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Abstract: In this paper, a high-power 170 GHz frequency doubler based on a Schottky diode is
proposed using an in-phase power-combining structure. Unlike a conventional power-combining
frequency doubler, the proposed frequency doubler utilizes the combination of a T-junction power
divider and two bend waveguides to eliminate the phase difference between the two output ports of
the T-junction power divider, so as to achieve in-phase power combining with a concise structure. The
frequency doubler was fabricated on a 50 µm thick AlN high-thermal-conductivity substrate to reduce
the impact of the thermal effect on the performance. The measured results show that the doubler
exhibits a conversion efficiency of 11–31.3% in the 165–180 GHz band under 350–400 mW of input
power, and a 118 mW peak output power with a 31.3% efficiency was measured at 174 GHz ‘when
the input power was 376 mW. A good agreement was achieved between the simulation results and
the measured performance of the doubler, which proves the effectiveness of the proposed in-phase
power-combining structure.

Keywords: doubler; in-phase power combining structure; high power; Schottky diode

1. Introduction

Terahertz (THz) technology has been used in high-speed communication, the remote
sensing of the Earth’s atmosphere, safety imaging, and so on due to its special characteris-
tics, such as a high resolution, atmospheric attenuation characteristics, and low quantum
energy [1–4]. However, how to obtain a stable and reliable high-power broadband terahertz
source is the primary problem in terahertz technology research [5]. Currently, there are
two main approaches to generating a THz signal: photonics and electronics [6,7]. Methods
based on photonics have the problems of a low energy conversion efficiency and low
output power [8]. Electronic methods mainly include vacuum electronics and solid-state
electronics. Based on vacuum electronics, a THz signal can be generated with a pulse
power up to the kilowatt level, but their large size and high production and maintenance
costs limit their application [9,10]. Solid-state electronics have become mainstream in the
generation of terahertz signals due to their small vacuum, low cost, and operation at room
temperature [11].

A frequency multiplier, which is a core component of a THz source, will directly affect
the performance of the terahertz source. Multipliers can utilize non-liner devices such as
high-electron-mobility transistors (HEMT), heterojunction barrier varactors (HBV), and
Schottky barrier diodes (SBD) to generate a harmonic signal. Considering that a HBV is
a symmetrical device, it only can be used in odd harmonic frequency multipliers [12]. A
HEMT is a three-port device with many parasitic parameters, which is not suitable for the
higher terahertz frequency band (>1 THz) [13]. As a result, frequency multipliers based
on Schottky diodes are preferred in the THz band, benefiting from the advantages of low
parasitic parameters, a high cut-off frequency, and a high stability [14,15].
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For the further development of a terahertz source, a high-power local oscillator fre-
quency multiplier is essential. Generally, two main approaches are used, a frequency
multiplier based on high-bandgap material (such as GaN) Schottky diodes [16,17] or ap-
plying power-combining techniques [18,19]. Meanwhile, the multiplier generates heat
dissipation during the operation, which will degrade the performance of the multiplier or
even disable the diode. Thus, by using high-thermal-conductivity materials as substrates,
the effect of the heat dissipation on the performance of the frequency multiplier can be
reduced, resulting in an improvement in the output power of the frequency multiplier [20].

The conversion efficiency of a frequency multiplier based on GaN Schottky is limited
by its large series resistance. To enhance this efficiency, in this paper, a high-power 170 GHz
in-phase power-combining frequency doubler based on GaAs Schottky technology is
proposed. An improved T-junction structure is designed to eliminate the phase difference
between the output ports of the T-junction. This elimination is realized by adding a bend
waveguide after the output ports of the T-junction. Compared to the 3 dB coupling bridge,
this structure has the merits of a simplified structure, low processing difficulty, and high-
amplitude phase consistency within broadband. The measured results show that the
frequency doubler exhibits a conversion efficiency of 11–31.3% in the 165–180 GHz band
under 350–400 mW of input power, proving that the doubler with an in-phase power-
combining structure is effective.

2. Architecture and Design

A reduction in the power-combining loss is the main design issue for a power-
combining frequency multiplier. Formula (1) shows the output power of the n-channel
power-combining frequency multiplier [21]. Pav is the input power of a single branch. For
a symmetrical n-branch power synthesis circuit, when the input signals of each branch are
consistent in terms of amplitude and phase, the synthesis efficiency is highest, expressed as
ηmax. The amplitudes and phases of different branches will be inconsistent due to process-
ing errors, resulting in a decrease in the synthesis efficiency, as shown in Formula (2). Mb is
the effect factor of the amplitude on the efficiency, with a value of 10∆G/10, where ∆G is the
maximum difference in the driving power between the signals. δmax is the effect factor of
the phase on the efficiency and the values are in the range of [0,π/2]. Based on the above
analysis, in order to obtain the high-power frequency multiplier, it is necessary to select the
concise circuit structure to decrease the processing error. Therefore, the modified T-junction
structure is adopted in this paper, which not only reduces the processing difficulty in the
THz band, but also ensures the consistency of the output port phase of the power divider.

Pout = ηc

n

∑
k=1

Pav,k (1)

ηc ≥
4Mb cos2 δmax

(1 + Mb)
2 ηmax (2)

Figure 1 shows the basic topology of the 170 GHz in-phase power-combining frequency
doubler based on a Schottky diode. The direction of the electric field is twisted by the two
bend waveguides, eliminating the 180 degree phase difference caused by the two output
ports of the T-junction. Thus, the phase consistency of the input signals of the two-branch
frequency doubler is realized. The single-branch frequency doubler is designed as a typical
Erickson-style structure [22] to form a balanced structure. In this structure, the input signal
of the diodes is in the TE10 mode and then transformed into the quasi-TEM mode, and the
structure of the frequency doubler is simplified using mode isolation. The single-branch
frequency doubler is composed of an input/output-matching circuit and diode model. In
the doubler, the input/output-matching circuit, together with the diode model, achieve a
high conversion efficiency. Finally, the two-branch doubler output signals are combined by
the in-phase power-combining structure to obtain the high output power.
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Figure 1. The basic topology of the 170 GHz in-phase power-combining frequency doubler.

2.1. Diode Model and Thermal Characterization

The frequency multiplier uses the non-linear effect of the diodes to generate the re-
quired harmonics. Therefore, it is essential to select the suitable diode for the corresponding
band. In this paper, the varactor diode produced by ACST with three anodes was chosen.
The main parameters of the diode are shown in Table 1.

Table 1. The main parameters of the diode.

Is Reverse saturation current 5.0fA
Rs Series resistance 4 Ω
N Emission coefficient 1.2

Cj0 Zero bias junction capacitance 40fF
Vj Barrier voltage 0.85 V
Bv Reverse breakdown voltage 13 V
Eg Band gap width 1.43 eV

An essential concern for high-power THz multipliers is heat dissipation, especially
at the anode areas of Schottky diodes. Excessive heat dissipation around the Schottky
junction due to the high driving power and limited conversion rate can degrade the
diode performance or even disable the diode. The effect of temperature on the electrical
performance of the diode is shown in Formulas (3)–(5), where k is the Boltzmann constant
and χ is the temperature coefficient, which is generally set at 0.3–0.4. VT is the thermal
voltage [23]. Formulas (3)–(5) show that temperature causes an increase in the intrinsic
parameter Rs and the reverse current Is, leading to a deterioration in the performance of
the frequency doubler.

VT(T) =
kT
q

∝ T (3)

Is(T) ∝ T2 × exp(
−φb
VT

) (4)

Rs(T)= Repi(T) + Rspreading(T) + Rcontent + Rfinger

≈ χRs(T) + (1 − χ)Rs

≈ χRs(T = 300K)× (
T

300K
)

0.89
+ (1 − χ)Rs

(5)

In the terahertz frequency band, the frequency multipliers based on hybrid integration
technology usually use a low-relative-permittivity quartz substrate. However, when the
input power increases and the thermal effect dominates, the low-thermal-conductivity
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quartz substrate becomes unsuitable for high-power applications. Therefore, an AlN
substrate was chosen for the 170 GHz high-power frequency doubler in this paper, which
has a thermal conductivity more than tenfold higher than the quartz substrate. A 3D
electromagnetic model of a diode based on the AlN substrate is shown in Figure 2. To more
intuitively demonstrate the superior heat dissipation of the AlN substrate compared to
the quartz substrate, a thermal simulation was performed using the COMSOL software
(COMSOL Multiphysics 5.5’) on the 3D electromagnetic model of the diode shown in
Figure 2. The material characteristics in the 3D electromagnetic model of the diode are
shown in Table 2. From the thermal simulation results of the 3D electromagnetic model
based on the AlN substrate and quartz substrate in Figure 3, it can be seen that, when the
dissipation power of a single anode junction of the diode is greater than 15 mW, the junction
temperature of the 3D electromagnetic model of the diode based on the AlN substrate is
significantly lower than that based on the quartz substrate. When the dissipated power of
a single anode is 35 mW, the AlN substrate can reduce the maximum junction temperature
by 32 K compared to the quartz substrate. Formula (6) shows the relationship between the
dissipated power and the anode junction temperature.

Tanode − T0 = Rth(Tanode)× Pdis (6)
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Epitaxial layer (GaAs) 51 × (300/T)1.28 830 12.9 

Buffer layer (GaAs) 51 × (300/T)1.28 4.1 × 107 12.9 
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Figure 2. The 3D electromagnetic model of the diode.

Table 2. The material characteristics in the 3D electromagnetic model of the diode.

Material Thermal Conductivity
(W/(m·K))

Bulk
Conductivity (S/m)

Relative
Permittivity

Metal (Gold) 310 4.1 × 107 1
Insulation layer (SiO2) 1.4 0 4.2
Epitaxial layer (GaAs) 51 × (300/T)1.28 830 12.9

Buffer layer (GaAs) 51 × (300/T)1.28 4.1 × 107 12.9
Substrate (AlN) 160 0 8.8
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substrate.

2.2. Impedance Extraction and Matching Circuit

The efficiency of the frequency multiplier is optimal when the matching circuit and
3D electromagnetic mode of the diode reach a conjugate matching state. The values of the
input-matching circuit and the output-matching circuit that need to be conjugated to the
3D electromagnetic model of the diode are called Zin and Zout, as shown in Figure 4. To
extract the conjugate value of the embedded impedances of the 3D electromagnetic model
of the diode, the in-band (160–180 GHz) embedded impedance optimization method is
used, where the embedded impedances Zin is 75 + j∗170 Ω, Zout is 138 − j∗44 Ω.
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Figure 4. The frequency doubler structure.

The input-matching circuit is shown in Figure 5a. For the input-matching circuit, the
impedance transformers with narrow side sizes, W2 and W3, are inserted between W1 and
W4 to form shunt capacitors in the input-matching circuit [24], where W1 is the narrow
side of the waveguide WR-10 and W4 has the same size as the input port of the 3D EM
of the diode. By adjusting the lengths of W2 and W3, the input impedance value Zin of
the input-matching circuit is shifted in the Smith chart. Finally, the value of Zin that has
a subtle error of 75 + j∗170 Ω is obtained. As shown in Figure 5b, the output-matching
circuit consists of an output probe and a DC bias filter circuit. The DC bias filter effectively
prevents the reflection of the RF signal to the DC port and has little effect on the output
impedance value. Thus, the output impedance value of the output-matching circuit can
reach the desired value, mainly by adjusting the size of the output probe, and a better
output-matching circuit can be obtained. It can be seen from the simulation results of
the input- and output-matching circuits in Figure 5c that the impedance values of the



Micromachines 2023, 14, 1530 6 of 12

input- and output-matching circuits are basically consistent with the required optimum
embedding impedance, which proves that the input- and output-matching circuits can
achieve conjugate matching with the 3D EM of the diode.
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2.3. Power Divider/Combiner Circuit

The demand of the power divider in this paper is to divide the input signal into two
signals of equal amplitude and phase. In the traditional T-junction structure, there is a
180 degree phase difference between the two output ports of the power divider. Two WR-10
bend waveguides are connected to a T-junction to eliminate the phase difference at the
output ports by twisting the direction of the electric field in this paper. In the improved
power divider, a reflector-matching structure is adopted, as shown in Figure 6, and the
metal-matching block is placed on the inside of the two output branches, playing a role
in the circuit impedance matching and effectively extending the bandwidth of the power
divider [25]. The simulation results of the return loss of the power divider under different
metal block widths, W1, are shown in Figure 7a. At W1 = 0.65 mm, the return loss of the
power divider is better than 20 dB in the frequency range of 75–95 GHz, which meets the
design requirements. Figure 7b shows the phase simulation results of output ports 2 and 3,
demonstrating the feasibility of achieving phase consistency by bending the waveguide
to twist the electric field. Considering the effect of machining errors on the performance
of the power divider, a tolerance analysis on the size of the metal-matching blocks was
performed with a step size of 5 µm. As can be seen from the simulation results in Figure 8,
compared to L1, the return loss is more sensitive to W1. With a negative tolerance of W1,
the return loss is slightly reduced for bands better than 20 dB.

The power combiner also uses a reflector-matching structure, as shown in Figure 9. In
order to expand the bandwidth of the power combiner, a multi-stage waveguide impedance
converter structure is adopted. As shown in Figure 9, the combiner has a stepped pat-
tern, which can reduce the effect of discontinuity caused by connecting different sizes of
waveguide and achieve bandwidth expansion. The symmetrical structure of the in-phase
power-combining frequency doubler determines that the distance L of the power combiner
should be the same as that of the power divider, L = 6.17 mm. The phase of input ports 1 and
2 is consistent, as shown in Figure 10a. Figure 10b shows a comparison of the simulation
results of the return loss of the power combiner for different-order impedance converters.
In the 145–185 GHz frequency range, the return loss of the power combiner based on
a two-stage waveguide impedance converter is better than 25 dB, and the bandwidth
increases threefold compared to the single-stage one when the return loss is better than
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25 dB. Figure 11 shows the results of the tolerance analysis of the metal-matching blocks in
the power combiner. According to the results of the tolerance analysis, the performance
of the power combiner at a high frequency (>180 GHz) will deteriorate slightly, if the
metal-matching block has machining errors.
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Figure 10. The simulation results of the power combiner. (a) The phase simulation results of the
input ports. (b) The return loss simulation results.
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3. Fabrication and Measurements

Figure 12 shows a photograph of the frequency doubler. It can be seem from Figure 12b
that the Schottky diodes were flip soldered onto the high-thermal-conductivity AlN sub-
strate. Finally, the frequency doubler was packaged in a 30 mm × 26 mm × 20 mm split
metal block, as shown in Figure 12a. To verify the proposed in-phase power-combining
doubler, the 170 GHz frequency doubler was measured. The measured platform of the
doubler is shown in Figure 13. A ×6 multiplier chain, an adjustable attenuator, and VDI’s
PM4 power meter were included in the measured platform. The ×6 multiplier chain
could amplify the signal generated by the signal generator up to 28 dBm; thus, a W-band
adjustable attenuator with an attenuation factor of 0–30 dB was necessary to adjust the
input power to a suitable power level.
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A comparison between the measured and simulated conversion loss under 350–400 mW
of input power is shown in Figure 14. The measured results show that the conversion
loss is less than 10.2 dB (efficiency > 11%) at 165–180 GHz and the best result is 5.28 dB
(efficiency = 31.3%) at 174 GHz. Considering the loss of the standard waveguide (estimated
at 0.4 dB) and the tapering waveguide, WR5.1-to-WR10 (estimated at 0.4 dB) are not
corrected in the measured results. For comparison, the corrected conversion loss is also
shown in Figure 14. From Figure 15, it can be seen that the peak output power of the
doubler at 174 GHz is 118 mW under 376 mW of input power. To provide an intuitive
understanding of the operating state of the frequency doubler, a single-point measurement
was performed on the frequency doubler at a different driving power. The single-point
measured results are shown in Figure 16. When the input power is higher than 300 mW,
the output power of the frequency doubler increases relatively slowly. The reason for this
is that the performance of the frequency doubler deteriorates due to the heat dissipation.
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Table 3 summarizes the published doubler performance in the similar frequency range.
The frequency multiplier based on a GaN Schottky diode can withstand a high driving
power. As reported in [16], the frequency doubler can withstand a maximum driving power
of 1100 mW. However, due to the high series resistance of the GaN Schottky diode, the
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conversion efficiency of the frequency doubler is low. The in-phase power-combining fre-
quency doubler proposed in this paper can not only withstand a higher driving power, but
also ensure a high conversion efficiency. From the above comparison, it can be concluded
that the proposed frequency doubler has a relatively excellent performance.

Table 3. Summary of published doubler performance in the similar frequency range.

Diode
Material Anodes Frequency

(GHz)
Input Power

(mW)
POP *
(mW)

PE *
(%)

[26] GaN 8 111–125 286 48.5 17
[27] GaN 6 117–125 500 15.1 3
[16] GaN 8 200–220 1100 17.5 1.6
[28] GaAs 6 × 2 164–172 300–600 59 22
[29] GaAs 6 × 2 166–179 520–910 204.5 30.2

This work GaAs 6 × 2 165–180 350–400 118 31.3
* POP: peak output power, PE: peak efficiency.

4. Conclusions

A high-power 170 GHz in-phase power-combining frequency doubler based on a
Schottky diode was successfully fabricated and studied in this work. The doubler using
the proposed divider has the advantage of a simplified structure and reduces the difficulty
of the processing in the THz band, so that the influence of the synthesis efficiency caused
by error factors can be reduced and enhance the performance of the doubler. The measured
results show that the frequency doubler exhibited a peak output power of 118 mW at
174 GHz under 376 mW of input power, which proves the validity of this in-phase power-
combining frequency doubler design.
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