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Abstract: Recently MXenes has gained immense attention as a new and exciting class of two-
dimensional material. Due to their unique layered microstructure, the presence of various functional
groups at the surface, earth abundance, and attractive electrical, optical, and thermal properties,
MXenes are considered promising candidates for various applications such as energy, environmental,
and biomedical. The ease of dispersibility and metallic conductivity of MXene render them promising
candidates for use as fillers in polymer nanocomposites. MXene–polymer nanocomposites simultane-
ously benefit from the attractive properties of MXenes and the flexibility and facile processability of
polymers. However, the potentiality of MXene to modify the electrospun nanofibers has been less
studied. Understanding the interactions between polymeric nanofibers and MXenes is important
to widen their role in biomedical applications. This review explores diverse methods of MXene
synthesis, discusses our current knowledge of the various biological characteristics of MXene, and
the synthesis of MXene incorporated polymeric nanofibers and their utilization in biomedical ap-
plications. The information discussed in this review serves to guide the future development and
application of MXene–polymer nanofibers in biomedical fields.

Keywords: MXene; polymer; electrospinning; nanofibers; biomedical applications

1. Introduction

MXenes are the recently emerged member of multifaceted two-dimensional (2D)
transitional metal carbides and nitrides, which are derived from MAX phases, where M
represents layers of transition metals, A represents A-group element (mostly IIIA and
IVA), and X represent either carbon or nitrogen (Figure 1). They are represented with the
universal formula Mn + 1Xn, where n = 1, 2, or 3. MXenes were first invented by Professors
Yury Gogotsi and Michel W. Barsoum with their group at Drexel University in 2011 [1].
In general, MXenes possess several outstanding features such as high electrical conduc-
tivity, good mechanical stability, large surface area, rich surface chemistry, hydrophilicity,
ease of surface functionalization, superior near-infrared (NIR) responsiveness, biocom-
patibility, and excellent optical properties [2]. Due to these interesting features, MXenes
and their derivatives have been widely applied in various fields such as energy storage,
photocatalysis, sensor, drug delivery, tissue engineering, EMI shielding, etc. [2–4].
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Figure 1. Periodic table showing the composition of the MAX phase and MXene. [5] Reprinted with 
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Industrial and Engineering Chemistry. Elsevier B.V. 
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possibility of selective removal of the A layer from the parent phase by etching. In 2011, 
Gogotsi, Barsoum, and colleagues first synthesized titanium carbide (Ti3C2) by chemically 
etching MAX phases of Ti3C2 using HF [1]. Since then, various etching methods have been 
proposed as alternative acidic solutions such as the mixture of hydrochloric acid with lith-
ium fluoride [6], hydrochloric acid with sodium fluoride [7], ammonium hydrogen fluo-
ride [8], and ammonium hydrogen fluoride in organic polar solvents [9]. Additionally, 
several top-down and bottom-up methods have been explored for the synthesis of 
MXenes. These methods include urea glass method [10], chemical vapor deposition [11], 
molten salt etching [12], hydrothermal fabrication [13], and electrochemical preparation 
[14]. Table 1 shows various techniques for the synthesis of MXenes and their applications. 
Among them, chemical vapor deposition and wet etching techniques have been widely 
reported for the synthesis of MXenes [4,15,16]. A schematic diagram showing the etching 
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Figure 1. Periodic table showing the composition of the MAX phase and MXene. [5] Reprinted with
the permission from Journal of Industrial and Engineering Chemistry © 2022 The Korean Society of
Industrial and Engineering Chemistry. Elsevier B.V.

2. Synthesis of MXenes

Typically, MXenes are synthesized via the selective removal of the “A” layer from
their MAX phase by etching. Due to the stronger chemical bonds between the Mn +
1Xn layer and the “A” element layer of MAX phases, it is difficult to prepare MXenes by
mechanical exfoliation. However, various mix bonds in the M-A layer (ionic, covalent, and
metallic) are weaker than the metallic bonds of the M-X layer. This feature enables the
possibility of selective removal of the A layer from the parent phase by etching. In 2011,
Gogotsi, Barsoum, and colleagues first synthesized titanium carbide (Ti3C2) by chemically
etching MAX phases of Ti3C2 using HF [1]. Since then, various etching methods have
been proposed as alternative acidic solutions such as the mixture of hydrochloric acid with
lithium fluoride [6], hydrochloric acid with sodium fluoride [7], ammonium hydrogen
fluoride [8], and ammonium hydrogen fluoride in organic polar solvents [9]. Additionally,
several top-down and bottom-up methods have been explored for the synthesis of MXenes.
These methods include urea glass method [10], chemical vapor deposition [11], molten salt
etching [12], hydrothermal fabrication [13], and electrochemical preparation [14]. Table 1
shows various techniques for the synthesis of MXenes and their applications. Among them,
chemical vapor deposition and wet etching techniques have been widely reported for the
synthesis of MXenes [4,15,16]. A schematic diagram showing the etching of the Ti3AlC2
MAX phase into the Ti3C2Tx MXene is given in Figure 2. Table 2 depicts the commonly
used method for MXenes synthesis and summarizes their advantages and disadvantages.
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Table 1. Various techniques for the synthesis of MXenes and their applications [17].

Material Method of Synthesis Applications Refs.

2D TiVC solid solution Hydrothermal Raman scattering
substrate [18]

Oxygen-rich Ti2C Tetramethylammonium
hydroxide etching sensor [19]

Ti3AlC2 Molten Salt-Shielded Synthesis Lithium-ion storage [20]

Ti3C2Tx In situ Enhanced Optical
properties [21]

Ti2AlC Electrochemical etching Synthesis of MXene [14]

Ti3AlC2 Molten salt approach Water splitting [22]

Ti3AlC2
Room temperature etching with

halogens Synthesis [23]
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Figure 2. Schematic showing the etching of Ti3 AlC2 MAX phase precursor into Ti3 C2 Tx MXene. [24]
Adopted with the permission from Trends in Chemistry © 2020 Elsevier Inc.

Table 2. Common methods for MXenes synthesis and their advantages and disadvantages [25].

S.N. Method Advantages Disadvantages Refs.

1. HF etching

- Suitable for the wide
range of MXene
compounds.

- Allows simultaneous
intercalation during
etching.

- Hazardous.
- It creates –F terminated

MXenes, which have a
detrimental impact on
applications.

- Additional cleaning
process is required.

[26,27]

2. Alkali
etching

- Feasible to remove the
–F terminals from
MXenes.

- Safe.

- Harsh reaction
conditions may be
required.

- Mechanism of the
organic base reaction is
unclear.

[28,29]



Micromachines 2023, 14, 1477 4 of 19

Table 2. Cont.

S.N. Method Advantages Disadvantages Refs.

3. Electrochemical
etching

- Control over the
surface terminations

- safe due to
fluorine-free
synthesis.

- Expensive set up
required. [30]

4. Molten salt
etching

- Lewis acidic salts are
efficient to prepare
MXenes from MAX
phase, including Zn,
Ga, and Si.

- Requires harsh
experimental
conditions-

- Produce –F terminated
MXenes.

[31]

5.

Plasma-
enhanced

pulsed-laser
deposition

- Crystal structure can
be controlled.

- Energy intensive
procedure

- Unclear working
mechanism.

[32]

6.
Template-
assisted
method

- Surface terminations
can be controlled.

- Limited template.
- Energy-intensive

process.
[33]

3. Properties of MXenes

MXenes are materials of interest due to their outstanding physicochemical properties.
These properties make the MXenes suitable for various applications. The unique properties
of MXenes, such as physical, chemical, magnetic, thermal, electrical, and mechanical, can
be controlled by the MAX phase, etching process, and surface functional groups. Therefore,
the MXenes properties can be modified on the basis of their applications.

3.1. Electronic Properties

Similar to the MAX phase, the bare MXenes are metallic. However, the surface func-
tionalization (OH, F, O termination) can make them semiconducting [34]. The electrical
properties of MXenes are affected by several factors such as preparation process, etching,
surface groups, elemental composition, and some surrounding conditions, including hu-
midity, temperature, pH, etc. [35,36]. The electric properties are mostly exploited in the
energy storage field. However, they can also be applicable in biomedical areas such as the
detection of biomolecules, health detection systems, and so on [37].

3.2. Mechanical Properties

The mechanical properties of MXenes are closer to various 2D materials (graphene,
boronnitride, and molybdenum disulfide). It has been found that various factors such as
the atomic layer thickness, porosity, interlayer spacing, the method of preparation, surface
terminations, and composition influence the mechanical properties of the MXenes [38,39].
The mechanical properties depend on the surface termination in the order of O, F, and
OH [40]. The mechanical properties of MXenes are important for biomedical applications,
especially if the material is going to be used for implants [41].

3.3. Magnetic Properties

As MXenes can be composed of a wide variety of transition metals, MXenes can
possess magnetic properties. Most of the reported magnetic MXenes are based on magnetic
transition metals [42]. In addition, defects in monolayers and surface termination also
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bring magnetic properties in MXenes [38,43]. The magnetic properties of MXenes have
been exploited in spintronic devices, electromagnetic interface shielding, and data storage
applications.

3.4. Thermal Properties

So far, thermal conductivity of only Ti3C2Tx has been evaluated. Simulation studies
have shown low thermal expansion coefficients and higher thermal conductivities of
MXenes compared to that of the phosphorene and MoS2 monolayer [38,44].

3.5. Optical Properties

MXenes show strong plasmonic resonance, broad optical transparency window, non-
linear optical performance, transparency, photothermal conversion, etc. It should be noted
that these properties are also affected by the functional groups. For example, fluorinated
and hydroxyl terminations show similar characteristics, contrasting with oxygen ones. In
the visible range, -F and -OH terminations reduce absorption and reflectivity, whereas,
in the UV region, all terminations enhance the reflectivity as compared to the pristine
MXenes [45]. The MXene’s ability to interact with light can have a significant impact on
some biomedical applications such as bioimaging, biosensing, photothermal therapy, etc.
Recently, MXene quantum dots (QDs) have aroused widespread interest in biomedical
fields due to their enhanced optical properties compared to their counterparts [46].

Table 3 summarizes the various properties of MXenes.

Table 3. Properties of MXenes [38,47,48].

S.N Properties Remarks Refs.

1 Electronic and electric

- MXenes possess outstanding electrical
conductivity.

- These properties can be influenced by several
factors such as source of MAX, synthesis
condition, and surface functionalization, etc.

[38]

2 Mechanical
- Depending on the surface terminations in the

order of O, F, and OH. [40]

3 Magnetic

Magnetic features can be adjusted by surface
functionalization.
Some are ferromagnetic. Example: Ti2N, Cr2C, and
Ti2C

- some are anti-ferromagnetic. Example: Cr2N
and Mn2C

[38]

4 Thermal
Simulation studies predicted low thermal expansion
coefficients and higher thermal conductivities than
phosphorene and MoS2 monolayer.

[44,49]

5 Optical

MXenes show strong plasmonic resonance, broad
optical transparency window, nonlinear optical
performance, transparency, photothermal conversion,
etc.

- the optical properties are also affected by the
functional groups.

[45]
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4. Biomedical Applications of MXenes

In recent years, MXenes have gained tremendous research interest due to their fasci-
nating physiochemical properties (Section 3). These properties make MXene suitable for
various fields such as energy storage, catalysis, biomedical, electronics, sensor, solar cells,
electromagnetic interference shielding, etc. [2,38,50]. Due to their promising features such
as hydrophilicity, biocompatibility, biodegradability, high absorption efficiency over the
near-infrared region, and high light-to-heat conversion efficiency, ease of functionalization,
MXenes are considered promising materials in biomedical fields. An ideal biomaterial must
not be toxic and should be compatible with the physiological environment, be biodegrad-
able, have optimum mechanical properties, and have the ability to overcome biological
rejection [51,52]. The intrinsic features of MXenes may not fulfill the requirements in
biomedical applications. To overcome this limitation, the integration of MXenes with
diverse functional components or fabrication of MXene-based composites have been em-
ployed [53–55]. In addition, surface modification and functionalization also improve their
properties. These strategies are also helpful to extend the applications of MXenes in a
wide range. So far, MXenes and their composites have been studied for biosafety, im-
plant, bioimaging, cancer therapy, biosensor, drug delivery, intraocular lenses, antibacterial
agents, etc. [38,39,56]. Figure 3 summarizes the biomedical applications of MXenes.
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5. MXene–Polymer Composites

Preparing composites is considered an effective strategy to develop stable and efficient
materials. The composite materials showed improved electronic, magnetic, mechanical,
thermal, optical, and structural properties for advanced applications. As discussed earlier
(Section 4), several limitations of MXenes can be overcome by forming composites. As a re-
sult of two-dimensional (2D) morphology, layered structure, flexibility, and hydrophilicity,
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MXenes can effectively make a composite with polymers, metal/metal oxides, ceramics,
carbons, etc. [57,58]. Among them, the MXene–polymer composites have attracted a great
deal of attention in the last decades. MXene–polymer composites can simultaneously
exploit the properties of MXenes and the flexibility, processability, and low toxicity of
the polymers, leading to many amazing results. The synthesis of MXene–polymer com-
posite was first reported by Ling et al. in 2014 [59]. In this study, the authors mixed
Ti3AlC2 with poly(diallyldimethylammonium chroride) (PDDA) and polyvinyl alcohol
(PVA) to produce a composite. Since then, several research groups have prepared MXene–
polymer composites for various applications. So far many polymers have been reported,
such as polyacrylic acid (PAA) [60], PVA [61,62], polyethylene (PE) [63], polyethylene
oxide (PEO) [64], polypropylene (PP) [65], polystyrene (PS) [66], polyimide (PI) [67], acry-
lamide [68,69], silicone [70], urethanes [71], and epoxy [72], etc. Generally, MXene–polymer
composites are prepared by physical mixing, in situ polymerization, melt blending, and
electrospinning [4,73,74]. Among them, the electrospinning method has been accepted as a
simple and effective operation to prepare MXene sheets incorporated in polymer nanofibers
composites [55,75,76]. Therefore, by adopting electrospinning strategy, the outstanding
features of nanofibers, along with the properties of MXenes, can be exploited. The following
section introduces the electrospinning technique to prepare MXene–polymer composites.

6. Electrospinning Technique

Electrospinning is known as a simple, versatile, and cost-effective technique for pro-
ducing nano-to-microfibers from various polymeric solutions or melts [77]. The electrospin-
ning device consists of four components, namely, a high voltage power supply, a capillary
tube, a spinneret/nozzle, and a collector. The working mechanism simply involves elec-
trohydrodynamic process, in which a liquid droplet is electrified to create a jet. After
elongation and stretching, the jet generates a single thread of fiber which is deposited onto
a collector [51,78]. Recently, electrospinning has gained interest of scientific community
due to several outstanding properties such as large surface-to-volume ratio, porosity, flexi-
bility, good mechanical properties, etc. [79]. So far, various morphologies of electrospun
nanofibers have been reported such as random [80], porous [81], aligned [82], core-shell [79],
helical [83], hollow [84], multilayer [85], and janus [86]. The aforementioned properties
make them suitable for various applications such as catalysis [87,88], energy storage [89,90],
cosmetics [91], filter media [92], sensors [93], fire retardants [94], environmental remedi-
ation [95], fuel cells [96], etc. Electrospun nanofibers resemble the extracellular matrix
(ECM) of the human body. In addition, the interconnecting porous morphology facilitates
attachments, migration, and proliferation of cells. Therefore, in recent years, a huge number
of polymers have been electrospun into nanofiber form for biomedical applications such
as wound dressing [97], drug delivery [79], dura mater regeneration [51], implants [98],
antibacterial agent [99], biosensors [93,100], etc. Researchers have prepared biologically
functional nanofibers by introducing tissue enhancers to enhance biocompatibility [101,102].
The introduction of additional moieties such as graphene [103], carbon nanotubes [104],
metal/metal oxide nanoparticles [105], drugs [79,97], biological factors [106,107], etc., into
electrospun nanofibers has shown promising results.

MXenes/Polymeric Nanofibers by Electrospinning

MXenes have gained attention as recently discovered two-dimensional (2D) metal
carbides/nitrides [56,108]. Previous studies have shown that the electrospinning technique
can be used to embed 2D sheets into nanofibers. The electrospun nanofibers provide
sufficient surface for the 2D sheets and hold them within the fibers, whereas the nanofibers
can benefit from inorganic filling materials for enhanced performance [85,109,110]. Ac-
cordingly, some attempts have been made to incorporate MXene sheets into electrospun
nanofibers to widen their applications [55,111–113]. In this regard, Mayeberger et al. [76]
electrospun poly(acrylic acid) (PAA), poly(ethylene oxide) (PEO), poly(vinyl alcohol) (PVA),
and alginate/PEO with delaminated Ti3C2 for the first time and studied the effect of addi-
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tion of MXene on the structure and properties of the nanofibers. The authors found that
the MXene nano-flakes can be encapsulated into the polymer nanofibers by electrospin-
ning technique. Since then, several research groups have incorporated MXene sheets into
polymer nanofibers for various applications [55,114–117].

7. Biomedical Applications of Electrospun MXenes/Polymeric Nanofibers

In recent years, several efforts have been made to incorporate the MXene sheets into
polymeric nanofibers for biomedical applications such as antibacterial, biocompatibility,
biosensing, wound healing, and bone regeneration, etc. (Table 4). From Table 4, it can
be concluded that most of the studies are conducted for biocompatibility and antibacte-
rial evaluations.

Table 4. MXene–polymer nanofibers fabricated by electrospinning process for biomedical applications.

Polymer MXene Applications Ref.

Polycaprolactone (PCL) Ti3AlC2 Biocompatibility evaluation [118]

Chitosan Ti3C2Tz Antibacterial medium [119]

Polylactic acid (PLA) Ti3C2Tx
Antibacterial and

biocompatibility evaluation [120]

poly(vinylidene fluoride-
trifluoroethylene)

(PVDF-TrFE)
Ti3C2Tx

Sensor to determine the health
condition of patients [121]

PVA Ti3C2 Treatment of wound infection [122]

PLLA-PHA Ti3C2 Tissue engineering [111]

polyvinylpyrrolidone
(PVP)-PAN Ti3C2 Wound healing [123]

PLCL/collagen Ti3AlC2 Bone tissue regeneration [124]

PVDF Ti3C2Tx
Sensor for body movement

detection [125]

PCL Ti3C2Tx
NeuriteRegeneration and

Angiogenesis [126]

PU Ti3C2 ECG monitoring system [127]

PLA, gelatine Ti3C2Tx

- Inhibition of tumor
reoccurrence

- Wound healing
[128]

PLA Ti3C2Tx

Good biocompatibility,
Inhibition of bacterial adhesion
Applicable in the development

of neural guidance conduit

[120]

PHBV Ti3C2Tx Antibacterial activities [129]

PCL) Ti3C2Tx Tissue engineering scaffolds [130]

PVDF Ti3C2Tx Bone Regeneration [131]

PVDF Ti3C2Tx
Light-responsive antibacterial

material [132]

7.1. Cellular Behaviors and Biocompatibility Evaluation

Biocompatibility is a prerequisite for any materials for biomedical applications.
It should enhance tissue regeneration without inducing any adverse reactions [51].
Awasthi et al. [118] synthesized polycaprolactone (PCL)-Ti3C2 MXene composite nanofibers
by electrospinning for the first time and studied their physiochemical and biological fea-
tures. The authors prepared Ti3C2 MXenes by hydrofluoric acid (HF) etching, dispersed
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them into PCL solution, and finally electrospun the solution into MXene–PCL composite
nanofibers (Figure 4). They studied the biocompatibility of the PCL/Mxene nanofibers
by using fibroblasts (NIH-3T3) and preosteoblasts (MC3T3-E1) cell lines and found about
70% and 72% of cell viability, respectively, after 5 days of culture. The biomineralization
test revealed a successful deposition of calcium phosphate minerals which was due to the
better wettability of MXenes. The finding from this study shows the possibilities of utilizing
MXene–PCL nanofibers in bone implants. Similarly, Kyrylenko et al. [120] investigated the
possibilities of utilizing MXene-loaded polylactic acid (PLA) electrospun nanofibers for
nerve guide conduits. The introduction of MXenes not only increased the electrical conduc-
tivity of the nanofibers but also showed high biocompatibility. In addition, the composite
materials tended to inhibit bacterial adhesion. These all features verified the potentiality
of the as-prepared PLA-MXene membranes in creating nerve guide conduits and other
biomedical applications. Nan et al. [126] exploited Ti3C2Tx MXene-coated PCL nanofiber
conduits for enhancing neurite regeneration and angiogenesis. The in vitro evaluation on
nerve regeneration revealed good biocompatibility. They further made a sciatic nerve defect
model of SD rats and implanted their composite nanofibers. The authors observed excellent
performance by their synthesized materials in promoting nerve regeneration in a long rate
sciatic nerve defect. Mayerberger et al. [119] determined the biocompatibility of Ti3C2Tz in-
corporated chitosan nanofibers by performing an in vitro cytotoxicity test using HeLa cells
for 72 h. Their study demonstrated >85% average cell viability at all test concentrations,
indicating that the nanofibers were not cytotoxic to HeLa cells. The biocompatibility of
the MXene-loaded electrospun nanofibers was also evaluated by Huang et al. [111]. They
prepared Ti3C2 nanosheet-embedded PLLA-PHA composite nanofibers by electrospinning
and studied their performance in osteogenesis differentiation on bone marrow-derived
mesenchymal stem cells (BMSCs). The MXene composite nanofibers revealed good bio-
compatibility and enhanced cellular activities. MXene–polymeric nanofiber membranes
are also effective in promoting spontaneous osteogenic differentiation [133]. Recently, Lee
et al. [124] synthesized MXene NPs-integrated poly(L-lactide-co-ε-caprolactone, PLCL)
and collagen (Col) (i.e., PLCL/Col/MXene) nanofibers and evaluated the spontaneous
osteogenic differentiation of MC3T3-E1 preosteoblasts. The PLCL/Col/MXene nanofiber
resembled the structure of the natural extracellular membrane (ECM) and possessed ex-
cellent physiochemical properties, thereby providing a favorable microenvironment for
unprecedented cellular behavior of MC3T3-E1 preosteoblasts.
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7.2. Antibacterial Activities

Implant-related infection is a serious issue in the healthcare system which may lead to
acute/chronic inflammation and foreign body reaction resulting in microbial colonization
and infection. Developing antibacterial biomaterial is a promising strategy to prevent
implant-related infections. Several studies have shown that the antibacterial property
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can be induced into the electrospun polymeric nanofibers by loading the antibacterial
agents [92,97,134,135]. Rasool et al. [136] introduced Ti3C2Tx MXenes as a new family of 2D
antibacterial materials for the first time. Recently, some efforts have been made to synthesize
antibacterial polymeric nanofibers by incorporating MXene sheets via an electrospinning
technique [119,129,132]. In this regard, Mayerberger et al. [119] incorporated Ti3C2Tz flakes
into chitosan (CS) nanofibers by electrospinning and tested their antibacterial performance
against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) bacteria (Figure 5).
After 4 h of treatment, the CS nanofibers containing 0.75 wt % of MXene exhibited 95% and
62% reduction in colony-forming units on the E. coli and S. aureus, respectively. According
to the authors, the antibacterial property was attributed to the direct mechanical destruction
by MXene penetration through bacterial membranes. Wu et al. [129] prepared graphene
oxide (GO)/MXene-loaded 3-hydroxybutyrate-co-hydroxyvalerate (PHBV) fibers by elec-
trospinning. The antibacterial rate of the composite fibers was higher than 95% against both
E. coli and S. aureus. The antibacterial nature of the prepared composite fibers was mainly
attributed to the Mxene. Wang et al. [132] developed an antibacterial nanofiber membrane
composed of polyvinylidene fluoride/Bi4Ti3O12/Ti3C2Tx (PVDF/BTO/Ti3C2Tx) by an
electrostatic spinning process. The composite nanofibers showed excellent antibacterial ac-
tivity (higher than 99%) against E. coli and S. aureus. According to the authors, the excellent
antibacterial activity could be due to the combined effect of reactive oxygen species (ROS)
and hyperthermia induced by light irradiation.
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7.3. Wound Healing

In recent years, electrospun nanofiber membranes have been extensively investi-
gated for wound-healing applications. Electrospun nanofibers can be designed in two-
dimensional (2D) and three-dimensional (3D) configurations [137] which closely emulate
the tensile strength and elastic modulus of human skin [138,139]. Previous studies have
demonstrated that incorporating 2D nanosheets into electrospun nanofibers enhances the
mechanical properties of membranes and improves biocompatibility, which makes them
suitable for wound dressing and scaffold applications [140–143]. Many researchers have
investigated the significance of MXenes in wound dressing applications [144,145]. Among
many elements, titanium carbide (Ti2C2Tx) has been used mainly for wound healing due
to the antimicrobial and biocompatible nature of titanium [145]. However, the direct use
of MXene sheets in surgical incisions may create some problems. For example, MXene
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nanosheets may be shed, and direct contact with tissue could potentially result in MXene
nanosheets persisting in tissue that cannot be removed [128]. Loading MXene sheets into
nanofibers could be helpful to avoid direct contact between MXene nanosheets and tissue.
In this regard, Xu et al. [122] prepared amoxicillin and MXene-loaded PVA nanofiber mem-
brane as a biocompatible antibacterial and wound dressing material. The author studied
the antibacterial properties and in vitro and in vivo biocompatibility of the composite mem-
brane (Figure 6). This study showed that under the lower power density NIR irradiation,
MXene generated hyperthermia, which inhibited the bacterial growth and accelerated MAX
release. The authors reported up to 96.1% and 99.1% of bacterial inhibition rates in the case
of E. coli and S. aureus, respectively. The wound healing was tested on mice model and the
results showed that the nanofiber membrane was effective in enhancing the wound healing
rate upon laser irradiation. Diedkova et al. [130] prepared several layers of Ti3C2Tx MXene
immobilized polycaprolactone (PCL) nanofibers and studied their structural, chemical,
electrical, and biological properties. It was observed that the double and triple coatings
on PCL fibers showed good performance for attachment and proliferation with antibacte-
rial properties. The obtained results from this study demonstrated the potentiality of the
MXene–PCL nanofibers for tissue engineering.
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7.4. Drug Release

Achieving effective and fast wound healing is a great challenge. Recently, drug- or
biomolecule-incorporated nanofibers have been explored for rapid wound healing and
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other biomedical applications [79,101,146,147]. However, such nanofibers suffer from
the burst release of the active components and cannot be used for the longer term [79].
In this regard, Jin and coworkers [123] developed near-infrared (NIR) and temperature-
responsive MXene nanobelt fibers loaded with vitamin E with controlled release ability
and used them for wound healing applications. They prepared composite nanofibers
composed of polyacrilonitrile and polyvinypyrrolidone along with MXenes. Additionally,
a heat-sensitive layer P(AAm-co-AN-CO-Vim) copolymer (PAAV) was added to control the
release rate by temperature regulation. The developed nanofibers showed suitable wetting
and spreading effects, which allow easy contact with the surface of the skin to exert its
photothermal properties. According to the authors, when NIR light (1.0 W) was applied,
the temperature rapidly rose to 60 ◦C in 2 min. The highest temperature was recorded at
65 ◦C. The temperature-responsive fiber composite demonstrated good biocompatibility.
Most importantly, the MXenes helped in releasing the antibiotics, thereby enhancing the
antibacterial activity. The long-term release of vitamin E was achieved, which helped in
wound healing.

7.5. Wearable Electronics for Health Monitoring

The development of wearable electronics has become an established issue in the
healthcare system. Some of the exciting features of the MXenes such as large surface area,
electrical conductivity, excellent piezoresistive behavior, and solution processibility make
them suitable candidates for wearable sensing applications [125,148,149]. In order to obtain
high mechanical strength, MXene–polymer composites have been prepared and there
is still an ongoing need to obtain more sensitive and flexible pressure sensors [150,151].
Recently, Sharma et al. [121] prepared MXene (Ti3C2Tx)/poly(vinylidene fluoride triflu-
oro ethylene) (PVDF-TrFE) composite nanofibers sandwiched in between biocompatible
poly-(3,4-ethylenedioxythioiphene)polystyrene sulfonate/polydimethylsiloxane electrodes
and exploited them as a wearable capacitive pressure sensor. It was observed that the
sensitivity of the nanofiber-based sensor was enhanced by MXene loading. According to
the authors, the sensor can be used to determine the health condition of patients by in-
specting various physiological signals such as pulse rate, respiration, movement of muscle,
eye twitching, etc. Similarly, Leong et al. [125] prepared an MXene-based strain sensor
composite strain sensor by depositing Ti3C2Tx doped polypyrrole on flexible electrospun
PVDF nanofibers. Thus, prepared electrospun composite fibers provide a percolation for
conductive filler network formation, which is the key factor of excellent sensitivity. The
sensor can be adapted for real-time human motion detection. Cui et al. [127] demonstrated
a multifunctional and breathable MXene–Polyurethana mesh (MPM) e-skins for long-term
health monitoring. Embedding the MXene nanoplates into the PU nanomesh network
brought several outstanding features such as high breathability, good mechanical stability,
super sensitivity, and excellent durability. According to the authors, the synthesized MPM
can monitor multiple physiological signals such as pulse, respiration, voice recognition,
and joint movement. For example, when the MPM was used as electrocardiograph (ECG)
electrodes, the electrode–skin contact impedance, signal-to-noise ratio, and breathability
were recorded as 4.68 kΩ at 1 kHz, 16.5 dB, and 2.1338 kg/m2/day, respectively. Further-
more, the study showed that the as-designed e-skins can be continuously used for at least
seven days.

8. Conclusions

Recently, the incorporation of MXene into various polymeric nanofibers has been pre-
pared for various applications. This review discussed the synthesis of MXene–polymeric
nanofibers membranes by electrospinning technique and their biomedical applications.
The mechanical, physiological, and biological properties of the electrospun nanofiber mem-
branes are important characteristics for biomedical applications. Designing composite
nanofibers with MXene sheets further enhanced these properties, widening their applica-
tions in biomedical fields. The MXene–polymer nanofibers composite has shown promising
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candidacy in antibacterial, wound healing, cellular differentiation, bone tissue regeneration,
neural tissue guidance, and health monitoring systems. However, the toxic and corrosive
liquids used for the synthesis of MXene may bring undesirable impacts. In addition, it
is challenging to disperse MXene sheets into polymeric solution and prepare nanofibers
with well-distributed MXene sheets. It should be noted that most of the studies have used
titanium carbide as a filler material in polymer nanofibers, whereas the other MXenes are
yet to be explored in electrospinning systems for biomedical applications. The practical
applications are another issue. So far, there are very few reports on such nanofiber com-
posites, most of the studies are at the lab scales, and further investigations are needed for
the clinical applications. A comprehensive understanding of various MXenes and polymer
nanofiber forming by electrospinning is essential to address the above issues. Therefore,
further research works are needed to overcome the aforementioned problems.
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