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Abstract: Rolling bearings are crucial mechanical components in the mechanical industry. Timely
intervention and diagnosis of system faults are essential for reducing economic losses and ensuring
product productivity. To further enhance the exploration of unlabeled time-series data and conduct
a more comprehensive analysis of rolling bearing fault information, this paper proposes a fault
diagnosis technique for rolling bearings based on graph node-level fault information extracted from
1D vibration signals. In this technique, 10 categories of 1D vibration signals from rolling bearings
are sampled using a sliding window approach. The sampled data is then subjected to wavelet
packet decomposition (WPD), and the wavelet energy from the final layer of the four-level WPD
decomposition in each frequency band is used as the node feature. The weights of edges between
nodes are calculated using the Pearson correlation coefficient (PCC) to construct a node graph
that describes the feature information of rolling bearings under different health conditions. Data
augmentation of the node graph in the dataset is performed by randomly adding nodes and edges.
The graph convolutional neural network (GCN) is employed to encode the augmented node graph
representation, and deep graph contrastive learning (DGCL) is utilized for the pre-training and
classification of the node graph. Experimental results demonstrate that this method outperforms
contrastive learning-based fault diagnosis methods for rolling bearings and enables rapid fault
diagnosis, thus ensuring the normal operation of mechanical systems. The proposed WPDPCC-
DGCL method offers two advantages: (1) the flexibility of wavelet packet decomposition in handling
non-smooth vibration signals and combining it with the powerful multi-scale feature encoding
capability of GCN for richer characterization of fault information, and (2) the construction of graph
node-level fault samples to effectively capture underlying fault information. The experimental results
demonstrate the superiority of this method in rolling bearing fault diagnosis over contrastive learning-
based approaches, enabling fast and accurate fault diagnoses for rolling bearings and ensuring the
normal operation of mechanical systems.

Keywords: rolling bearing; fault diagnosis; wavelet packet decomposition; graph convolutional
neural network; deep graph contrastive learning

1. Introduction

With the rapid development of industrial production, the modern industry’s demand
for machinery equipment is developing towards high quality, high intelligence, and high
reliability. Rotating machinery is widely used in the chemical industry, mining, electric
power, aviation, and other fields. Rolling bearing is a key component in the field of rotating
machinery, and its failure will lead to serious economic losses and even casualties [1]. In
order to ensure a safe and reliable production cycle, improve the production efficiency of
enterprises, and provide effective intelligent diagnosis methods for the health status of rotor-
bearing systems, it has become a hot research topic all over the world in recent years. Deep
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learning (DL) was used for fault diagnosis because traditional machine learning cannot meet
the needs of contemporary industrial production. The fault diagnosis method based on DL
further improves the intelligence of rotating machinery fault diagnosis technology with its
powerful big data learning ability, nonlinear processing ability, and high generalization
ability [2]. In recent years, the deep-learning-based fault diagnosis model has been widely
studied and achieved excellent results [3–5].

In recent years, fault diagnosis methods based on DL have become a research hotspot
around the world. DL models such as deep belief network (DBN), convolutional neural
network (CNN), stacked auto-encoder (SAE), and generative adversarial neural network
(GAN) are the most representative. For example, Li et al. [6] used Gaussian elements to
construct Gaussian convolution DBN to realize the fault diagnosis of rotor-bearing systems
under time-varying speeds. In order to solve the problem of low fault diagnosis efficiency
under noise conditions, Xue et al. [7] improved CNN and proposed a new anti-noise CNN
for fault diagnosis under noise background. Liu et al. [8] constructed two deep SAEs to
extract features from the source domain and target domain of training data to solve the
fault diagnosis in the adaptive environment of the partial domain. Tong et al. [9] proposed
an auxiliary classifier GAN with spectral normalization for fault diagnosis with a small
and unbalanced sample size. Huang et al. [10] decomposed the discrete vibration signals of
gear boxes via wavelet packet, input the decomposed signal components into hierarchical
CNNs, and adaptively extracted multi-scale features to effectively classify faults.

Although fault diagnosis methods based on DL have achieved good results in recent
years [11], there are still some problems that seriously limit their application in practical
production [12]. DL is mainly divided into supervised and unsupervised learning [13]. For
supervised learning, obtaining a sufficient number of labeled fault samples is a challenging
task. Moreover, dealing with the uneven distribution of various sample types, limited
sample sizes, missing sample labels, and other issues related to data imbalance in fault data
pose additional challenges. Particularly when working with unlabeled data, it becomes
difficult to address these problems effectively using existing supervised intelligent fault
diagnosis methods. As a result, the performance of the models significantly deteriorates,
making it challenging to achieve high-precision intelligent fault diagnosis and monitoring
for mechanical systems. Consequently, training the network to achieve satisfactory accuracy
becomes increasingly difficult. Then, unsupervised learning can train the network to
achieve satisfactory accuracy under the condition of unlabeled samples [14]. Therefore,
self-supervised learning based on unlabeled data has received more and more attention and
research from scholars. Wang et al. [15] proposed a one-stage self-supervised momentum
contrastive learning model (OSSMCL) for open-set cross-domain fault diagnosis. The
method is based on momentum encoders of self-supervised contrastive learning to capture
distinguishable features between sample pairs and incorporates a one-stage framework
of the meta-learning paradigm through which OSSMLC can learn to identify new faults
with a small number of labeled samples in the target domain. Finally, the validity of
the proposed method is verified on the open-set fault diagnosis dataset. An et al. [16]
proposed a domain adaptation network (DACL) based on contrastive learning to realize
the purpose of bearing fault diagnosis across different working conditions, reduce the
probability of samples being classified near or on the boundaries of various types, and
improve diagnosis accuracy. The proposed method consists of a feature mining module
and an adversarial domain adaptation module. In the feature mining module, the one-
dimensional convolutional neural network (1-D CNN) was used to extract the features
of the original vibration signal. The adversarial domain adaptation module aims to learn
domain-shared discriminative features for aligning marginal distributions. At the same
time, a contrast estimation term is designed to quantify the similarity of data distribution,
increase the distance between samples of different health states, reduce the probability of
samples close to the boundary, and improve diagnostic performance. Finally, an adaptive
factor was introduced to measure the relative importance of the method’s transfer ability
and discrimination ability. The effectiveness of the proposed method is demonstrated in
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various fault diagnosis scenarios with domain differences between the source and target
domains using experimental data from two bearing systems. Wang et al. [17] proposed
a self-supervised contrastive learning framework based on nearest neighbor matching
(SCLNNM) to solve the problem of limited labeled samples, which seriously affects the
performance of fault diagnosis. The method proposed in this paper is used to learn
discriminative feature representations from large-scale unlabeled data sets and then realize
fault diagnosis. Since the collected mechanical 1D signals are different from 2D images,
in addition to designing reasonable data augmentation combinations to generate similar
real instances of 1D sequences, the proposed scheme also finds the nearest neighbors
in the support set as positive instances of the input signals to increase the diversity of
representations. In this framework, the 1D CNN model combined with contrastive learning
aims to learn a robust generic representation from different augmented signals. Based on
this, limited labeled data is finally used to investigate what kind of feature representation is
appropriate and to train a simple classifier for fault diagnosis. The collected engine data set
of an operating ship shows that the proposed framework can effectively extract valuable
feature information and improve the classification accuracy under the limited labeled
data set. Aiming at the problem of serious performance degradation of deep-learning
fault diagnosis models caused by imbalanced data sets, Zhang et al. [18] proposed a new
feature learning-based method named class-sensitive supervised contrastive learning (CA-
SupCon). Supervised contrastive learning (Sup Con) is used for the first time in imbalanced
fault diagnosis, which uses class information to optimize the feature differences between
any two classes. In addition, a class-sensitive sampler (CA) is designed to rebalance the data
distribution within each mini-batch during training, which improves Sup Con’s ability to
expand the feature distance between any two minority fault states. By effectively integrating
SupCon and CA, the proposed CA-SUPCON framework can obtain a more discriminative
feature space with better intra-class compactness and inter-class separability and achieves
good performance in the above class imbalance scenario. Extensive experiments on two
open-source datasets demonstrate the effectiveness of the proposed method.

For rolling bearing, obtaining complete labeled data for single and compound faults
is a very difficult and costly task, and how to solve the above problem from unlabeled
data obtained from experiments or production has become a new topic in bearing-rotor
system fault diagnosis [19]. GCL is a self-supervised learning algorithm for graph data,
which aims to train a graph encoder on a given large amount of unlabeled graph data to
obtain the feature representation vector of the graph [20]. The general process is similar
to traditional CL, with the advantage of data augmentation of graph signals and contrast
hierarchy enhancement [21]. The above advantages have been verified in the work of the
literature [22–25]. The main work of this paper is as follows:

(1) We explored the distribution of wavelet energy in different frequency bands at the
last level of wavelet packet decomposition for the original signal. Based on this, the
Pearson correlation coefficient was introduced to calculate the correlation between
wavelet energy in different frequency bands. Subsequently, a node graph construction
method was proposed, where each frequency band served as a node, and the wavelet
energy in the frequency band served as the node feature. The Pearson correlation
coefficient was used as the edge weight between nodes, resulting in the construction
of an undirected node graph to represent the information of the original signal.

(2) In consideration of the graph structure attributes of the node graph, the impact of node
and edge deletion or addition on the graph structure and information was analyzed.
Eventually, a method was proposed to use node and edge addition during the data
augmentation phase. In the two augmentation steps, one involved computing the
mean of the existing node features as the feature of the newly added node, while
the other involved calculating the variance as the feature of the newly added node.
The Pearson correlation coefficient was used to determine the relationship between
the newly added node and the existing nodes, serving as the weight for the newly
added edges.
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(3) During the encoding process with graph convolutional neural networks, the weights
of edges were utilized as the adjacency matrix, providing a more accurate representa-
tion of the relationships between the central node and its neighboring nodes.

(4) We analyzed the comprehensive performance of the proposed method using the
vibration signal dataset from the bearing driving end of Western Reserve University.
Experimental results demonstrate that WPDPCC-DGCL exhibits superior data pro-
cessing capability and achieves better fault diagnosis of rolling bearings compared to
contrastive learning (CL).

The remainder of this article is arranged as follows: the second section mainly intro-
duces the proposed WPDPCC-DGCL method, the third section verifies the feasibility of
the proposed method using the bearing data of Western Reserve University, and the fourth
section summarizes the main achievements made in this paper.

2. Proposed Method

The proposed WPDPCC-DGCL method in this paper first performs sliding window
sampling on the collected 1D vibration signal data, followed by four-level WPD processing
of the sampled window values. Each frequency band in the last layer of decomposition
is considered a node, and the energy values on each frequency band are used as node
features to construct the node graph, which performs two data augmentation on the node
graph to obtain G1 and G2, uses the feature vector Q and adjacency matrix ∂ij of the sample
graph after data augmentation as the input of the GCN, and uses the GCN to the coded
representation, which is used to obtain a more complete feature vector y. The new feature
vectors zi and zj are obtained by mapping y to a low-dimensional space by connecting MLP
after GCN, training the pre-training model based on DGCL, and using the weight values
extracted from the features in pre-training as the initial values for feature extraction in the
classification model.

2.1. WPDPCC Construct Node Graphs
2.1.1. Vibration Signal WPD Stage

WPD is a modern time–frequency analysis that could effectively process all kinds of
non-stationary random signals. In the past, it was common to use WPD simply as a tool
for feature extraction [26,27]. However, it is worth noting that the proposed method is
an improvement upon wavelet decomposition. It decomposes both the high-frequency
and low-frequency components of the signal, resulting in a finer and more comprehensive
decomposition than traditional wavelet transform. This approach effectively captures
the full-frequency characteristics of the signal. The feature vectors obtained from this
decomposition can adaptively select frequency bands with time–frequency localization
characteristics, enabling improved time–frequency resolution of the signal. Consequently,
WPD demonstrates a strong capability in processing nonstationary signals [28].

At this stage, the original signal can be decomposed into low frequency and high
frequency using WPD, and the original discrete vibration signal U0,0 can be decomposed
into its signal morphology in different frequency bands v WPD. Taking three-layer WPD as
an example, its structure is shown in Figure 1.
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Ui,j represents the decomposed signal corresponding to the j-th node of the i-th layer
(scale number). Decomposed signals calculated at different decomposition layers can be
calculated layer by layer in (1) and (2) as follows:

Ui+1,2j(n) = ∑k g(k− 2n)Ui,j(k) (1)

Ui+1,2j+1(n) = ∑k g(k− 2n)Ui,j(k) (2)

where k is the discrete-time series, n is the time shifting factor, g(k) is low-pass filter
coefficient, and h(k) is high-pass filter coefficient. When the node number j is even, it
represents the low-frequency component signal obtained via low-pass filtering coefficient
g(k) decomposition; when j is odd, it represents the high-frequency component signal
obtained via high-pass filtering coefficient h(k) decomposition.

High-pass and low-pass filtering coefficients need to satisfy the orthogonal relationship
was computed in (3) as follows:

g(k) = (−1)kh(1− k) (3)

The original signal is decomposed using WPD into signal components at different
feature scales (frequency bands), which is equivalent to passing the original signal through a
series of filters with different center frequencies but the same bandwidth [29]. It is assumed
that X is the original signal collected by the sensor, and X is continuously sampled by
a non-overlapping sliding window with a length of 1024 data points to obtain multiple
continuous signal segments as

{
X1, X2, X3, . . . Xn, . . .

}
. Then, WPD is carried out on the

signal Xn to extract the feature vectors of signal components under different feature scales
in the last layer of signal Xn. According to the needs of node graph construction, In the last
layer, the wavelet energy [30] of each frequency band after WPD is used to form the feature
vector for each node qi in (4).

qi = [Ei] (4)

where i denotes the sequence of frequency band, Ei is the wavelet energy that qi denotes
the feature of the i-th frequency band of the original signal at the last layer. Wavelet energy
could be calculated in (5).

E(j, i) = ∑k∈Z[ps(n, j, k)]2 (5)

where E(j, i) denotes the energy value of the ith node on the decomposition layer j; ps(n, j, k)
is the wavelet packet coefficient. In practice, the energy of each node is often normalized to
take the percentage of the energy of each node. So, the characteristics of the original signal
can be expressed in (6).

Q = [q0, q1, q2, . . . , q15]
T (6)

Compared with feature extraction directly from the original signal, WPD can extract
features from the signal components of different frequency bands more efficiently. By
considering the features of each frequency band as node features, Q can be regarded as a
feature vector of a node graph.

According to the processing of the original signal, the 10 types of fault signals are
decomposed into four layers with db6 as the wavelet basis function, and the wavelet energy
diagram on each type of fault node is shown in Figure 2. Analysis of the wavelet energy
diagram shows that the second node has the highest energy under normal conditions, the
seventh node has the highest energy under an inner ring fault, the eighth node has the
highest energy under an outer ring fault, and the ninth node has the highest energy under
a rolling body fault.
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2.1.2. Constructing Node Graph Stage

Graph data are capable of effectively representing the correlation between data ob-
jects [31]. Hence, in this stage, the process of modeling the feature vector for each signal
component after WPD decomposition is introduced using an undirected weighted graph.
The graph data is composed of a group of nodes and edges, and the overall representation
of the graph is constructed by constructing the relationship between nodes and edges.
PCC [32] is used to calculate the weight between the feature vectors of each signal compo-
nent and construct edges, and WPDPCC method proposed in this paper is used to construct
node graph, which has two obvious advantages: firstly, the sample graph can represent the
feature vector of each signal component as a whole from a global perspective; secondly, the
weights between nodes are utilized to denote the relationships between the feature vectors.
PCC is used to measure the magnitude of the linear correlation between two variables, X
and Y, and its value is between −1 and 1. For the value of PCC between two nodes, it is
calculated in (7), (8), and (9) as follows:

X =
∑n

i=1 Xi

n
, Y =

∑n
i=1 Yi

n
(7)

Cov(X, Y) =
∑n

i=1
(
Xi − X

)(
Yi −Y

)
n− 1

(8)

rXY =
Cov(X, Y)

SXSY
(9)

where rXY denotes the value of the sample PCC, Cov(X, Y) denotes the sample covariance,
SX denotes the sample standard deviation of node X, and similarly, SY denotes the sample
standard deviation of node Y, which computed in (10) and (11) as follows:

SX =

√
∑n

i=1
(
Xi − X

)2

n− 1
(10)

SY =

√
∑n

i=1
(
Yi −Y

)2

n− 1
(11)

Therefore, the matrix consisting of Pearson correlation coefficients between nodes in
each fault sample diagram in (12) is expressed as follows:

ρ =

r00 · · · r15
...

. . .
...

r15 · · · r15

 (12)

The graph data can be generally expressed as G = {V, E}, where V denotes the set of
nodes, and E is the set of edges, and the signal components of wavelet coefficient are treated
as nodes, and all nodes in the third layer constitute the vertex set V of G. The relationship
between each node is determined via PCC, and if it is correlated, it means that there is an
edge relationship between two nodes, and the value of PCC is saved on the graph as the
weight of the edge, and if it is not correlated, it means that there is no edge relationship
between two nodes. The process of constructing a sample graph from the vertices and
PCCs in the absolute V is as follows:

1. Considering the feature vector Qi of each frequency band as a vertex Vi of a nodal graph;
2. Calculating the PCC between two vertices and using the value of PCC as the weight

of the edge between the two nodes;
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3. Constructing the adjacency matrix ∂ij of the sample graph g, which represents the
relationship of the edges between each vertex, where ∂ij is a symmetric matrix, and
take the lower triangle for convenience of subsequent calculations.

According to the above process, the constructed sample diagram can be put in Figure 3.
The study of using WPDPCC to construct sample diagrams in rotor-bearing system fault
diagnosis is detailed in Section 3 of this paper.
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2.2. DGCL Pre-Training Model
2.2.1. Data Augmentation Stage

Data augmentation is a common means of data processing in the field of machine learn-
ing, generally by cropping, rotating, and other operations on images to produce enhanced
data. However, such methods are poor at processing node graph data, as illustrated in
paper [33], which argues that traditional geometric transformations for data augmentation
are not universally applicable to graph structures. Therefore, for different categories of
graph structures, it is necessary to explore specific data augmentation methods tailored
to graph structures. Consequently, the authors propose four general data augmentation
methods for graph structures, namely node dropping, edge perturbation, attribute masking,
and subgraph. On the other hand, data augmentation is a prerequisite for DGCL and is
considered the process of transforming and generating new data via reasonable transfor-
mations. It aims to retain the information of the original data to some extent and achieve
the purpose of enhancing the robustness of the dataset.

According to the characteristics of node graph, this paper employs the augmentation
technique of adding edges and nodes to enhance the node graph data. The criteria for
adding nodes were based on the mean and variance of node features within the node graph.
In the first augmentation step, we added one node with the mean, serving as the node
feature. Subsequently, in the second step, we added another node with the variance as the
node feature. To establish connections between the newly added nodes and existing nodes,
we utilized the PCC as a measure so that the input image G produces two different node
graphs G1 and G2 with positive sample pairs.

2.2.2. Node Graph Feature Learning Stage

In this stage, the constructed sample graph is encoded using graph attention networks
to represent the graph [34]. GCN mainly employs message passing and aggregation
mechanisms for node graph feature extraction, and aggregation methods are used to
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average the information of neighboring nodes. Specifically, GCN is divided into spectral-
domain GCN and spatial-domain GCN. The spectral-domain GCN maps the nodes to
the frequency-domain space through the Fourier transform (used to connect the null and
frequency domains), achieves convolution in the time domain through convolution on
the frequency domain, and finally maps the features back to the null domain. When the
Fourier change is not available, the spectral domain GCN will also fail. In addition, the
spectral domain GCN cannot make the graph structure change during training, i.e., it
cannot remove nodes and edges, so it cannot satisfy the data enhancement during DGCL
pre-training. In contrast, the spatial domain GCN redefines convolution on the graph by
passing the spectral graph theoretical convolution and can directly define the convolution
operation on the space and perform convolutional feature extraction based on nodes and
neighbors directly [35].

According to the fault sample graphs constructed in the previous stage, each sample
graph has 8 nodes, and the feature vector of each node is qi = [Ei]. Then, the dimension of
the feature vector Q of each graph is 16 × 1, and the dimension of the adjacency matrix ∂ij
between each node is 16 × 16. q and ∂ij are the inputs of the GCN model.

For each graph, the propagation between each layer in the GCN in (13) is calculated
as follows:

Q(l+1) = σ
(

D̃−
1
2 ÃD̃−

1
2 Q(l)W(l)

)
(13)

where σ is the nonlinear activation function ReLU, Q is the eigenvector matrix of each
graph in each layer, W(l) is the trainable parameter matrix of the convolution transform of
the current layer, and D̃ is the degree matrix of Ã computed in (14) as follows:

D̃ = ∑ Ãij (14)

where Ã = A + I, I is the unit matrix, the node itself is considered, and in order to consider
the phenomenon that the feature vectors are continuously summed up when aggregating
the features of the neighboring nodes of a node, which leads to a larger feature of the node
with more neighboring nodes, symmetric normalization is used in this paper. Constructing
a two-layer GCN with ReLU and Softmax as activation functions, the forward propagation
formula of the GCN can be expressed in (15) as follows:

y = f (Q, A) = so f tmax
(

ÃReLU
(

ÃQW(0)
)

W(1)
)

(15)

Therefore, the input feature vector matrix Q can be obtained as the new feature vector
matrix y after the propagation of the above two-layer GCN, and it is used as the input of
the DGCL pre-training model.

2.2.3. Projection Head Stage

This stage focuses on setting the mapping layer network structure g(·) after the GCN
network model to map the GCN-encoded feature vectors to the low-dimensional space to
obtain the low-dimensional feature vectors for the calculation of the contrast loss function.
Here, a three layers multilayer perceptron (MLP) is chosen and normalized after each linear
layer. So, the output y of the previous stage is characterized to obtain zi and zj can be
expressed in (16) as follows:

zi = g(y) = W(2)σ
(

W(1)y
)

(16)

where σ is the ReLU nonlinear activation function.

2.2.4. Contrast Loss Function

The N images obtained by random sampling at this stage are used as a training batch,
and according to the above process, it is known that each sample in each batch will undergo
two data enhancements and produce 2N data points, and the remaining 2(N − 1) samples
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after a given positive sample pair are used as negative samples. A contrast loss function li,j
is defined to achieve a consistent type maximization of positive sample pairs compared
with negative samples, and, here, the normalized temperature scale cross-entropy loss is
utilized [36]. Therefore, the contrast loss function can be defined in (17) as follows:

li,j = −log
exp(sim(zi, zi)/τ)

∑2N
k=1 F[k 6=i]exp(sim(zi, zk)/τ)

(17)

This loss function has been widely used in sub-supervised learning research in recent
years. F[k 6=i] ∈ {0, 1}, the value of this indicator, is 1 when k 6= i, τ is the temperature
coefficient, τ = 0.1 in this paper, and the cross loss is calculated between all positive samples
in a training batch. sim(zi, zi) refers to the cosine similarity, which is calculated in (18)
as follows:

sim(zi, zi) =
zi

Tzj

‖zi‖‖zj‖
(18)

Finally, all losses in n batches are calculated via Equation (17) and the average value is
taken to obtain the final loss L computed in (19) as follows:

L =
1

2N ∑2N
k=1[l(2k− 1, 2k) + l(2k, 2k− 1)] (19)

2.2.5. Fault Diagnosis Procedure

The flow of the proposed rolling bearing fault diagnosis method based on WPDPCC-
DGCL is depicted in Figure 4. The fault diagnosis process consists of two steps. The
first step is the training phase, where the objective is to obtain a well-trained model. The
second step is the testing phase, which involves classifying the fault node graph using the
DGCL model.
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3. Case Study

In this section, we evaluate the proposed WPDPCC-DGCL method using vibration
signals from the shaft end of the Case Western Reserve University (CWRU) bearing dataset
and bearing data from the University of Paderborn in Germany as the raw data.
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3.1. The Performance on the CWRU Dataset
3.1.1. Data Sources

The vibration signal dataset used in this paper is the bearing failure benchmark dataset
published by the CWRU Data Center [37]. The test stand used to collect the bearing defect
detection signal is shown in Figure 5, which consists of a 1.5 W motor, torque sensor
decoder, and a power test meter. A damage of 0.007–0.040 inches in diameter was caused
via EDM at the rolling element, inner ring, and outer ring locations of the bearing, and
was mounted at the drive end and fan end of the test stand, respectively, with the bearing
model numbers SKF6205 and SKF6203 at the two locations, and vibration signals were
recorded for loads ranging from 0 to 3 hp (motor speed of 1797-1720 RPM).
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3.1.2. Parameter Setting

The data used in this paper is the model SKF6205 with the following properties, as
shown in Table 1: the motor speed of 1772 rpm; load for 1 horsepower; sampling frequency
of 12 Khz drive end of the vibration signal generated, respectively; in the bearing failure
diameter of 0.007 inches, 0.014 inches, and 0.021 inches, respectively; selected bearing
rolling body; inner ring, outer ring (selected 6 o’clock direction of the fault) vibration
signals; a total of 9 types of vibration signals with faults, in addition to a class of normal
vibration signals; a total of 10 types of vibration signals constitute the data set.

Table 1. Bearing failure classification and failure information.

Category File Name Failure Location Size (Inch)

0 97.mat normal 0
1 106.mat inner race 0.007
2 131.mat out race 0.007
3 119.mat ball 0.014
4 170.mat inner race 0.014
5 198.mat out race 0.014
6 186.mat ball 0.021
7 210.mat inner race 0.021
8 235.mat out race 0.021
9 223.mat ball 0.021

In the original dataset, there are 112,571 data points in each class of the vibration signal
of the fault. In this paper, we use the sliding window sampling method to make 1024 data
points in each class of the vibration signal into one sample, and 600 samples are collected in
each class, so the dataset contains a total of 6000 samples. The labeled data set is randomly
divided equally into a training set and a test set, and the training set and the unlabelled
data set are used to form a new training set for training the DGCL pre-training model.
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Finally, 30 samples from each class of the test set were selected as the validation set, and
the remaining 30 samples were used as the test set. A total of 30, 50, 70, and 90 node graphs
were selected from each class of the pre-trained model and the previous test set to form a
new test set BR-30, BR-50, BR-70, and BR-90, respectively.

3.1.3. Results and Analysis

The original node graph and the node graphs obtained after two rounds of data
augmentation are used as positive sample pairs, and the rest of the node graphs are used
as negative samples for pre-training the DGCL model, the parameters of the pre-trained
model are shown in Table 2.

Table 2. Pre-training parameters for CWRU bearing dataset.

Epoch In Channels Hidden Channels Out Channels Batch Size

150 1 32 10 32

The optimal parameters of the model are saved during the pre-train, which obtains
satisfactory results and the loss function of the training as Figure 6.
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Figure 6. The change in pre-training contrastive loss function with 150 epochs.

By averaging the results of five replicate experiments of the three methods, Table 3
shows that when there are 90 node graphs per category in the training set, the test accuracy
of each category in the test set reaches 98.65%, and the confusion matrix is shown in
Figure 7. Compared with the other three methods, the test accuracy of this method has
improved by 9.29%. When the training set in the test set had only 30 node graphs per
category, the dataset classification results obtained with WPDPCC-DGCLL also had a test
accuracy class of 80.69%, which was much higher than the other methods. It can be seen
that the advantage of the method is more obvious when the sample size is larger.

Table 3. Classification results of three methods for CWRU bearing dataset under different sample sizes.

Method BR-30 BR-50 BR-70 BR-90

WPDPCC-GCN 62.30% 65.23% 71.51% 79.65%
WPDPCC-CL 71.35% 74.50% 79.68% 89.36%

WPDPCC-DGCL 80.69% 84.72% 92.31% 98.65%
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3.2. The Performance on the Paderborn University Dataset
3.2.1. Data Sources

The German Paderborn University Bearing Dataset provides a collection of experi-
mental bearing data for condition monitoring based on vibration and motor current signals.
The test rig is a modular system capable of generating the necessary measurement data
for analyzing the corresponding features and damage characteristics obtained from motor
current signals. The basic components of the test rig include a drive motor (permanent
magnet synchronous motor) acting as a sensor, a torque measurement shaft, a test module,
and a load motor. The test stand used to collect the bearing defect detection signal is shown
in Figure 8.
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The dataset includes artificially induced and real damages. Vibration signals from the
bearing housing are collected using piezoelectric accelerometers, with a sampling frequency
of 64 kHz. The operating conditions are varied by changing the rotational speed of the
drive system, applying radial forces on the bearing, and adjusting the load torque on the
drive system during the sampling process. In the dataset, high-resolution vibration data
was collected from six healthy bearings and 26 sets of faulty bearings. Among the 26 sets
of faulty bearings, 12 were artificially damaged, and 14 were subjected to accelerated life
testing to simulate real damage. We selected vibration data from three healthy bearings
and six bearings that were damaged using accelerated life testing. Among these six faulty
bearings, half had inner race faults, and the other half had outer race faults. The accelerated
life testing for the bearings used in this study was conducted at a rotational speed of
1500 RPM, a torque load of 0.7 Nm, and a radial force of 1000 N. Experiments with three
healthy bearings and a different time of operation were performed as reference states, as
shown in Table 4. The details of each of the six faulty bearings considered in the diagnosis
problem, as shown in Table 5.
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Table 4. Operating parameter of healthy (undamaged) bearings during run-in period.

Bearing Code Run-in Period [h] Radial Load [N] Speed [min−1 ]

K001 >50 1000–3000 1500–2000
K002 19 3000 2900
K004 5 3000 3000

Table 5. Test bearings with real damages caused by accelerated lifetime tests.

Bearing Code Bearing Name Damage Class Combination Arrangement Damage
Extent

Characteristic
of Damage

KA04 OR1 fatigue:
pitting OR S no repetition 1 single point

KA16 OR3 fatigue:
pitting OR R random 2 single point

KA22 OR4 fatigue:
pitting OR S no repetition 1 single point

KI04 IR1 fatigue:
pitting IR M no repetition 1 single point

KI14 IR2 fatigue:
pitting IR M no repetition 1 single point

KI16 IR3 fatigue:
pitting IR S no repetition 3 single point

Note: IR—Inner Race Defect; OR—Outer Race Defect; S—Single Damage; R—Repetitive Damage; M—Multiple
Damage.

3.2.2. Data Preparation

To ensure an adequate sample size, we performed sliding window sampling on the
vibration signals in the X direction for each state. The window size was set to 2048, with
100 samples per file and a step size of 118. Since each state had 20 sets of X-directional
data, the number of samples per state was 100 ∗ 20 = 2000. Therefore, the total number
of samples in the entire dataset was 2000 ∗ 9 = 18,000. We used the WPD-PCC method
to construct 18,000 node graphs based on the sliding window samples. The dataset was
then divided into a training set (14,400 samples), test set (1800 samples), and validation
set (1800 samples) in an 8:1:1 ratio. In the training set, all node graphs do not have any
class labels assigned to them. However, in the test set, each node graph is associated with
a specific class label. From the test set, 100, 250, 400, and 500 node graphs are selected
without their corresponding class labels. These node graphs, along with the training set,
will constitute the training set for pre-training the model. These subsets of the test set
are defined as BR100, BR250, BR400, and BR500, respectively. These node graphs that are
included in the pre-training process will still be used in the downstream classification task.

3.2.3. Classification Results

The original node graph and the node graph after data enhancement are used as
positive sample pairs, and the rest of the node graphs are used as negative samples for
pre-training the DGCL model, the parameters of the pre-trained model are shown in Table 6.

Table 6. Pre-training parameters for German Paderborn University Bearing Dataset.

Epoch In Channels Hidden Channels Out Channels Batch Size

150 1 64 32 64

Through five replicate experiments and averaging the results of three methods, Table 7
shows that the test accuracy reached 97.88% when the training set contained 500 node
graphs for each category in the test set. Compared to the other two methods, this method
achieved an 8.45% improvement in accuracy. When the training set contained 100 node
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maps for each category in the test set, the dataset obtained using the WPDPCC-DGCLL
method also achieved a test accuracy of 75.63%, significantly higher than the other methods.
It can be observed that this method has a more pronounced advantage with larger sample
sizes. The confusion matrix when the test set is BR500 is shown in Figure 9.

Table 7. Classification results of three methods for German Paderborn University Bearing Dataset
under different sample sizes.

Method BR-100 BR-250 BR-400 BR-500

WPDPCC-GCN 61.25% 65.19% 70.96% 78.75%
WPDPCC-CL 70.29% 75.32% 80.58% 89.43%

WPDPCC-DGCL 75.63% 83.49% 91.84% 97.88%
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4. Conclusions

In this paper, we propose a fault diagnosis method for rolling bearings based on
WPDPCC-DGCL, which focuses on extracting signal component information of different
frequency bands from the unlabeled data of rolling bearing time series. The main con-
tribution of the method is to propose the WPDPCC method of constructing node graphs
to build the dataset and pre-training it on the DGCL model, to combine the advantages
of node graphs with data enhancement by randomly removing nodes and edges, which
provides a more complete information representation of graph data in space compared
to the one-dimensional time-domain data, and to explore the application of the DGCL
method in downstream tasks in the fault diagnosis domain. The results show that the
self-supervised pre-training model is effective compared to the traditional method knot in
the case of large amounts of unlabeled data. However, there are several issues that need to
be addressed as follows:

(1) High requirements for pre-processing of the original signal and the need for compre-
hensive analysis in conjunction with the characteristics of the original signal in the
construction of a high-quality node graph;

(2) The long training time of the DCCL method due to the large amount of data and the
repetition of positive and negative samples during the training process;

(3) The generalization capability of the model needs to be improved, and the mode of
data set processing needs to be modified in the future.
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In order to better solve the above problems, in the future, the research on fault diagno-
sis based on DGCL can be improved from the perspective of data acquisition, the method
of constructing node graphs and data augmentation, and the specific analysis is as follows:

(1) Considering the spatial layout of sensors in the initial stage, data preprocessing is
used to decompose the 1D time series data at different spatial locations, and the results
of 1D signal decomposition are concatenated on the spatial layout according to the
location of sensors to achieve the multi-dimensional representation of the signal;

(2) Keeping up exploring the signal decomposition methods, such as wavelet packet
decomposition, empirical mode decomposition, and other methods in the application
of 1D signal decomposition, extracting more accurate and complete feature vectors as
node features, and determining the weight relationship between nodes by measuring
the distribution similarity and distance of node features in space to provide a feasible
theoretical method for constructing high-quality node graphs;

(3) The experimental verification of data enhancement methods of deleting nodes or adding
nodes is improved to ensure the interpretability and feasibility of data enhancement.
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