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Abstract: Healthcare technology has allowed individuals to monitor and track various physiological
and biological parameters. With the growing trend of the use of the internet of things and big data,
wearable biosensors have shown great potential in gaining access to the human body, and providing
additional functionality to analyze physiological and biochemical information, which has led to a
better personalized and more efficient healthcare. In this review, we summarize the biomarkers in
interstitial fluid, introduce and explain the extraction methods for interstitial fluid, and discuss the
application of epidermal wearable biosensors for the continuous monitoring of markers in clinical
biology. In addition, the current needs, development prospects and challenges are briefly discussed.

Keywords: interstitial fluid; epidermis; wearable biosensor; chronic disease

1. Introduction

Nowadays, with the growth of the world’s population and the prolongation of life
spans, chronic diseases have become a significant and long-lasting trend. According to the
report from the World Health Organization (WHO) in 2018, four major chronic diseases
(cancer, cardiovascular diseases, chronic respiratory diseases and diabetes) account for 71%
of all human deaths globally every year. The convenient, rapid and accurate monitoring of
critical disease biomarkers will become crucial for chronic diseases diagnoses, treatment
and health care.

Wearable biosensors are smart, miniaturized devices that have proven high perfor-
mance in the real-time analysis of various parameters and in extracting and monitoring
physiological and biochemical signal features. They can provide crucial information re-
garding the real-time situation of the wearer, and will become an attractive and competitive
choice due to their significant properties of low cost, portability and sensitivity for moni-
toring chronic diseases. Unlike the clinical standard for patient health tracking, which is
based on extracting blood through invasive and uncomfortable techniques at discrete times,
wearable biosensors can detect and monitor biomarkers and therapeutic drugs from bodily
fluids (interstitial fluid (ISF), sweat, saliva and tears) in a noninvasive/minimally invasive
and continuous manner [1–4].

Wearable biosensors have been extensively explored for the monitoring of ISF, sweat,
saliva and tear biomarkers. Saliva is an attractive body fluid because it is composed of
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a rich matrix of constituents (e.g., drugs, hormones, metabolites or antibodies), secreted
in a continuous manner, and because it can be easily sampled [5,6]. However, wearable
biosensors in the buccal cavity (e.g., a biosensor integrated in a mouthguard) are confronted
with many challenges; a sensor with a highly sensitive, specific and stable performance is
needed due to the extremely low concentrations of biomarkers and high concentrations
of interferential protein (mucins and proteolytic enzymes), contamination (by external
factors from food, drink, etc.) and a high-moisture environment [1,7–10] as well as the
requirement for wearable saliva biosensors to undergo further human clinical trials to
confirm reliability [1,6]. Tears contains more than 20 different species (e.g., electrolytes,
proteins, metabolites, trace metals) and various metabolites exhibit a close correlation
between their concentrations in tears and blood (e.g., glucose) [1,5,10]. Contact lenses
used for vision correction and cosmetic reasons touch the cornea in a noninvasive manner,
holding great potential to serve as an ideal sensor platform for the real-time and continuous
monitoring of tear biomarkers [9,11]. However, tear-based biosensors primarily focus on
glucose monitoring, and none of them have been successfully reported in long-term clinical
trials in the human eye [11]. Epidermal wearable biosensors represent an exciting area of
research in the field of wearable technology for chronic disease monitoring [12] and have
been widely used in various parts of the body (e.g., the arm, forehead, chest and back)
for sweat and ISF biomarkers monitoring [3,12]. They are manufactured on a variety of
substrates (textiles [13], wristbands [14], smart bandages [15], temporary tattoos [16], etc.)
and are convenient and comfortable to wear [3,12]. Although sweat contains important
biomarkers (e.g., ions, proteins, metabolites, drugs), the analyte concentration in sweat is
highly different from that in the blood, and the protein content in sweat is usually more
than 1000 times lower than that in the ISF and the blood [12]. A deep understanding of
the correlations between sweat analytes and health status is extremely important for the
development of sweat biosensors [1,12].

ISF is a biological extracellular fluid, formed by transcapillary exchange/infiltration
during blood flow and the transport of nutrients and wastes among cells, blood and
lymphatic capillaries [3,17,18]. It is present in most of the dermis, and is also around the
salivary glands and sweat glands [8]. ISF contains important biomarkers, such as ions
(e.g., Na+, K+, Ca+ and Cl−), small molecules (e.g., glucose, lactate, uric acid, peptides
and ammonia) and proteins. Compared to other biofluids (sweat, saliva and tear), ISF
has several advantages for wearable biosensing [3,19–22]. Firstly, the composition and
temporal profiles of ISF are close to blood analysis; secondly, there is a much lesser dilution
of biomarkers in the ISF; and thirdly, ISF is free of blood cells and other clotting factors.
All of these characteristics make ISF a potentially useful biological matrix for long-term
use and the simple and continuous monitoring of biomarkers with more stability and
reliability in sensor dynamics, which is extremely important for chronic disease diagnosis
and management.

In this review, we introduced the composition and characteristics of ISF and the pre-
clinically explored ISF biomarkers of chronic disease. Then, we explained the ISF extraction
and analysis methods. Moreover, the application of epidermal wearable biosensors in the
continuous monitoring of preclinical biomarkers was investigated, and related develop-
ments were introduced and discussed. Finally, the challenges and development potential of
epidermal wearable biosensors for the continuous monitoring of clinical biomarkers were
summarized.

2. ISF Characteristics

Sweat, tears and saliva have been extensively studied as potential sources of bodily
fluids for biosensing (Table 1). Moreover, a significant focus on developing wearable
subcutaneous devices has been increasing in the last several decades to create devices
that can monitor ISF located beneath the epidermal layer. Although the composition and
source of ISF in the skin are difficult to determine, its diagnostic potential comes from
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its relatively easy access, and the analytes in it correlate well with gold-standard blood
sampling [3,4,23,24].

Table 1. Epidermal wearable biosensor-based biofluids biomarkers analysis in clinical and preclinical
applications.

Chronic
Disease Biomarkers

Biofluids

Characteristics ISF Sweat Tear Saliva Serum

Cystic Fibrosis Cl−
Con. 1 (mM) 96–106 [17,25] 10–90

[26]
120–135

[27]
6–35
[28]

96–106 [25]

WP. 2 Epidermal
patch [29]

Epidermal
sticker [30]

Contact lens
[31]

– –

Diabetes
Glucose

Con. (mM) 4–6.66 [8] 0.02–0.6
[32,33]

0.05–0.5 [32,34] 0.03–0.08
[35,36]

4.44–6.66 [8]

WP. Epidermal
patch [37]

Epidermal
patch [38]

Contact lens
[39]

Mouthguard
sensor

[40]

–

Insulin
Con. – – – 22–28 4

78–114 5

pM [41]

2.6–31.1
µU/mL

[42]
WP. Epidermal

MNA patch
[21]

– – – –

Sepsis Lactate
Con. (mM) 1–2 [17] 5–40 [5] 1–5 [27] 0.11 ± 0.02 [43] 0.5–1 [8]

WP. Epidermal
MNA patch

[44]

Bandage [45] Wireless
sensing system

[46]

– –

Gout Uric acid
Con. (µM) – 30–80 [47] 0.03–0.42 [48] 10–30 [49] 100–500 [50,51]

WP. Epidermal
MNA patch

[52]

Epidermal
patch [53]

Contact lens
[54]

Mouthguard
sensor [55]

–

Breast cancer ErbB2 3 Con. (ng/mL) – – – 0.5–44.7
[56]

2–15
[57]

WP. Epidermal
MNA patch

[58]

– – – –

Preeclampsia Estrogen Con. (nM) – – – Positive
[59]

31.5–44.6 [60]

WP. Epidermal
MNA patch

[61]

– – – –

Neurodegeneration H2O2
Con. (µM) – – <200 – 1–5

[62]
WP. Epidermal

MNA patch
[63]

Epidermal
patch [64]

– – –

Anxiety Cortisol
Con. (nM) 24.6–39.2

[65]
0.66–7.73

[66]
2.76–110

[67]
7.7–14.0

[65]
2.76–8.28

[68]
WP. In vitro

immunosensor
[65]

Epidermal
patch [69,70]

Contact lens
[67]

– –

Mood, Stress Serotonin
Con. (nM) – – 3.4–21.5

[71]
7175–9804

[72]
30–170
[73,74]

WP. Epidermal
MNA patch

[21]

– – – –

1 Con.: Concentration of healthy individuals. 2 WP.: Wearable Platform. 3 ErbB2: epidermal growth factor receptor
2. 4 Fasting salivary insulin level. 5 Swallowed meal.

Consequently, as ISF contains important ions such as Na+, K+ and Cl− as well as
metabolites like glucose and lactate, and plays major roles in organ regulation and home-
ostasis, miniaturized wearable devices that can be used for the real-time sensing of ISF are



Micromachines 2023, 14, 1452 4 of 24

already available and commercialized, such as Abbott’s FreeStyle Libre and Medtronics’
iPro Evaluation system, which are used to monitor glucose levels in diabetic patients [75].

In living skin tissues, skin cells are surrounded by ISF [17], and the small and un-
charged molecules (e.g., cortisol) directly diffuse from the capillary endothelium into ISF
and maintain the diffusion balance between ISF and blood vessels [24]. On the other hand,
large and charged analytes (e.g., proteins, glucose) mainly traverse directly through the
space between cells, or transport through vesicles (as shown in Figure 1) [3,8]. There is a
much lesser dilution of biomarkers in the ISF. This feature leads to the correlation between
the concentration of many biomarkers in blood and ISF, such as electrolytes (Na+, Mg2+,
Ca2+, K+ and phosphate, etc.), metabolites (glucose, lactic acid, cortisol, etc.), protein, etc.
(as shown in Figure 1) [23,24,65,76]. Studies have found that the average concentration
of Na+ in blood is 141.2 mM, and the average concentration of Na+ in ISF is 135.7 mM;
the average concentration of K+ in blood is 4.37 mM, and the average concentration of
K+ in ISF is 3.97 mM [23]. Similarly, for glucose, lactate, etc., there are also a lot of data
showing that the concentrations in blood and ISF are almost the same. However, for cortisol,
penicillin, morphine and other drugs with short half-lives, the correlation is weak. Studies
have shown that the total blood concentration of cortisol is between 80 and 500 nM with
day and night changes, but its concentration in ISF is 5–50 nM [68]. After the injection of
penicillin G into sheep, the blood/ISF concentration ratio was 53 mg/kg, and after 2 h, it
had not reduced to similar levels [77,78]. For higher-molecular-weight analytes (such as
proteins and lipids), the ISF/blood concentration ratio has an antilog relationship with the
molecular weight [79], so conversion factors are required in the application.
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Research on wearable health monitoring initially concentrated on the needs of physical
sensing. This led to the creation of portable physical sensors, which are electronic devices
that integrate sensors into or with the human body to access, monitor, calculate and
analyze biophysical signals such as heart rate, skin temperature, respiration rate and
brain activity. These devices can take many forms, including tattoos, gloves, clothing and
implants [75,83]. Recently, advances in printed electronics and materials have allowed
flexible sensors to be even smaller and worn as skin patches [84]. These biosensors are also
able to detect changes in pH levels, glucose and ions in the human body [19,85–87]. In
addition, wearable biosensors can offer direct information on specific disease biomarkers
and metabolite changes in bodily fluids to provide a continuous, real-time monitoring
of various physiological parameters to improve the accuracy of diagnosis and disease
recording [5,58,61,88].

At present, the applications of wearable biosensors in ISF are mostly focused on:
glucose [6,10,86], cortisol [65,89], urea [5,90,91] and lactic acid [19,20,87,92,93]. Of course,
the study of other biomarkers is also of great significance. It can be extended to the
areas of the evaluation of a series of protein disease markers [21], hormones [61] and
stress markers [94], and it may also provide new insights into circadian rhythms and
disease trajectories by evaluating the dynamic concentration fluctuations of the biomark-
ers in different scenarios [22]. As research on ISF wearable biosensors delves deeper,
researchers have also discovered some drawbacks. When the lymphatic system continues
to clear the ISF, the liquid pressure is negative relative to the atmospheric pressure, about
500–1000 N·m−1, and this negative pressure would complicate sample extraction [95]. It
is also uncertain whether ISF samples can be reliably extracted through needles or skin
perforations without changing the analyte concentration. In addition, when using wearable
biosensors to analyze epidermal ISF, since most of the dermis is acellular and its metabolism
is slow, there is an ISF hysteresis phenomenon in the exchange process between blood and
ISF in the dermis [8]. Therefore, during continuous monitoring, a corresponding design is
needed to minimize the equipment delay to increase the credibility of the results.

3. ISF Extraction Methods

ISF filtration has been documented since the 1980s when Starling discovered the
exchange of metabolites and electrolytes between blood plasma and the interstitial com-
partment through the endothelial cell wall. In recent years, ISF analysis has been applied to
detect metabolites and a variety of biomarker diseases, such as cancer [58,96] and chronic
kidney disease (CKD) [5,97]. Wearable biosensors have sparked a great interest for accessing
ISF in a non-invasive, non-contaminated and efficient manner [98–100].

The Wick method was one of the first methods used for ISF extraction; the concept is to
insert an absorbent wicking nylon material of 0.1 mm into the skin, saturate it with ISF, and
pull it out for analysis [24,101]. Although this technique shows an adequate equilibration
with ISF [24], it is slow, invasive and provokes an inflammatory reaction in the insertion
site [101].

Another technique that is applied to harvest the ISF is the suction blister fluid method,
which realizes a high extraction efficiency. First, micropores are generated within pretreated
skin, either via ultrasound, laser or other techniques, and then the ISF is collected in a
vacuum by applying a negative pressure to the skin [24,79,80]. Thus, a high degree of tissue
damage is incurred, affecting the concentrations of the analytes, especially large-molecule
analytes.

The microdialysis method requires inserting a small microdialysis catheter into the
skin [102–106]. The catheter has a semi-permeable membrane that allows small analytes
(e.g., glucose, ions) and proteins (e.g., albumin) to exchange with the liquid in the probe,
which can then be extracted and sensed [107–112]. This method is based on a passive
diffusion process. More recently, many studies have focused on improvements in the
wearability of this platform, but the MD method takes a long time to sample, increases
the hysteresis of the ISF and the equipment is large in size and can cause long-term skin
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irritation. These shortcomings make the method less viable for wearable biosensing than
other minimally invasive indwelling sensors [24,75,113].

In order to carry out real-time continuous monitoring, advanced methods are required
for ISF collection and sampling. Reverse iontophoresis (RI) can be used for the non-invasive
extraction of ISF from the body and for performing in situ real-time detection (as shown in
Figure 2) [20,114,115]. There is another very attractive method, microneedle arrays (MNAs),
which mini-invasively destroys the skin and forms a short fluid path (about 500 µm) (as
shown in Figure 3); the analyte diffuses from the ISF to the adjacent stereo sensor for
detection [3,4,98,116–119]. In addition, an indwelling method that resides in the tissue can
also be used by being mini-invasively implanted and immersed in the ISF for detection
(as shown in Figure 4). Of course, the method of extracting ISF is not limited to these
techniques; some other unique methods are also under development [120].
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Figure 2. Reverse iontophoresis for ISF extraction. (A) Schematic showing a transdermal extraction
of glucose based on RI with a screen-printed glucose biosensor (reprinted with permission from [115],
copyright 2023, Elsevier). (B) A skin-worn electrochemical biosensor for the noninvasive monitoring
of glucose in the ISF (reprinted with permission from [37], copyright 2021, American Chemical
Society). (C) Concept of a non-invasive, wearable ISF lactate monitoring patch (reprinted with
permission from [20], copyright 2023, Elsevier).

3.1. Reverse Iontophoresis

Normally, the skin surface is negatively charged but tissue fluid is mainly constructed
of Na+ and Cl− ions. The concept of the RI method for ISF extraction uses electric potential
between the anode and cathode; sodium ions migrate toward the cathode and generate the
electric current, as a consequence, and chloride ions migrate toward the anode [4,24,121].
The voltage applied across the skin induces an electroosmotic flow of ISF from the anode
to cathode, forming a moving sheath of sodium ions through the paracellular route [24]
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and leading to the electroosmosis of the neutral molecules’ (e.g., glucose) transmission
(as shown in Figure 2A,B) [37,115]. Then, the neutral molecules can be collected at the
cathode and directly measured with a traditional sensor placed at the cathode (as shown in
Figure 2B) [37]. Anionic molecules (e.g., lactate) will flow toward the anode, and can then be
collected and quantified with a biosensor located at the anode (as shown in Figure 2C) [20].
The RI method leads to the molecules’ movement out of the skin with no harm, invasiveness
or blood contact [1,122,123].

The main driving force for RI-based biosensors is related to glucose monitoring (as
shown in Table 2) [37,115,124–126]. GlucoWatch biographer (Cygnus, Inc., Redwood City,
CA, USA) was the first commercial non-invasive glucose sensor platform approved by the
U.S. Food and Drug Administration in 2001 [127–129]. It has shown great potential and a
high ability to control and measure glucose concentration continuously and frequently [128].
Garg et al. [129] compared and confirmed the correlation between GlucoWatch biographer
glucose values and capillary blood glucose values obtained by the HemoCue analyzer in
the clinical setting and the One Touch Profile meter in the home setting. Unfortunately,
the device was withdrawn in 2007 due to reported skin irritations and reproducibility
issues [123,130]. However, the RI-based ISF extraction concept stayed on and the research
on improved RI techniques for glucose sensing has expanded. Kim et al. developed a
cellulose/β-cyclodextrin (β-CD) electrospun immobilized glucose oxidase enzyme patch
for the noninvasive monitoring of ISF glucose levels, and high-accuracy RI was carried out
by applying a mild current with two skin-worn electrodes to noninvasively uptake glucose
from ISF [124]. Yao et al. demonstrated a two-electrode non-invasive ISF glucose sensor
for stability and the continuous monitoring of glucose levels, and the extraction of ISF
through the RI process and the detection of glucose concentration through an amperometric
approach was conducted with the same two electrodes [125]. Xu et al. developed a
conductive hydrogel-based electrochemical biosensor incorporated with RI via the in vivo
noninvasive and continuous monitoring of ISF glucose, which showed a good correlation
with the finger-stick blood test using a glucometer [126].

In addition, RI has been used for monitoring a multitude of biomarkers other than
glucose (e.g., lactate) (as shown in Table 2). Lactate is a byproduct of anerobic glycolysis
and is an important biomarker for determining oxidative stress levels, muscle health and
tissue hypoxia [20]. Due to its anionic nature at physiological pH, extracting lactate from
ISF via RI relied on a high current density and a longer RI time (~hours) [131,132]. Such
an extended current application might lead to damage to the skin surface. De la Paz et al.
developed a flexible, skin-worn device that integrates an RI system and an amperometric
lactate biosensor placed on the anodic electrode for simultaneous ISF lactate extraction and
quantification, respectively. Using this integrated device, rapid lactate collection from the
ISF can be realized after 10 min of RI with no evidence of discomfort or irritation to the
skin [20].

The RI has also been a useful technique for the non-invasive monitoring of amino
acids [133], cortisol [89] and other biomolecules in the body that are collected. It can also
be used to extract small analytes (urea [90], phenylalanine [134], valproate [135], etc.) for
the continuous monitoring of human health, as well as for drug monitoring. Moreover, the
movement of molecules from the dermis to the epidermis is affected by many factors, such
as the diffusion of molecules, the fat and moisture content of the skin and the physiological
pH [20,130]. Since the diameter of the follicular channel is the largest, it has the least
resistance and is the preferred channel for molecules [130], and so, the liquid collected by
this method is filtered ISF, not pure ISF. Lipani et al. [114] developed a graphene glucose-
monitoring platform based on path selection (hair follicle, intercellular or transcellular
pathway); the platform is composed of graphene sensors and hydrogel reservoirs and the
ISF is drawn into it by electroosmosis, which improves the consistency of analyte extraction
by RI.
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3.2. Microneedle Arrays

The development of new transdermal ISF extraction methods has attracted widespread
attention. MNAs are the miniaturization of conventional hypodermic needles, and their
height is about several hundred micrometers [3,98,136]. They are inserted into the dermis,
applying pressure adjacent to the microneedles (MNs) (as shown in Figure 3) [24,137]. They
were originally used for transdermal drug delivery [138], and they were first developed
by Prausnitz et al. to study the transdermal permeation of drugs and vaccines and the
movement of molecules across the stratum corneum [139]. Because of their extremely small
size, they can avoid stimulating dermal nerves or destroying dermal blood vessels to reach
the ISF [116,137,140,141].

In the past decade, many studies have focused on achieving the continuous clin-
ical monitoring of disease-related biomarkers (such as glucose, lactic acid, glutamate,
etc.) [142–144], and also therapeutic drug monitoring to measure the concentration of
administered medications and analyze their metabolic characteristics in order to guide
drugs’ administration and doses and to apply pharmacokinetic principles for efficient
therapy [22,88,145,146]. There are many types of MNAs that have been developed, such as
dissolvable, coated, hollow, solid and porous MNs [17,61,86,140,147–149].

Various materials are now used to prepare MNs with different shapes, sizes, morpho-
logical characteristics and densities [141,150–152], which are used to manufacture MNAs
and applied to the extraction and analysis of human ISF. The MNAs devices, which are
made for ISF analysis are mainly based on hollow and solid MNs, and they are fabricated
from either silicon, metal, hydrogel or polymer (as shown in Figure 3 and Table 2).

Ultimately, every kind of MN absorbs ISF in different ways, with hydrogel MN
swelling to allow diffusion [21] and hollow MNs aspirating ISF under capillary action [86].
The choice of MN material is crucial for the ISF extraction volume and rate, with GelMA
MN, sponge-forming poly(vinyl acetal) MN and cross-linked GelMA MNs being among
the materials used [140]. Researchers have also used external forces to extract ISF faster,
which can be by preparing an MN patch combined with the reverse iontophoresis method
to provide electroosmotic force [141]. Various techniques have been implemented for
enhancing ISF collection following MN penetration, such as attaching filter paper or
ultrafine MNs to the MN’s base. Despite progress in increasing the ISF extraction volume
and decreasing the extraction time, transferring the extracted ISF to another analytical
instrument still takes time, and sample stability may be insufficient [145].

In recent studies, Singamaneni et al. demonstrated that MNAs can be used to selec-
tively capture biomarkers on the skin surface, and an on-needle immunoassay can measure
the captured biomarkers with high sensitivity using plasmonic-fluor, which is a bright
fluorescent nanostructure that enhances the detection limit of protein biomarkers [153,154].
Overall, MNAs optimized selectivity and sensitivity for the detection and quantification of
protein biomarkers. MNAs have the characteristics to solve most of the problems faced
by current methods and are the most promising method, combined with processing tech-
nologies for ISF extraction and continuous monitoring sensors, with integrated monitoring
and delivery functions used for fluid collection, and physical parameters and biomarkers’
diagnostic and cosmetic therapies and medication analysis [116,145]. MNAs can also be
attached to a 3D printed device that has a tilted angle to allow the penetration of MNs at an
oblique angle, which increases the surface area of contact and improves ISF extraction [155].
This method was confirmed to extract a larger volume of ISF compared to traditional
microneedle devices and to be more consistent for the reproducible extraction of ISF.

For the extraction of ISF using the MNAs method, the main challenges in design-
ing MNAs are the biocompatibility and avoiding the fragility of MNs. It is understood
that, in order to overcome these problems, various types of materials and methods have
been tested to provide suitable mechanical strength and maintain the good biocompati-
bility of MNAs, for example, a combination method which uses solid-state MNAs to coat
nanomaterials [156].
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Figure 3. Microneedle arrays for ISF extraction. (A) Schematic illustration of stainless steel MNs
(ssMNs) surfaces precoated with ZnO nanowires (NWs) and poly(vinyl pyrrolidone) (PVP) for the
protecting and electrochemical sensing of subcutaneous H2O2 (reprinted with permission from [147],
copyright 2019, American Chemical Society). (B) Schematic illustration of hollow MN-based continu-
ous glucose-monitoring (CGM) device for transdermal ISF glucose detection, inserted SEM image is
the hollow MN (reprinted with permission from [144], copyright 2023, American Chemical Society).
(C) Stainless steel MNA-based touch-actuated glucose sensor: skin penetration using solid MNAs
to create microchannels in the skin, then glucose extraction using RI from pierced skin; inserted
SEM image is an MN (reprinted with permission from [137], copyright 2022, Elsevier). (D) SEM
image of Si–MNA and optical image of the Au–Si–MNA electrode used for the electrochemical
immunosensor of breast cancer biomarker detection (reprinted with permission from [58], copyright
2021, Elsevier). (E) SEM image of polyester MNA and optical image of the stretchable MNA-based
biosensing platform for the real-time wireless monitoring of sodium levels in ISF (reprinted with per-
mission from [157], copyright 2022, John Wiley and Sons). (F) Hyaluronic acid hydrogel-based MNA
tattoo for the simultaneous colorimetric detection of four biomarkers (i.e., pH, uric acid, glucose and
temperature) in vivo and the SEM image of the MNA (reprinted with permission from [85], copyright
2021, John Wiley and Sons). (G) Schematic images of the swellable methacrylated hyaluronic acid
hydrogel MN for levodopa sensing-based Parkinson management, and its swelling behavior in the in
the gelatin phantom in 3 min (reprinted with permission from [22], copyright 2023, Elsevier).

3.3. Indwelling ISF Sensors

Indwelling ISF sensors are much simpler than those that need to extract ISF (as shown
in Figure 4A), and some indwelling sensors have been approved by the market [158]. For
example, a FreeStyle Libre Flash glucose-monitoring system was created by Abbott, which
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has a three-electrode system integrated into a large needle that was inserted using a spring-
loaded inserter. This small sensor can be worn on the back of the upper arm (as shown
in Figure 4B), soaked in ISF about 5 mm below the skin surface and continuously detect
glucose in ISF for 14 days, and the glucose reading can be obtained using an electronic
device with near-field communication. The device provides current glucose levels and
an 8 h trend graph without needing external calibration with finger-prick blood glucose
detection [159]. The results show that there is consistency between the sensor readings of
the system and the venous reference values, which proves the accuracy of the FreeStyle
Libre Flash glucose-monitoring system [160], laying the foundation for the indwelling ISF
sensing system to be used in the field of health monitoring. The FreeStyle Libre system
was approved in Europe in 2014, and in the United States (US) for professional use in
2016 and for personal use in 2017 [161]. It is a powerful and successful technique for the
continuous and long-term monitoring of substances in a variety of tissues. It allows long-
term continuous sampling as well as the manipulation of local metabolism with minimal
tissue damage [162].

The FreeStyle Libre system and other commercial systems (as discussed In “Section 4.
ISF Sensing Platform for Continuous Monitoring”) are based on a needle-type sensor for
subcutaneous ISF extraction and glucose detection [151]. Other researchers have also
developed implantable sensors for long-range continuous glucose monitoring (as shown in
Figure 4A) [163], for example, Hassan et al. developed a fully passive miniaturized circuit
composed of an inductor–capacitor tank resonator with a volume of 16 mm3; this circuit
can be implanted under the human skin, where the ISF surrounds the inductor–capacitor
tank resonator, and the variations in glucose concentration can be monitored [164]. Jin et al.
presented a continuous glucose-monitoring platform consisting of a signal conditioning
part, a programmable electrochemical chip and a wireless connection using Bluetooth low
energy with a smartphone (as shown in Figure 4C) [165]. There is a reliable correlation
between the ISF level and the blood glucose level; and thus, implantable biosensors for
the continuous monitoring of ISF glucose (as shown in Table 2) are considered to be the
next-generation products to replace traditional glucose meters [151,163,165,166].
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Table 2. Summary of ISF extraction methods.

ISF Extraction
Methods Parameters/Related materials Lasted Time Detected

Biomarkers Reference

RI Current density = 0.4 mA/cm2 10 min Lactate [126]

Current density = 0.3 mA/cm2 5 min Glucose [115]

Potential = −3 V 10 min Glucose [126]

Current density = 2 mA/cm2

Potential = 2~5 V
5 min Glucose [125]

Current density = 0.27 mA/cm2 3 min Glucose [37]

Current density = 0.5 mA/cm2 5 min Glucose [114]

Current density = 0.3 mA/cm2 15 min Glucose, Lactate [131]

MNAs Hydrogel MNA (MeHA 1)

• Conic shape
• Height: 600 µm
• Base diameter: 400 µm
• Center-to-center distance: 600 µm

3 min Levodopa, Dopamine [22]

Hydrogel MNA (MeHA 1)

• Height: 850 µm
• The base of each needle away from its

neighbor: less than 250 µm
5 min Glucose, uric acid,

insulin, serotonin [21]

Metal MN

• 24-gauge hollow MN
• Height: 2 mm

2.7 min Glucose [144]

Metal MNA

• Height: 1200 µm
• Base diameter: 480 µm
• Center-to-center distance: 1500 µm

10 min Glucose, Na+, K+ [146]

Polymer MNA coated with gold

• Square-based pyramid
• Height: 1000 µm
• Base width: 500 × 500 µm
• The base of each needle away from its

neighbor: 500 µm

30–40 min Lactate [143]

Silicon MNA

• Height: 250 µm
• Base diameter: 50 µm
• Center-to-center distance: 110 µm

60 min ErbB2 2 [58]

Indwelling ISF
sensors

Implanted electromagnetic sensor

• Rectangular outer ring: 11.6 × 14.6 mm
• Square inner ring: 11 × 11 mm
• Polyamide substrate: 12 mm × 15 mm

Continuous Glucose [168]

Implanted circuit

• Inductor–capacitor tank resonator: 16 mm3 Continuous Glucose [164]

Implanted electrochemical biosensor

• Flexible electrode components
• Enzyme sensing layer
• Polyurethane outer layer
• Miniaturized printed circuit board

Continuous for
30 days Glucose [165]

1 MeHA: Methacrylated hyaluronic acid. 2 ErbB2: Epidermal growth factor receptor 2.
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4. ISF Sensing Platform for Continuous Monitoring

For many years, ISF has been used for the non-invasive diagnosis of metabolic disor-
ders and the evaluation of treatment effects and organ failure [169]. As far as the wearable
epidermal biosensor being developed is concerned, people’s efforts have mainly been
focused on the continuous monitoring of biomarkers such as glucose and cortisol [170],
because these biomarkers are the most common in clinical applications and the study of
their correlation with blood is relatively mature.

Wearable biosensors were first used for the monitoring of physical parameters such
as temperature, calories and heartbeat [171]. The industry and market witnessed a huge
rise in this wearable technology, and the most representative example is the GlucoWatch
sensor [172]. This device uses RI to extract ISF for continuous blood glucose monitoring.
It has been approved for commercial applications, but due to reported skin irritations
and reproducibility issues [123,130], the device was finally withdrawn. Afterward, new
products continued to emerge, including products such as Google glasses, Apple watches,
Xiaomi bands, wristwatches, chest patches, and other smart clothing items that were
developed by various companies for monitoring the wearer’s health. Recently, these
products have been developed to become smarter, more miniaturized and able to be worn as
skin patches to monitor lactate, glucose, tyrosinase, cancer-related enzymes and antibodies
like anti-SARS-CoV-2 IgM/IgG antibodies. Furthermore, their monitoring abilities include
blood pressure (iHealth), activity and sleep (iHealth, Fitbit, Apple, and Garmin), pulse
oximeter (iHealth and Nonin Medical), cardiovascular health (Hexoskin, Zephyr strap,
MC10 BioStamp) and glucose (GlucoWatch G2 Biographer, GlucoTrack, Abbott Freestyle
Libre 2, Johnson and Johnson, Roche, and Dexcom G5 and G6) [151,171,173,174]. Early
CGM sensors required frequent calibration, but newer models like Dexcom G6® and Abbott
FreeStyle Libre no longer require calibration, enabling “zero-finger pricking” glucose
monitoring. While initially classified as aids in detecting hypo- and hyperglycemic episodes,
Dexcom G5® received FDA approval in 2016 to replace the self-monitoring of blood glucose
(SMBG), and Dexcom G6 and Abbott FreeStyle Libre can now also serve this purpose. In
2018, the FDA introduced a new classification called an integrated CGM system, placing it
in the moderate-risk class II category. This regulatory change reduces the burden for iCGM
devices, allowing them to transmit glucose-monitoring data to digitally connected devices
for managing diabetes, raising their commercialization applications [175].

Subcutaneous implantable CGM devices are also interestingly useful and have been
commercialized. There are seven FDA-approved and commercially available implantable
glucose sensors with six of them utilizing electrochemical enzymatic sensing [176]. And
one new system called Eversense, based on non-enzymatic fluorescent methods, was also
approved by the U.S. Food and Drug Administration (FDA) on 6 June 2019, and has been
available in the European Union and European Economic Area since May 2016 [4]. These
devices are easier to use and use advanced communication functions to connect sensors to
portable smart devices for glucose concentration tracking. However, this type of sensor has
problems, such as a short life and difficult sensor calibration. Generally, these subcutaneous
devices need to be replaced every 3–7 days and recalibrated every 12 h [177].

Transdermal biosensors, especially the ones which are based on the RI extraction
method, are more convenient because of their flexibility and pain-free characteristics [115].
Cheng et al. [137] combined the RI system with MNA and electrochemical glucose detection
to prepare a wearable biosensor, which has a higher selectivity and a more accurate analysis
results. Chen et al. [178] used a flexible biocompatible paper battery to design a wearable
ISF biosensor with a combination of ETC (electrochemical twin channels) and RI. Human
clinical trials were also carried out. Continuous measurements were carried out on human
subjects within one day. The results showed a good correlation between ISF and blood
glucose levels, which opened up a new perspective for clinically non-invasive continuous
blood glucose monitoring.

MD has also been proven to continuously measure the glucose concentration in the
ISF in a self-monitoring glucose sensor, and it has a good correlation with blood glucose
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levels [179]. However, the MD method has a long lag time, and the probe is prone to
scaling or degradation when used for continuous monitoring. The MN method avoids
the problem of the molecular weight limitation of the MD method, and combines it with
microprocessing technology, making it easier to integrate with the sensing component, so it
is more suitable for continuous monitoring [180]. The typical application of the MN method
in ISF sensing is in the glucose sensor designed by Zimmermann et al. [181] to extract ISF by
capillary force, but it fails to continuously extract ISF for continuous monitoring. Recently,
Coffey et al. [182] used biometric probes to modify the surface of the MNs, which increased
the selectivity for the target protein and proved to be applicable to accumulate and detect
low-concentration analytes over a longer period of time [183]. Pu et al. [184] proposed a
wearable flexible electrochemical sensor with three electrodes on a PDMS microfluidic chip,
which could be used for the extraction, collection and detection of ISF, so as to achieve
continuous glucose monitoring. The device uses inkjet printing to modify graphene on
the surface of the working electrode and gold nanoparticles on the graphene layer to
achieve a high-sensitivity and low-concentration glucose detection, with a detection limit
of 0.3 mg/dL, which has the potential for the clinical detection of hypoglycemia.

More recently, tattoo ink has also been used for optical biosensing in ISF. The tattoo ink
contains biosensors to detect specific analytes such as glucose and lactate. It is then injected
into the skin using standard tattooing techniques, to detect specific biomolecules. The
technique has shown many advantages over traditional biosensors, including long-term
stability, improved sensitivity, and the ability to detect multiple analytes simultaneously. In
addition, ink biosensors can also be read using standard optical imaging techniques, which
makes them accessible and easy to use [185].

It can be seen that the continuous monitoring of biomarkers based on ISF has great
development prospects, but continuous skin irritation is a problem that still needs to be
improved. In addition to that, the hysteresis effect in the sensing process will increase the
inaccuracy of the results. Therefore, it is necessary to solve the current limitations in order
to better develop the potential of ISF wearable biosensors.

5. Clinical and Preclinical Applications

GlucoWatch [172], a glucose-sensing device, is the most typical application of epider-
mal wearable biosensors in ISF. Although it was eventually eliminated by the market, it
laid a deep foundation for ISF sensors. Yuen et al. [186] functionally modified the silver
film on the surface of the nanosphere with a self-assembled monolayer film and implanted
it under the skin of rats to monitor the glucose concentration in the ISF continuously and
in real-time. This led us to believe in the potential of wearable biosensors using ISF as
samples. Freckmann [187] and Mian et al. [170] outlined the current available continu-
ous glucose-monitoring equipment, which could monitor the glucose level in the ISF of
patients with glucose disease for 6–14 consecutive days in clinical settings. Bruttomesso
et al. [188] also investigated the clinical application of real-time ISF glucose monitoring and
intermittent ISF glucose monitoring, and the results showed that people strongly believe
that monitoring methods can reduce the risk of hypoglycemia and improve treatment
satisfaction, and that they are superior to the self-monitoring of blood glucose through
finger pricks.

In recent years, the health detection of ISF sensors in other biomarkers has been
gradually emerging. Arya et al. [189] used an electrochemical impedance method to detect
cortisol in ISF using bifidobacteria modified with interdigital microelectrodes; Parrilla
et al. [149] modified the solid MNs with different coatings, and designed an epidermal
patch for the continuous monitoring of the K+ concentration changes in ISF. Important
progress has been made in research into the intradermal analysis of electrolyte balance-
related examples, which can be applied to clinical disease analysis. Similarly, Bollella
et al. [92] reported an MN-based biosensor for the minimally invasive and continuous
monitoring of lactic acid in ISF, and developed a wearable biosensor based on a painless
MNA on this basis to simultaneously continuously monitor lactic acid and glucose in
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ISF [44]. These results all demonstrate the potential of new biosensors based on MNAs
in sports medicine and clinical nursing applications. Moreover, Parrilla et al. [86] used
a hollow microneedle sensing patch that can be attached to the skin. The microneedle
patch has an electrode inside that can detect glucose levels in the interstitial fluid directly
below the skin surface. The device is able to detect low glucose concentration (Table 3),
and it is designed to be worn for long periods, making it suitable for continuous glucose
monitoring. Recent advances in micro- and nanofabrication technologies have taken part in
the development of more biosensors with transdermal sensing platforms for the real-time
monitoring of ISF analytes, including pH levels in the ISF of tissues and organs. Dervisevic
et al. [18] described a microneedle array-based sensor that can be attached to the skin to
monitor pH levels in ISF. The sensor is made up of a polymer microneedle array that is
coated with a pH-sensitive hydrogel. The hydrogel changes color in response to changes
in pH, and the color change is detected using a smartphone camera. Monitoring multiple
biomarkers in ISF has become a novel feature for wearable biosensors; a microneedle
array was first integrated with sensing elements to measure multiple biomarkers. The
microneedles are made of a biocompatible polymer and are coated with sensing elements
that can detect specific biomarkers in the ISF, such as glucose, lactate and pH level [190].

Table 3. Epidermal wearable biosensor-based ISF biomarker analysis in clinical and preclinical
applications.

Bio-
Markers

Related
Disease

ISF
Extraction
Strategies

Related
Materials

Sensing
Techniques

Detection
Range

Detection
Limit Application Reference

Glucose Diabetes

RI Ag-G/CNTs 1 textile Electrochemical 0–0.1 mM
1–30 mM 0.06 µM Preclinical [125]

RI
PVA/BTCA/β-

CD/GOx/AuNPs NF 2

hydrogels
Electrochemical 0–0.5 mM 0.01 mM Preclinical [191]

MNA Au-MWCNTs/pMB 3 Electrochemical 0.05–5 mM 7 µM Preclinical [44]
MNA Ag/AgCl Electrochemical 2.5–22.5 mM – Preclinical [86]
MNA Photopolymer Colorimetric 0–10 mM – Preclinical [192]
MNA Au/Pt-black/Nf Electrochemical 1–30 mM 22 µM Preclinical [193]
MD AuNPs/Ag/AgCl Electrochemical 0–9 mM 0.08 mM Preclinical [194]
RI Ag/AgCl Electrochemical 0–22 mM – Preclinical [37]

MNA PEGDA 4 Colorimetric 0–12 mM – Preclinical [195]

Insulin Diabetes MNA MeHA 5
Aptamer-

based
assay

0.1–3 nM 1.3 µM Preclinical [21]

Serotonin

Mood, sleep,
digestion,

wound
healing,

bone health,
blood

clotting

MNA MeHA
Aptamer-

based
assay

0.5–4 µM 0.1 µM Preclinical [21]

Ketone
bodies

Diabetic
ketoacidosis

MNA – Electrochemical 1–10 mM 50 µM Preclinical [148]
MNA – Electrochemical 0.1–2.4 mM – Preclinical [196]

pH

Acute
respiratory

distress,
peripheral

artery
disease, etc.

MNA OrmoComp®

(Polymer)
Electrochemical 4.0–8.6 – Preclinical [18]

MNA PEGDA Colorimetric 7.0–10.0 − Preclinical [195]

Lactate
Sepsis,

malaria,
dengue

MNA Au-MWCNTs/pMB Electrochemical 10–100 µM 3 µM Preclinical [44]
MNA Poly(carbonate) Electrochemical 0–30 mM − Preclinical [143]

RI Ag Electrochemical 0–5 mM 0.15 mM Preclinical [20]

Uric acid Gout
MNA Poly(vinyl alcohol) Colorimetric 200–1000 µM 65 µM Preclinical [52]
MNA Hyaluronic acid Colorimetric − − Preclinical [85]

ErbB2 Breast cancer MNA Silicon Electrochemical 10–250 ng/mL 4.8 ng/mL Preclinical [58]
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Table 3. Cont.

Bio-
Markers

Related
Disease

ISF
Extraction
Strategies

Related
Materials

Sensing
Techniques

Detection
Range

Detection
Limit Application Reference

Estrogen Preeclampsia MNA Aluminum Immunoassay 0.5–1000 ng
mL−1

50 pg
mL−1 Preclinical [61]

Glycine

Multiple
physiologi-

cal
functions

MNA Stainless steel Electrochemical 25–600 µM 7.9 µM Preclinical [197]

Levodopa Parkinson
management

MNA MeHA Electrochemical 10 nM–10 µM 100 nM Preclinical [22]
MNA Carbonpaste Electrochemical 0.25–3 µM 0.25 µM Preclinical [88]

H2O2

Senescence,
neurodegen-

eration,
cancer

MNA Steel Electrochemical 0–6 mM 0.1 mM Preclinical [63]

1 Ag-G/CNTs, Ag deposited graphene (G) and carbon nanotubes. 2 PVA/BTCA/β-CD/GOx/AuNPs
NF, poly(vinyl alcohol)/1,2,3,4-butanetetracarboxylic acid/β-cyclodextrin/glucose oxidase/gold nanoparti-
cles nanofibers. 3 Au-MWCNTs/pMB, Au-multiwalled carbon nanotubes/polymethylene blue. 4 PEGDA,
poly(ethylene glycol) diacrylate. 5 MeHA, methacrylated hyaluronic acid.

6. Summary and Prospect

Over the last decade, epidermal wearable biosensors have shown great potential to
revolutionize the solutions and methods of managing healthcare by providing a wealth of
data and insights for the continuous, real-time monitoring of physiological and biological
parameters such as heart rate, blood pressure and blood glucose levels. This can be useful
in various medical settings, where early detection and intervention can be critical. With
the growth of technology trends and big data, these sensors are designed to be flexible,
minimally invasive, comfortable to the skin and capable of wireless communication with
other devices, including smartwatches, phones and tablets for displaying, post-analyzing
and reporting to an encrypted server for the development of telemedicine protocols [11].

Epidermal wearable biosensors are likely to become even more advanced and sophisti-
cated, allowing for more measurements to be adopted in healthcare settings and providing
more reliable and accurate data. In 2022, the global market for biosensors was valued at
USD 26.8 billion, and it is projected to grow significantly in the coming years at a compound
annual growth rate (CAGR) of 8.0% from 2023 to 2030. The increasing ageing of the world’s
population and the prevalence of chronic diseases, such as diabetes and cardiovascular
diseases, is leading to a demand for wearable biosensors that can provide the continuous
control of a person’s health status. Additionally, the rise in the popularity of fitness and
wellness tracking devices is also contributing to the growth of this market.

Advanced research is mainly focusing on providing low cost, accessible and non-
invasive devices, serving for a continuous and real-time sampling of the body fluids.
One of the challenges of ISF extraction is the sensitivity of epidermal biosensors to detect
biomarkers in low concentrations and small amounts of ISF. Furthermore, these devices aim
to avoid skin damage by using collection techniques that are able to extract ISF without the
irritation and contamination of the skin. There are also many challenges for ISF sampling
and analysis using commercially available MNA devices, such as the biocompatibility
of sensing components and the stability of sensing layer in vivo. Research to solve these
challenges should focus on the preparation of MNA from biocompatible materials or the
modification of the MNA surface.

Nowadays, wearable sensors could realize a large increase in both research and com-
mercialization, due to their high performance for personalized health. In order to overcome
the challenges, biosensors need to be integrated with machine learning, the internet of
things, and communication for additional functionalities. Building flexible epidermal
devices with high mechanical flexibility and electrochemical sensitivity requires more
interventions, such as integrating a type of nonvolatile memories for information storage
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capability [198], microfluidic technology for preconcentration to solve low concentration
challenges and nanotechnology for sensing mechanism advancements [11,199–201]. Fusing
chemical, physical and electrophysiological sensors on the same platform can also help
with the manufacture of hybrid wearable sensors, which offer a more comprehensive
monitoring and understanding of the body’s state [199]. Some features can also be inte-
grated, such as the implementation of new biorecognition elements and nucleic acids, as an
example [202]. Finally, self-powered wearable sensors are a great future prospect leading
toward personalized healthcare, covering biosensors, energy harvesters, energy storage
and power supply strategies. Different methods can be manifested for generating power
in wearable biosensors, which can be based on harvesting energy from human motion,
body heat and ambient light. For this, several materials and technologies can be used to
create self-powered biosensors, such as piezoelectric materials, thermoelectric materials
and photovoltaic materials. Some examples of self-powered biosensors are a wearable
device that uses body heat to power a heart rate monitor, a patch that harvests energy
from the motion of the wearer’s body to power a glucose sensor and a bracelet that uses
solar cells to generate power for a humidity sensor [203]. Moreover, the latest research
has suggested a new wearable biosensor network that utilizes artificial intelligence (AI) to
analyze the collected data. This biosensor network consists of multiple wearable devices
that can collect data from various physiological signals. The data collected from these
devices are then analyzed using machine learning algorithms to detect diseases and predict
potential health issues [204].
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