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Abstract: Currently, GaN-based blue- and green-light-emitting devices have achieved successful
applications in practice, while the luminescence efficiency of devices with longer wavelengths (such
as yellow light) is still very low. Therefore, in this paper, the electroluminescence characterization
of yellow-light-emitting InGaN/GaN multiple quantum wells (MQWs) with different In content
in the last InGaN quantum well, which is next to the p-type GaN electrode layer, are investigated
numerically to reveal a possible physical mechanism by which the different distribution of In content
in the active region impacts the carrier capture and the light emission process in yellow InGaN/GaN
MQWs. The simulation results show that at low injection currents, the luminescence efficiency
of high-In-content yellow MQWs is enhanced, which can be ascribed to the enhanced radiative
recombination process induced by the increased carrier concentration in the last InGaN quantum
wells with promoted carrier capture ability. However, in the case of high injection condition, the
luminescence efficiency of yellow MQWs deteriorates with increasing In content, i.e., the droop effect
becomes remarkable. This can be ascribed to both significantly enhanced Auger recombination and
electron leakage in the last InGaN quantum well, induced also by the promoted capture ability of
charge carriers.

Keywords: last InGaN quantum well; yellow light; In content; carrier capture; droop effect

1. Introduction

Group III-nitride semiconductor materials have been widely used in various fields
such as lighting and display due to their wide range of emission wavelengths, fast response,
high energy efficiency and environmental protection [1]. At present, blue- and green-
light-emitting devices, e.g., light-emitting diodes (LEDs) and laser diodes (LDs) based on
InGaN/GaN multiple quantum wells (MQWs) have been successfully commercialized,
while the luminescence efficiency of GaN-based LEDs with long wavelengths (such as
yellow light) is still very low. There are a number of factors contributing to the low efficiency
of yellow LEDs. First, in high-In-content InGaN QWs, the quantum confined Stark effect
(QCSE) caused by polarization electric fields is enhanced, reducing the luminescence
efficiency [2]. Second, during the growth of the high-In-content InGaN well layer in MQWs,
misfit dislocations and stacking faults, as well as other crystal defects, are prone to occur due
to the aggravated lattice mismatch. These defects may act as non-radiative recombination
centers, further reducing the efficiency of yellow LED devices [3]. In addition, under
high injection currents, as the potential well of high-In-content InGaN QW is deeper, it is
easy to cause an accumulation of a large number of carriers, which may lead to serious
Auger recombination [4] and carrier leakage [5]. This makes the luminescence efficiency
significantly reduced at high currents, resulting in an enhancement of the so-called droop
effect for yellow LEDs [6]. Therefore, it is currently a hot topic to study and optimize the
long-wavelength luminescence efficiency of GaN-based LEDs in this field. At present,
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many measures are proposed to effectively improve the luminescence efficiency of long-
wavelength LEDs, such as inserting a stress buffer layer [7–9], changing the thickness of the
active layer [10], using non-polar surface growth devices [11], growing gradually varying
indium (In) content quantum wells [12], using C-doped GaN film as a current spreading
layer [13], and so on. On the other hand, researchers are also deepening their research on the
relevant physical mechanisms involved in the long-wavelength (yellow) GaN-based LEDs.
For example, some have reported that Auger recombination is the main reason for the
enhanced droop effect of yellow LEDs under high current [14], while some others explored
the reasons which are responsible for the improved luminescence efficiency of yellow
GaN-based LEDs by using InGaN barriers and modified electron injection layers [15].

In fact, for yellow-light-emitting InGaN/GaN multiple quantum wells (MQWs), the
depth of the quantum potential well of InGaN layers is relatively deeper due to the rela-
tively higher In content in InGaN layers compared to the conventional blue InGaN QWs.
Therefore, during the electroluminescence (EL) process, combined with the notable dif-
ference in mobility between electrons and holes, most electrically injected electrons and
holes can be easily accumulated in the last InGaN quantum well (LIQW), which is the
closest InGaN QW to the P-type region [16]. As a result, the luminescence emission is
mainly contributed by the carrier radiative recombination in the LIQW. Therefore, in this
paper, the effect of In content in the LIQW on the performance of yellow InGaN/GaN
MQWs is carefully investigated by analyzing the internal quantum efficiency, distribution
of carrier concentration, radiative recombination rates, and so on. It is found that for the
high-In-content sample, the carrier capture ability of the LIQW can be enhanced due to the
deepened depth of the potential well with increased In content, thus improving the lumi-
nescence efficiency of yellow MQWs at low injection currents. However, in the case of high
injection conditions, the luminescence efficiency deteriorates remarkably with increasing
In content in the LIQW, i.e., the droop effect is enhanced, which may be attributed to the
significantly enhanced Auger recombination and electron leakage.

2. Sample Structure and Simulation Parameters

The epitaxial structure of the yellow InGaN/GaN MQW sample is mainly composed
of the following four parts: the bottom layer is a 200 nm thick N-type GaN substrate with a
Si-doping concentration of 1 × 1018 cm−3, the InGaN/GaN MQW active region, a 20 nm
thick AlGaN electron blocking layer (EBL) with Al content of 10%, and finally a 200 nm
thick P-type GaN cap layer with Mg-doping concentration of 1 × 1018 cm−3. The MQW
active region consists of five pairs of 3 nm thick InGaN quantum well layers and 7 nm
thick GaN quantum barrier layers, which are periodically alternated and repeated. The EL
characteristics of yellow MQW samples were studied by using a vertical structure for the
injection of electrons and holes. The positive and negative electrodes are located above the
P-type GaN cap layer and below the N-type GaN substrate, respectively. When a forward
bias is applied, electrons and holes can be directly injected into the MQW active region from
the N-type and P-type GaN layers, respectively. The epitaxial structures were identical for
all samples, except that the In content in the LIQW was varied. The In content in the LIQW
was set to be 50%, 52%, and 54% for samples A, B, and C, respectively, while they were
all kept at 50% for the rest of the InGaN QWs in the MQW region. In other words, in our
study, only the potential well depth of the LIQW was gradually deepened from samples A
to C. All samples’ structures are schematically shown in Figure 1.



Micromachines 2023, 14, 1669 3 of 10
Micromachines 2023, 14, 1669 3 of 10 
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Figure 1. Schematic diagram of yellow InGaN/GaN MQW samples.

In this work, the simulation models of the designed MQW structures were calculated
by using a three-band wurtzite k·p model, which was performed using SILVACO TCAD
software [17]. The carrier recombination models included the general radiative recom-
bination model (OPTR), Shockley–Read–Hall recombination model (SRH), and Auger
recombination model (AUGER).

The OPTR model mainly describes the radiative recombination and generation of
photons, and the radiative recombination rate is calculated using the following formula [18]:

ROPT
np = COPT

c

(
np − n2

ie

)
(1)

where ROPT
np is the radiative recombination rate; nie is the intrinsic carrier concentration;

and COPT
c is the capture rate of the material, which was set as 2 × 10−11 cm3/s [19].

The SRH model describes the Shockley–Read–Hall non-radiative recombination in
quantum wells, and the SRH recombination rate is calculated using the following for-
mula [18]:

RSRH =
pn − n2

ie

τp0

[
n + nieexp

(
ETRAP

kTL

)]
+ τn0

[
p + nieexp

(
−ETRAP

kTL

)] (2)

In the equation, ETRAP is the difference between the intrinsic Fermi levels and the trap
energy level; TL is the lattice temperature in Kelvin degrees; p, n represent the excess hole
or electron concentration, respectively; nie is the intrinsic carrier concentration; and τp0 and
τn0 represent the lifetimes of holes and electrons, respectively.

The AUGER model describes Auger recombination, and the Auger recombination rate
is calculated using the following formula [18]:

RAuger = CAUGN

(
pn2 − nn2

ie

)
+ CAUGP

(
np2 − pn2

ie

)
(3)

In the equation, CAUGN and CAUGP are the Auger coefficients of electrons and holes,
which were set to be 1.5 × 10−30 cm6/s in this study [19]. The numerical solution method
uses the coupling solution process of Poisson and Schrodinger equations, as well as the
current continuity equation and carrier drift–diffusion transfer equation [20].

Finally, it should be noted that for the actual epitaxial growth process, lattice defects
and interfacial irregularities may occur in the InGaN/GaN MQWs, resulting in a deterio-
rated crystal quality. This may cause the non-radiative SRH recombination process, which
can be characterized by the SRH carrier recombination lifetime. Therefore, during our
simulation, for simplification, it was assumed that the crystal quality was the same for all
the simulated MQW samples, and correspondingly, the non-radiative SRH recombination
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processes were identical for all samples studied here. Therefore, the SRH lifetime was set
to be the same value of 100 ns for all InGaN/GaN MQW samples in our work [19].

3. Results and Discussion

Figure 2 shows the value of internal quantum efficiency (IQE) as a function of injection
currents for all yellow MQW samples. It can be observed that, in general, the IQE values
decreased with increases in the In content in the LIQW from samples A to C. However,
on the contrary, it was found that at low injection currents, e.g., below about 20 mA, the
IQE values increased from samples A to sample C. On the other hand, when the injection
current increased above 100 mA, all samples’ IQE values decreased remarkably, i.e., the
droop effect occurred for all MQW samples. In particular, the droop effect became more
significant for sample C with the highest In content in the LIQW. In short, when the In
content increases in the LIQW, the sample’s EL efficiency is improved at low currents, but
it is reduced more seriously at high currents, which will be discussed in detail later.
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Figure 2. Variation of IQE values with increasing injection currents for all yellow MQW samples. The
inset shows the EL spectra of all samples at 150 mA injection current.

The inset in Figure 2 shows the EL spectra at an injection current of 150 mA for all
samples. It can be seen that the spectral peaks of all samples are located in the yellow light
region at about 560–580 nm and it is obvious that the EL peak wavelength redshifts from
samples A to C, which can be ascribed to the reduction of energy bandgap of InGaN alloy
and the enhancement of polarization-induced QCSE due to the increased In content in
the LIQW [21]. It was also found that the EL spectral width of sample C was much larger
than the two others. This may be attributed to the fact that in sample C, the In content of
the LIQW was 54%, while it was 50% for the other InGaN QWs. It is well known that the
In content in InGaN QWs determines the EL peak wavelength. Therefore, for sample C,
with significantly different In content between the LIQW and the other four QWs, the EL
spectrum of entire MQWs can be broadened, resulting in an increased spectral width and
even a weak bimodal emission. In addition, at 150 mA injection current, the integrated EL
intensities of samples A, B, and C were 11.55, 11.45, and 11.26, respectively. From samples
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A to C, it can be seen that the reduction of integrated EL intensity at 150 mA injection
current is consistent with the decrease in IQE values at high currents in Figure 2.

To analyze the luminescence properties of different samples in depth, the values of
radiative recombination rates of all InGaN QWs at the injection current of 150 mA were
extracted and are compared in Figure 3 for all samples. As can be seen, for all samples,
the radiative recombination rate in the LIQW is remarkably larger than those in the other
InGaN QWs in the MQW active region. This can be ascribed to the fact that most holes
may be accumulated in the LIQW, which is near the P-type region, since it is difficult for
holes to transfer to these InGaN QWs far from the P-type region due to the large effective
mass and low mobility. On the other hand, most electrons with small effective mass and
high mobility can readily fly over the entire MQW region and be finally injected into the
LIQW (also due to the blocking effect of EBL), causing an accumulation of electrons in the
LIQW. As a result, both the holes and electrons are concentrated in the LIQW and thus
the radiative recombination process in the LIQW dominate the luminescence emission of
yellow MQW samples.

Micromachines 2023, 14, 1669 5 of 10 
 

 

InGaN QWs in the MQW active region. This can be ascribed to the fact that most holes 

may be accumulated in the LIQW, which is near the P-type region, since it is difficult for 

holes to transfer to these InGaN QWs far from the P-type region due to the large effective 

mass and low mobility. On the other hand, most electrons with small effective mass and 

high mobility can readily fly over the entire MQW region and be finally injected into the 

LIQW (also due to the blocking effect of EBL), causing an accumulation of electrons in the 

LIQW. As a result, both the holes and electrons are concentrated in the LIQW and thus 

the radiative recombination process in the LIQW dominate the luminescence emission of 

yellow MQW samples.  

 
Figure 3. Comparison of radiative recombination rates in the entire MQW active region of all sam-

ples under 150 mA injection current. The gray area indicates the position of the LIQW. 

However, in Figure 3, it is surprising to notice that at 150 mA injection current, the 

radiative recombination rate in the LIQW is the highest for sample C, while it is the lowest 

for sample A. This is clearly in contrast to the comparison of IQE and spectral integrated 

intensity at high injection currents in Figure 2, where sample A’s EL intensity is the strong-

est. To explore the above contradiction further, the concentrations of electrons and holes 

in the LIQW are depicted in Figure 4 for all samples at a 150 mA injection current.  

Figure 3. Comparison of radiative recombination rates in the entire MQW active region of all samples
under 150 mA injection current. The gray area indicates the position of the LIQW.

However, in Figure 3, it is surprising to notice that at 150 mA injection current, the
radiative recombination rate in the LIQW is the highest for sample C, while it is the lowest
for sample A. This is clearly in contrast to the comparison of IQE and spectral integrated
intensity at high injection currents in Figure 2, where sample A’s EL intensity is the strongest.
To explore the above contradiction further, the concentrations of electrons and holes in the
LIQW are depicted in Figure 4 for all samples at a 150 mA injection current.
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injection current for all samples.

It can be seen that the concentration of electrons and holes in the LIQW monotonically
increases from samples A to C. This may be attributed to the increased potential well depth
of the LIQW due to the increased In content, since it is difficult for carriers to escape from
a deeper quantum potential well formed by the higher-In-content InGaN well layer. In
other words, due to the increased In content, the LIQW’s capture ability for both electrons
and holes is enhanced, leading to an increased carrier concentration in the LIQW in high-
In-content samples. It is well known that if a large number of carriers are injected into
InGaN QWs, the influence of polarization electric field in the InGaN well can be partially
screened, thus weakening the QCSE and increasing the radiative recombination rates of
electrons and holes [22]. Therefore, for sample C, since the concentrations of electrons and
holes are the largest in the LIQW, the radiative recombination rate is the highest due to the
strongest carrier screening effect in the LIQW, as can be seen in Figure 3. Combining the
discussion of Figures 3 and 4, with increasing In content from samples A to C, the radiative
recombination rate in the LIQW increases due to the enhanced polarization screening
effect induced by the increased carrier concentration in the LIQW due to the enhanced
carrier capture ability. In fact, even at low injection currents, the radiative recombination
rate is larger for samples with higher In content in the LIQW due to the enhanced carrier
capture ability. For example, the peak radiative recombination rates at the injection current
of 20 mA are 2.39 × 1026, 3.24 × 1026, and 4.16 × 1026/cm3s for samples A, B, and C,
respectively. Therefore, in Figure 2, one can see that at low injection currents (below
20 mA), the luminescence efficiency of sample C with the highest In content in the LIQW is
the strongest.

However, it should also be noted that in Figure 2, in contrast to the low-current case,
at higher injection currents the luminescence efficiency of samples with higher In content
in the LIQW become lower, i.e., the droop effect becomes more serious for the higher
In content yellow MQW sample. It is known that under a high injection current (such
as 150 mA), the non-radiative Auger recombination and electron leakage may become
predominated in the InGaN/GaN MQWs. Thus, the Auger recombination rate in the
LIQW and the leakage electron current density which is leaked from the LIQW to the
P-type EBL region under a 150 mA current were extracted and compared with the radiative
recombination rates in the LIQW for all samples in Table 1.
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Table 1. Comparison of radiative recombination rate, Auger recombination rate, and leakage electron
current density in the LIQW under 150 mA injection current for all samples.

Parameters Sample A Sample B Sample C

Radiative recombination rate (/cm2s) 2.74 × 1022 2.77 × 1022 2.80 × 1022

Auger recombination rate (/cm2s) 4.62 × 1010 6.71 × 1010 9.34 × 1010

Leakage electron current density (A/cm2) 3.34 3.58 3.80

It can be seen that the radiative recombination rate slightly increases from samples A
to C, which has been analyzed in the discussion about Figures 3 and 4, while the Auger
recombination rate increases significantly from samples A to C. For instance, compared
with sample A, the radiative recombination rate of sample C increases by only 2.2%, but
the Auger recombination rate is almost doubled. As is known, the Auger recombination
is a main reason for the reduced luminescence efficiency by increasing the non-radiative
Auger loss of carriers at high currents, leading to the well-known droop effect [23,24]. As
can be seen from Figure 4, the carrier concentrations increase from samples A to C, and
hence, the Auger recombination rate increases and accordingly the luminescence efficiency
deteriorates at high currents, resulting in an enhanced droop effect.

Finally, it is also observed that from samples A to C, with increasing In content in the
LIQW, the electron leakage current density increases, i.e., the electron leakage becomes
more serious. This means that more electrons may fly across the entire MQW active
region and directly enter into the P-type GaN region without participating in the radiative
recombination process. In fact, it can be seen from Table 1, the difference of leakage currents
among three samples are less significant, compared to their Auger recombination rates.
Thus, it may not be the main reason responsible for the reduced luminescence efficiency at
high currents. However, from samples A to C, the variation trend of leakage currents is
consistent with the change of droop behaviors, implying that the increased electron leakage
currents are also a factor contributing to the enhanced droop effect. Therefore, the leakage
of electrons should be considered and discussed for the analysis on efficiency droop.

To further elucidate this issue, the conduction band diagrams of the LIQW and EBL
regions at 150 mA injection current is extracted and compared in Figure 5 for all samples.

In general, the polarization charge at the interface of InGaN/AlGaN heterojunction
not only causes the tilt of the band in the LIQW, but also affects the band in the AlGaN EBL
layer. Therefore, as shown in Figure 5, all samples’ conduction bands in the EBL region tilt
obviously. It is well known that the tilted energy band in the barrier layer actually increases
the potential barrier height and enhances the blocking effect on carrier transport [25,26].
To be convenient, the energy difference ∆E between the highest point of conduction band
in EBL region and the electron quasi-Fermi level is defined as the EBL’s effective barrier
height for electrons. Theoretically speaking, the increase of In content in the LIQW can lead
to an enhanced tilt of the conduction band in the EBL, which in turn gives rise to a higher
potential barrier for electrons. Therefore, the barrier height of EBL should be increased
from samples A to C. However, the extracted EBL effective barrier heights ∆E of samples
A, B, and C are 359, 344, and 328 meV, respectively, i.e., the EBL effective barrier height
decreases with increasing In content in the LIQW.

Actually, it can be seen from Figure 5 that the quantum potential well depth of the
LIQW becomes deeper from samples A to C, and correspondingly, the carrier capture
ability is enhanced. Meanwhile, it should be noted that in Figure 5 from samples A to C,
the quasi-Fermi energy level of electrons increases significantly. Therefore, it is reasonable
to deduce that because of the enhanced carrier capture ability, there is a larger number
of electrons accumulated in the LIQW for the higher-In-content samples, resulting in a
significantly lifted electron quasi-Fermi level. As a result, the EBL’s effective barrier height
in samples with higher In content in the LIQW is reduced, leading to an increased leakage
of electrons.
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Figure 5. Schematic diagrams of conduction bands (solid line) and electronic quasi-Fermi energy
levels (dotted line) near the LIQW under 150 mA injection current for all samples. The positions of
the LIQW and AlGaN EBL are indicated by gray and yellow areas, respectively.

In brief, the carrier capture ability of the LIQW can be enhanced by increasing In
content, and thus, more carriers can be captured in a high-In-content LIQW, leading to an
enhanced polarization screening effect, accordingly improved radiative recombination rate,
and EL efficiency at low injection currents. However, under the high-injection condition, the
carrier concentration in the LIQW increases significantly, causing the significant enhance-
ment of Auger recombination and electron leakage. As a consequence, the luminescence
efficiency of samples with higher In content in the LIQW rapidly decreases at high currents,
i.e., the droop effect becomes more serious.

4. Conclusions

By increasing the In content in the LIQW layer in yellow-light-emitting InGaN/GaN
MQWs, the luminescence efficiency and radiative recombination rate may be improved
at low injection currents, which may be ascribed to the enhanced polarization screening
effect due to the increased carrier concentration caused by the enhanced carrier capture
ability in the LIQW. However, on the contrary, also due to the enhanced carrier capture
ability of the LIQW, the Auger recombination and electron leakage become remarkable at
high injection currents, which may counteract the beneficial impact of increased radiative
recombination rate and finally lead to a significant droop effect for samples with higher In
content in the LIQW.

Author Contributions: Conceptualization, W.L. and Z.L.; methodology, H.Z.; software, H.Z.; vali-
dation, J.G.; formal analysis, W.L.; investigation, Z.L.; data curation, Z.L.; writing—original draft
preparation, Z.L.; writing—review and editing, W.L.; visualization, Z.L.; supervision, W.L.; funding
acquisition, W.L. All authors have read and agreed to the published version of the manuscript.
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