally, the design of the classification
algorithm affects the sensitivity/accuracy. In research, it is best to compare and select
different classification model algorithms and select the one with the highest accuracy
for pattern recognition to achieve better control of the manipulator.

4.4. Commercial Application

Although there are still many problems in this area of research, researchers continue
to conduct research to promote the solution to the above problems. However, all research
should be based on the actual application environment. At present, researchers have
conducted product research and development in the application areas of sign language
recognition, human–computer interaction, and robot control based on a flexible strain
sensor. The summary of the relevant fields is shown in Table 7.
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Table 7. Related commercial applications.

Application Field References

Gesture language recognition Translate gesture language to voice or text. [153,187–192]

Human–computer interaction
Virtual Reality Game Control. [193–195]

Surgical training. [196,197]

Robot control

Control of prosthesis. [198]

Rehabilitation training. [6,199–201]

Soft gripper. [202–206]

The application of sign language recognition has been very extensive, taking into
account the visual, auditory, and language barriers of three cases; the existing technology
has been able to use smart devices [190–192] to convert sign language into speech or text to
facilitate the daily life of deaf people.

Of course, researchers are also studying different languages in different countries or
regional dialects and developing devices accordingly [153]. By capturing human gestures
and actions to control the robot in real time is also a basic application, which can be derived
to the field of rehabilitation medicine and clinical medicine. When machines are used
instead of manual rehabilitation training, time and labor are saved as new clinical appli-
cation products are constantly being designed, and have proven their good application
prospects [6,199–201]. Among them, the exoskeleton manipulator designed in literature [6]
has strong environmental resistance and has been able to grasp 3 kg heavy objects underwa-
ter many times without damage. In the literature [200], collecting surface EMG signals from
the user’s arm to control the limb for rehabilitation movement can realize independent fine
assisted movement with different mechanisms, especially the assistance of a single finger,
which proves the possibility of commercial application with experiments. Furthermore,
in the literature [204], a picking manipulator was designed using commercially available
components, which achieved an average picking time of 5.93 s and a standard deviation
of 0.26 s. From a commercial point of view, it can replace manual picking and create
huge economic benefits in fruit harvesting. Manipulator control based on flexible strain
sensor is also a kind of human–computer interaction. We can establish communication
between the robot and the virtual world based on a flexible sensor [193–195]. In particular,
it can also be used for VR-based surgical training; by recognizing different hand-grasping
movements [196], it is possible to determine the type of surgical tool used by the doctor
and display it in the VR space. The trainer can then use gestures to control the tools for
surgical training.

5. Conclusions

This paper summarizes the literature in the field of manipulator control by data glove
or by EMG based on flexible sensor technology. Since the flexible sensor can be attached to
the data glove or attached to the human arm to collect signals, it has the characteristics of
being natural and direct, so it has gradually replaced other methods to become the focus
of manipulator control research. The choice of substrate material, sensor material, and
electrode material has a great impact on the sensitivity of the designed flexible sensor.
It is particularly important to choose the right material, combined with the design of
the microstructure and microchannel, to produce a flexible sensor with high sensitivity,
extensibility, and good conductivity, which will greatly reduce the problems existing in
the process of gesture signal acquisition. The bend sensor integrated into the data glove
detects the degree of finger bend and the angle of finger opening, realizes the monitoring
of all finger joints, enhances the gesture perception ability, and improves the accuracy
of gesture discrimination. By processing the surface EMG signal collected by the strain
sensor attached to the human arm to judge the posture of the human hand, the EMG signal
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contains very rich information, and the online training of the manipulator with the basic
algorithm can constantly improve the recognition rate.

In terms of commercialization potential, flexible sensors are promising due to their
scalable manufacturing process, excellent performance, and good biocompatibility. Many
devices are now commercially available or have been proven in academic laboratories,
demonstrating the feasibility of moving from R&D to large-scale commercial products, but
there are still many unknown challenges to be solved in the field due to the diversity of
device characteristics:

(1) In the manipulator control research, the real-time performance and the accuracy of
the manipulator after receiving the signal are equally important. In the future, based on the
experimental verification, the real-time performance should be considered from the whole
control system, the analysis should be carried out from the active end to the slave end, and
the hardware design of the manipulator should be further studied to further improve the
real-time performance and accuracy. Simple and effective algorithm design will continue to
be a hot spot in the future research of the manipulator and better algorithms can be explored
in the future to improve the accuracy of model recognition and ensure the effectiveness
of real-time control. (2) With the development of human beings into deeper fields, the
control of the manipulator also needs to be transferred from the ordinary end-to-end to
the interactive mode; that is, the manipulator receives the signal of the human hand to
complete the specified action and gives back to the human hand so that the human can
decide whether to change the decision according to the feedback signal. This interaction
technology can make the use of the manipulator more practical. On this basis, flexible
sensor technology can be applied to other parts of the body to identify human movements
projected onto the robot and the robot can be remotely controlled to act according to the
user’s intention.
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