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Abstract: Food colorants are important in food selection because they improve the gastronomic
appeal of foods by improving their aesthetic appeal. However, after prolonged use, many colorants
turn toxic and cause medical problems. A synthetic azo-class dye called carmoisine gives meals a
red color. Therefore, the carmoisine determination in food samples is of great importance from the
human health control. The current work was developed to synthesis ZnO hollow quasi-spheres (ZnO
HQSs) to prepare a new electrochemical carmoisine sensor that is sensitive. Field emission-scanning
electron microscopy (FE-SEM) and X-ray diffraction (XRD) have been used to analyze the properties
of prepared ZnO HQSs. A screen-printed graphite electrode (SPGE) surface was modified with
ZnO HQSs to prepare the ZnO HQSs-SPGE sensor. For carmoisine detection, the ZnO HQSs-SPGE
demonstrated an appropriate response and notable electrocatalytic activities. The carmoisine electro-
oxidation signal was significantly stronger on the ZnO HQSs-SPGE surface compared to the bare
SPGE. Cyclic voltammetry (CV), linear sweep voltammetry (LSV), chronoamperometry (CHA), and
differential pulse voltammetry (DPV) have been utilized to investigate the suggested protocol. The
DPV results revealed an extensive linear association between variable carmoisine concentrations
and peak current that ranged from 0.08 to 190.0 µM, with a limit of detection (LOD) as narrow as
0.02 µM. The ZnO HQSs-SPGE’s ability to detect carmoisine in real samples proved the sensor’s
practical application.

Keywords: ZnO hollow quasi-spheres; screen-printed graphite electrode; electrochemical sensor;
carmoisine

1. Introduction

Food colorants are substances added to foods and drinks to enhance visual appeal.
Therefore, the food processing industry uses a variety of edible colorants, including both
natural and synthetic ones [1]. Food colorants are used to make food more visually
appealing, and also to restore the original appearance of food whose color has been altered
by processing, storage, packing, and distribution [2]. In the food industry, synthetic
colorants, especially azo dyes, have been employed extensively to enhance food appearance
and color due to their attractive color homogeneity, great water solubility, cheap production
costs, low microbial contamination, and strong stability to light, oxygen, and pH [1].
Additionally, synthetic dyes are now widely applied in different industries, including those
that deal with plastic, textiles, leather, detergents, and cosmetics. In addition, they are
favored to enhance the organoleptic qualities of foodstuffs [3,4].

Griess originally discovered azo dyes, the most significant class of synthetic dyes, in
1865 [5,6]. Azo dyes have a strong water solubility due to their general chemical structure,
which is made up of aromatic groups and an azo chromophore. Due to the presence
of a double bond between two nitrogen atoms, this dye has an active functional group.
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Depending on how many azo functional groups they include, they can be mono-azo, di-
azo, or poly-azo dyes [7]. The majority of these commercial dyes are mono-azo dyes [5].
Half of all dyestuffs that can be sold commercially contain azo dyes [5]. In other words,
the most abundant family of synthetic dyes—azo dyes—are organic materials with the
highest levels of production and consumption globally [8]. A lot of azo dyes are employed
in the cosmetic, pharmaceutical, and leather sectors, particularly in the textile industry,
because of their distinct physical and chemical qualities [5]. In addition, they are actively
exploited as food colorings, medicine transporters, and have biological applications in
addition to industrial uses [5]. The chromophore azo groups in azo dyes’ structures are
transformed into extremely poisonous aromatic amines even though they have biological
properties, such as being antibacterial and antiviral [5]. As a result, azo dyes and their
metabolites are harmful to human health. In addition, excessive consumption of these
substances is not recommended for both human health and food safety [3]. Some azo dyes
are known to have negative effects, such as asthma and contact hypersensitivity. Also, azo
dyes can cause food bigotry, hypersensitivity, and hyperactivity [3]. The European Union
Regulation (EC) 1907/2006 forbids the use of some azo dyes due to the considerable risk
they pose to the environment and human health [9]. Finally, it is crucial to use accurate and
sensitive analytical techniques to control the determination of such significant substances.
In common uses, such as food and beverages, carmoisine, a synthetic red dye with an azo
bond in its molecular structure, provides a red to maroon shade [10].

Carmoisine was used as a coloring agent for jams and preserves for a long time, but
most developed countries eventually outlawed it since it included the well-known car-
cinogen beta-naphthylamine [11]. In addition, reductive cleavage of azo groups produces
an aromatic amine that is carcinogenic, like many azo dyes [12,13]. Many people also
experience nettle rash, water retention, asthma, or drug intolerance as a result of the dye.
In addition to increasing behavioral issues in children, such as hyperactivity, tantrums, and
insomnia, large dosages of the dye can also cause coma, convulsions, somnolence, and
even death [14]. Therefore, the amount of carmoisine in foods must be strictly managed,
and it is crucial for both human health and the safety of food that carmoisine be detected
quickly, sensitively, simply, and affordably.

A number of methodologies for quantifying synthetic food colors have been devel-
oped, including solid-phase extraction (SPE) [15], high-performance liquid chromatogra-
phy (HPLC) [16], thin-layer chromatography (TLC) [17], spectrophotometry [18], capillary
electrophoresis [19], solid-phase spectrophotometry [20], and fluorescence emission spec-
troscopy [21]. However, these methods have several drawbacks, including the need for
specialized equipment, a laborious preparation/measurement procedure, as well as re-
quiring a skilled operator for exact analysis [22,23]. Because electrochemical methods
are capable of direct detection and do not require pretreatment procedures, they have
recently received a lot of attention [24–31]. Furthermore, electrochemical methods are quick
analytical methods that have the advantages of simplicity, great portability, and on-site
detection ease [32–37].

Due to their reproducibility, reliability, affordability, and mass production, screen-
printed electrodes (SPEs) became widely used in electrochemical sensing technology [38–40].
In electrochemical sensing technology, the selection of modified materials is crucial to
achieve highly sensitive working electrodes for the detection of various chemicals [41–45].
Due to their new features, applications of nanoparticles have drawn a lot of attention
recently and are now the subject of in-depth research in the disciplines of compound degra-
dation and removal, catalysts, sensing, etc. [46–55]. Due to their enhanced electrochemical
activities, surface modification employing nanomaterials has generated a great deal of
interest to enhance the analytical performances of electrochemical sensors [56–62].

ZnO is a substance of substantial economic significance and is an essential semicon-
ductor material. It has a high binding energy (60 meV), a bandgap of 3.37 eV, and is near
in the ultraviolet spectral range [63]. Due to the numerous applications of nanoparticles
based on their morphology, the shape and size control study of metal oxide nanoparticles
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(such as ZnO) has generated a great deal of scientific attention [63]. In recent years, ZnO
hollow nanostructures are receiving a great deal of attention due to their unique electrical,
optical, and surface properties, high surface-to-volume ratio, and lower density with good
permeation [64–67].

The aim of this work was the synthesis of ZnO HQSs and the investigation of their
application for modification of an SPGE as a sensing platform for the determination of
carmoisine. The ZnO HQSs/SPGE sensor exhibited low LOD and high sensitivity for a
wide linear range of carmoisine concentrations. In addition, good recovery values were
obtained for the analysis of carmoisine in real samples.

2. Experimental
2.1. Chemicals and Solutions

All of the solutions utilized in the studies were prepared by utilizing ultra-pure water
that had been purified by a Milli-Q® system (Millipore, Burlington, MA, USA) with a
resistivity of more than 18.2 MΩ cm. All of the chemicals have been purchased from Merck
(Darmstadt, Germany) or Sigma-Aldrich (Steinheim, Germany). The phosphate buffer
(0.1 M) was prepared by diluting the H3PO4 into ultra-pure water and adjusted to the
desired pH with NaOH.

2.2. Equipments

A scanning electron microscope (MIRA3 SEM (Tescan, Brno, Czech Republic)) was
utilized to analyze the surface morphology and structure of prepared ZnO HQSs. Cu Kα

radiation (wavelength = 1.5406 Å) has been utilized for the XRD study with the Panalytical
X’Pert Pro X-ray diffractometer (The Netherlands). Voltammetric measurements have been
performed by using a potentiostat/galvanostat (PGSTAT (302N), Autolab, Eco-Chemie,
Utrecht, The Netherlands). SPGEs (DropSens (DRP-110) Spain), consisting of a three-
electrode system (WE = graphite working electrode, AE = graphite auxiliary electrode, and
RE = silver pseudo-reference electrode, have been utilized. By utilizing a pH meter (model
827; Metrohm; Herisau; Switzerland), the pH values have been determined.

2.3. Synthesis of ZnO HQSs

With slight modifications, the ZnO HQSs were prepared in accordance with the
previous work [68]. In the first step, 100 mL of polyethylene glycol (PEG) was used
to dissolve 10 mmol (2.973 g) of Zn(NO3)2·6H2O under magnetic stirring (30 min) and
ultrasonication (20 min) processes. After that, the mixed solution was added into a flask,
and it was gradually heated to 160 ◦C. The process of refluxing was maintained at 160 ◦C
with stirring for 6 h. The produced material was gathered by centrifugation, washed
(several times) with ethanol and water, and then dried for 12 h at 60 ◦C. In the end, the
white ZnO HQSs were prepared by calcining the dried material for four hours at 500 ◦C in
a muffle furnace.

2.4. Preparation of ZnO HQSs/SPGE

For this purpose, 1 mg ZnO HQSs was dispersed (25 min) in 1 mL ultra-pure water.
Following that, the working electrode was cast using 5 µL of ZnO HQSs suspension. To
obtain the modified electrode, the solvent was evaporated. The ZnO HQSs/SPGE was
prepared after the solvent was evaporated.

2.5. Preparation of Real Samples

To prepare the lemon juice sample, 10.0 mL of lemon juice was filtered using filter
paper. Then, 2.0 mL of the filtered sample was diluted with 10.0 mL of phosphate buffer
(0.1 M, pH = 0.7).

To prepare the powdered juice sample, 5 g of powdered juice was dissolved in 50 mL
of deionized water (50 ◦C), and the solution was allowed to cool at room temperature.
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Then, the solution was diluted using 10 mL of phosphate buffer (0.1 M, pH = 0.7). In the
next step, the diluted solution was filtered with a membrane filter (0.45 µm).

3. Results and Discussions
3.1. Characterization of ZnO HQSs

FE-SEM was applied to study the structure and morphology of the as-prepared ZnO
HQSs (Figure 1). In the low-magnification FE-SEM image in Figure 1a, the hollow structure
cannot be detected, which shows that the ZnO quasi-sphere structures are prepared. The
hollow structure of the ZnO HQSs, which have a mean diameter distribution of less than
200 nm, is clearly visible in the high-magnification FE-SEM image (Figure 1b).
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Figure 1. FE-SEM images of the as-prepared ZnO HQSs: a low-magnification FE-SEM image (1 µm)
(a), and a high-magnification FE-SEM image (200 nm) (b).

The phase purity and crystallinity of ZnO HQSs were verified by XRD analysis. In
Figure 2, the XRD pattern is displayed. The diffraction peaks located at 31.9◦, 34.4◦, 36.4◦,
47.6◦, 56.7◦, 62.9◦, and 68.1◦ correspond to diffraction from the (100); (002); (101); (102); (110);
(103); and (112) planes of ZnO, respectively. All the peaks are indexed to the hexagonal
ZnO with a wurtzite structure (JCPD No. 36-1451) [69,70].
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Figure 2. XRD pattern of ZnO HQSs.

3.2. Performance of the ZnO HQSs/SPGE Sensor for Carmoisine Determination

Investigating the electrocatalytic reaction of carmoisine at the ZnO HQSs/SPGE re-
quire adjusting the pH of the solution. As such, it also evaluated the effect of the aqueous
solution’s pH value on the electrochemical activity of carmoisine. Due to this reason, the
DPV was applied to examine the electrochemical reaction of carmoisine in 0.1 M phosphate
buffer at various pH levels (3.0 < pH < 9.0) at the ZnO HQSs/SPGE surface. The results
demonstrated that neutral conditions are preferable to acidic or alkaline conditions for the
electrochemical oxidation of carmoisine. Thus, a pH of 7.0 (optimum pH) was considered
for electrochemical investigations and measurements of carmoisine. The mechanism for
oxidation of carmoisine on ZnO HQSs/SPGE is shown in Scheme 1.
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Scheme 1. Schematic representation of carmoisine oxidation reaction on ZnO HQSs/SPGE sensor.

Figure 3 depicts the cyclic voltammograms of 100.0 µM carmoisine at unmodified
SPGE (voltammogram a) and at ZnO HQSs/SPGE (voltammogram b). As can be seen,
there was just one oxidation peak visible, indicating that the electrochemical reaction of
carmoisine is an irreversible process. Also, the SPGE surface modification with ZnO HQSs
had a significant effect on the Ep and Ip values. The Ep for carmoisine oxidation at the
ZnO HQSs/SPGE was seen at 540 mV, which is roughly 130 mV more negative than that
of unmodified SPGE, as can be seen. This shows that carmoisine oxidation happens more
easily on the surface of the ZnO HQSs/SPGE. Additionally, a roughly threefold increase in
Ip value at the surface of ZnO HQSs/SPGE is seen compared with the unmodified electrode.
This result is attributed to the ZnO HQSs’ properties, such as their large surface areas,
which boost electrocatalytic activity and raise Ip, which, in turn, increases the sensitivity of
the sensor.
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Figure 3. CVs of (a) unmodified SPGE and (b) ZnO HQSs/SPGE in the exposure to 100.0 µM
carmoisine in 0.1 M phosphate buffer (pH = 7.0) at 50 mV s-1.

3.3. Effects of Scan Rate

The following stage involved determining how the scan rates affected the oxidation
peak current of carmoisine (Figure 4). The recorded LSVs show that the oxidation peak
current of carmoisine increased with the increase of scan rate. After recording the voltam-
mograms at different scan rates, the plot of the current intensity (Ip) versus the square root
of the scan rate (υ1/2) was drawn (Figure 4 (Inset)). According to the linearity of the result-
ing plot (regression equation: y = 0.9389x + 1.2802 with R2 = 0.9989), it was determined that
the electrochemical reaction of carmoisine on the ZnO HQSs/SPGE is controlled through
the diffusion phenomenon.
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Figure 4. LSVs of ZnO HQSs/SPGE at various scan rates (a: 10; b: 50; c: 100; d: 200; e: 300; and f:
400 mV/s) in 0.1 M phosphate buffer (pH = 7.0) containing 50.0 µM carmoisine; Inset: changes in the
Ip as a function of υ1/2.

Then, a Tafel plot (Inset of Figure 5) has been drawn using data from the ascent of
the I-E curve recorded at 10 mV s−1 (scan rate). The kinetic of electron transport between
carmoisine and the ZnO HQSs/SPGE would have an impact on the Tafel area. Using
Equation (1), the anodic transfer coefficient (α) can be obtained from the Tafel plot’s
slope [71], as follows:

η = 2.3RT/(1 − α) nF log I + constant (1)

where: η (overpotential (V)), R (gas constant (J mol−1 K−1)), T (absolute temperature (K)),
F (Faraday constant (C)), I (current (µA)), and n (number of electrons involved in the rate
control step that is regarded as being 1). The value of α for carmoisine was determined as
0.72 using the Tafel slope (0.2128).
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Figure 5. LSV captured for ZnO HQSs/SPGE in phosphate buffer (0.1 M; pH = 7.0) with carmoisine
(50.0 µM) at the scan rate of 10 mV s-1; Inset: Tafel plot derived from LSV.

3.4. Chronoamperometric Measurements

The potential of working electrode has been set at 590 mV in the following (Figure 6), to
carry out the carmoisine chronoamperometric experiments on the ZnO HQSs/SPGE surface.
The Cottrell equation (Equation (2)) [71] could be utilized to explain the current obtained
by electrochemical reaction at the limited mass transport condition for an electroactive
substance (carmoisine) that has a diffusion coefficient of D, as follows:

I = nFAD1/2 Cbπ−1/2t−1/2 (2)

Chronoamperometric measurements of carmoisine at various concentrations were
carried out for this assessment. The plots of I against t−1/2 have been plotted (Figure 6A).
The resulting straight lines’ slopes were then plotted against the carmoisine concentra-
tion (Figure 6B) in the following step. The Cottrell equation and final slope were used
to determine the mean value of D for carmoisine, which has been determined to be
9.2 × 10−5 cm2 s−1.
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Figure 6. The chronoamperograms obtained for ZnO HQSs/SPGE in 0.1 M phosphate buffer
(pH = 7.0; 0.1 M) containing various carmoisine concentrations (a: 0.1; b: 0.5; c: 1.1; d: 1.6; and
e: 2.0 mM). I versus t−1/2 plots for recorded chronoamperograms (Inset (A)) and the slope of straight
lines of graphs versus carmoisine concentrations (Inset (B)).

3.5. Determination of Carmoisine by DPV

Given that DPV is more sensitive than other quantitative methodologies, this approach
has been utilized to investigate the linear range and LOD. For DPV measurements, the
following parameters have been employed: pulse amplitude (0.025 V), step potential
(0.01 V), initial potential (300 mV), end potential (804 mV), and scan rate (50 mV s−1). For
the purpose of this investigation, the DPVs of the ZnO HQSs were recorded for carmoisine
with various concentrations. The data (Figure 7) show a linear relationship between the Ip
and carmoisine concentration (in the range 0.08–190.0 µM) at the ZnO HQSs-SPGE surface.
A detection limit of 0.02 µM for carmoisine has been subsequently determined. The
obtained LOD value and linear range are compared with the reported data from different
works (Table 1). As shown in Table 1, the performance of ZnO HQSs-SPGE is comparable
to or better to that of the previously reported sensors. Moreover, the proposed sensor has
some advantages including saving time, being cost effective, and the simplicity of electrode
preparation, which proved that the proposed sensor has relatively good performance and
can be used for the determination of carmoisine in food samples.
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carmoisine concentrations (0.08, 2.0, 10.0, 30.0, 50.0, 75.0, 100.0, 125.0, 150.0, 175.0, and 190.0 µM); plot
of peak current as a function of carmoisine concentration (Inset).

Table 1. Comparison of LOD and linear range for carmoisine with the previously reported works.

Electrochemical Sensor Linear Range LOD Ref.

Silica/cetylpyridinium chloride (CPCl)/carbon paste electrode (CPE) 0.08 µM to 1.0 µM 0.01 µM [4]
Cathodically pretreated boron-doped diamond electrode 0.0591 µM to 1.31 µM 0.007 µM [10]

CdO/carbon nanotubes (CNTs)/ionic liquid (IL)/CPE 0.1 µM to 700.0 µM 40.0 nM [72]
NiO-CNTs/ILCPE 70.0 µM to 650.0 µM 20 nM [73]

Bismuth–chitosan/glassy carbon electrode (GCE) 1 µM to 41 µM 10 µM [74]
Multi-walled carbon nanotubes (MWCNTs)/GCE 0.54 µM to 5.0 µM 0.11 µM [75]

ZnO HQSs/SPGE 0.08 µM to 190.0 µM 0.02 µM Present work

3.6. Repeatability, Reproducibility, and Stability

The repeatability, reproducibility, and stability of the ZnO HQSs/SPGE have been eval-
uated utilizing the DPV method. The reproducibility of ZnO HQSs/SPGE was remarkable,
as shown by the 4.3% relative standard deviation (RSD) for the determination of 100.0 µM
carmoisine on seven electrodes (ZnO HQSs/SPGE) constructed by using the same method.
Seven repeated measurements of 100.0 µM carmoisine using the same electrode had an
RSD of 3.5%, demonstrating the excellent repeatability of ZnO HQSs/SPGE. The modified
electrode was kept for 24 days to investigate the stability of ZnO HQSs/SPGE. Findings
show that the oxidation current of carmoisine reduced to 94.9% of its initial value after
24 days, confirming acceptable stability of electrode storage.
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3.7. Interference Studies

The interference studies were carried out for a ZnO HQSs/SPGE sensor sensing
30.0 µM carmoisine in the presence of different species. The tolerance limit was considred
as the concentration of foreign species that causes >±5% change in the peak current of
target analyte. According to the findings, 50-fold of Na+, K+, Ca2+, Mg2+, NH4

+, SO4
2−,

Cl−, and Br−, and 20-fold of glucose, alanine, tryptophan, and histidine did not show
interference with the determination.

3.8. Analysis of the Real Samples

By sensing carmoisine in powdered juice and lemon juice utilizing the standard
addition method, the ZnO HQSs/SPGE’s applicability was evaluated. According to the
data (Table 2), the recovery values were between 97.7% and 104.7%, and the RSD values
(n = 5) were <3.5%, indicating that the developed ZnO HQSs/SPGE is reliable for the
detection of carmoisine in real samples.

Table 2. Application of ZnO HQSs/SPGE for the carmoisine determination in the real specimens
(n = 5).

Sample Spiked
Concentration (µM)

Found Concentration
(µM)

Recovery
(%) RSD (%)

Powdered juice

0 3.4 - 3.2
1.0 4.3 97.7 1.8
2.0 5.5 101.8 2.3
3.0 6.7 104.7 2.9
4.0 8.3 98.8 2.1

Lemon juice

0 4.0 - 2.8
1.0 5.1 102.0 3.5
2.0 5.9 98.3 2.7
3.0 7.3 104.3 2.0
4.0 7.9 98.7 1.9

4. Conclusions

The present work was carried out to prepare a sensitive and reliable sensor (ZnO
HQSs/SPGE) to detect trace amounts of carmoisine. The synthesized ZnO HQSs were
characterized by XRD and FE-SEM techniques. The ZnO HQSs/SPGE was shown to have
a distinctive electrochemical activity with a lower oxidation potential and higher oxidation
current response to carmoisine than the unmodified electrode. The ZnO HQSs/SPGE sensor
showed a linear relationship between the current and the concentration of carmoisine
in a range between 0.08 and 190.0 µM and a low detection limit of 0.02 µM. Also, the
ZnO HQSs/SPGE showed good repeatability, reproducibility, stability, and selectivity for
the analysis of carmoisine. The effective capability of ZnO HQSs/SPGE was proven by
detecting carmoisine in the real samples with satisfactory results.
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