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Abstract: Oxygen vacancies are a major factor that controls the electrical characteristics of the
amorphous indium-gallium-zinc oxide transistor (a-IGZO TFT). Oxygen vacancies are affected by
the composition ratio of the a-IGZO target and the injected oxygen flow rate. In this study, we
fabricated three types of a-IGZO TFTs with different oxygen flow rates and then investigated changes
in electrical characteristics. Atomic force microscopy (AFM) was performed to analyze the surface
morphology of the a-IGZO films according to the oxygen gas rate. Furthermore, X-ray photoelectron
spectroscopy (XPS) analysis was performed to confirm changes in oxygen vacancies of a-IGZO films.
The optimized a-IGZO TFT has enhanced electrical characteristics such as carrier mobility (µ) of
12.3 cm2/V·s, on/off ratio of 1.25 × 1010 A/A, subthreshold swing (S.S.) of 3.7 V/dec, and turn-on
voltage (Vto) of −3 V. As a result, the optimized a-IGZO TFT has improved electrical characteristics
with oxygen vacancies having the highest conductivity.

Keywords: a-IGZO; magnetron sputtering; thin-film transistors; oxygen vacancy; oxygen flow rate

1. Introduction

Since 2004, when Hideo Hosono presented an amorphous indium gallium zinc oxide
(a-IGZO) and its use in transparent and flexible thin-film TFTs (TFTs), a-IGZO-based TFTs
have drawn considerable attention [1–3]. In particular, a-IGZO-based TFTs are currently
used in the display industry as this device offers high carrier mobility and, accordingly,
sufficient driving current density to operate an organic light-emitting diode (OLED) can
be made available [4–6]. Furthermore, another merit of a-IGZO-based TFTs is large-area
deposition with high uniformity [7–9]. Due to these merits, many efforts have been made
to implement a new concept of electronic devices such as neuromorphic devices [10–12],
gas sensors [13–15], photodetectors [16–18], biosensors [19–21], and logic circuits [22–24].

One of the most frequently used deposition methods for a-IGZO is sputtering. This
deposition method provides a facile deposition of thin films, particularly oxides, by means
of sputtering from a “target” source to a “substrate” [25–27]. As oxygen vacancy concentra-
tion in a-IGZO significantly determines the electrical properties of TFTs, specific deposition
conditions, including gas flow rate dependency, should be considered [28], and thus, its
optimization should be accompanied.

In addition, annealing processes of metal oxide semiconductors (MOS) are improving
carrier mobility [29–31]. Oxygen vacancy generated in MOS crystallized through the
annealing process are important factors determining conductivity [32,33]. The oxygen
vacancy behaves as an electron donor through a fully occupied defect state. Therefore, the
conductivity of MOS increases due to the closer Fermi level and conduction band [34,35].
Compared to chemical doping methods and new designs of MOS-based devices, the
annealing process provides a simple method and immediate effect for controlling the
electrical characteristics of MOS. However, the high annealing temperature of over 600 ◦C
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and the additional pre-processing variables reduce the process compatibility of MOS-based
devices [36–38].

Here, we investigate the a-IGZO TFT process conditions by controlling the oxygen
flow rate without an additional annealing process. The effect of oxygen vacancies controlled
by the oxygen gas rate was investigated using atomic force microscopy (AFM) and X-ray
photoelectron spectroscopy (XPS) analysis. The a-IGZO TFT fabricated under optimized
process conditions exhibits excellent electrical characteristics due to increased conductivity
with oxygen vacancies. The carrier mobility and on/off ratio of the optimized a-IGZO TFT
are 12.3 cm2/V·s and 1.25 × 1010 A/A, respectively. Also, the subthreshold swing (S.S.) of
3.7 V/dec and a Vto of −3 V were achieved.

2. Materials and Methods

To fabricate the a-IGZO TFTs, a heavily boron-doped p-type Si/SiO2 (300 nm) was
prepared. The SiO2 layer was used as the gate dielectric, and a p-type Si layer was applied
as the back gate. The Si/SiO2 wafer was cleaned with acetone and isopropyl alcohol and
then dried with nitrogen gas. a-IGZO (In2O3: Ga2O3: ZnO = 1:1:1) for the channel of TFTs
was deposited using the radio frequency (RF) magnetron sputtering method. Condition
1 (C1) is the deposition method of a-IGZO using only the Ar gas. The gas mixing ratio
of O2:Ar injected during the deposition of a-IGZO is 1.7:100 (Condition 2, C2) and 17:100
(Condition 3, C3). The Ti (60 nm) source and drain electrode had deposited electron-beam
evaporation. The width (W) and length (L) of the channels are 100 µm and 1000 µm,
respectively. Figure 1a shows the channel and electrode patterning process of a-IGZO TFT
using a shadow mask. Figure 1b shows a top-view optical microscope (OM) image of the
a-IGZO TFT array. Also, Figure 1c shows the cross-sectional view image of a-IGZO TFT
with a scanning electron microscope (SEM), and the thickness of optimized a-IGZO is 8 nm.
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The electrical characteristics of a-IGZO TFT were analyzed using a Keithley 4200
(Tektronix, Beaverton, OR, USA) semiconductor parameter analyzer in the air. The elec-
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trical characteristics of a-IGZO TFT were investigated according to oxygen gas injection
conditions. Atomic force microscopy (AFM) images were measured by XE7 (Park Sys-
tems, Suwon, Republic of Korea). X-ray photoelectron spectroscopy (XPS) was measured
using AXIS-SUPRA (Kratos, Manchester, UK) at the Korea Basic Science Institute (KBSI).
The field-effect mobility and the subthreshold swing (S.S.) of TFTs were calculated using
the equation:

µelectron =
∂ID
∂VG

L
WCoxVD

(1)

S.S. =
dVG

d
(
log10 ID)

(2)

where L and W represent the length and width of the channel, and C is the capacitance of
the gate insulator. The VGS is the applied gate–source voltage, and ID is the drain current.

Also, the interface trap density (Dit) of the TFT was derived using the following
equation [39]:

Dit =
Cox

q2

(
S.S. log(e)

KBT/q
− 1

)
(3)

where q and T represent the elementary electron charge and absolute temperature, respec-
tively. The KB is the Boltzmann constant, and e is the dielectric constant.

3. Results

Various variables, such as the atomic composition ratio of the a-IGZO target, O2/Ar
mixed gas ratio, and thin film thickness, affect the electrical characteristics of a-IGZO TFTs.
In particular, oxygen vacancies are essential due to controlling the electrical characteristics
of a-IGZO TFTs. Moreover, oxygen vacancies on the surface of a-IGZO are affected by
oxygen gas flow rates. For this reason, we fabricated three types of TFTs with different
oxygen gas flow rates to investigate changes in electrical characteristics. Figure 2a shows
the transfer curve of the C1 TFT fabricated under the optimized process conditions. The
channel of the C1 TFT was deposited without oxygen gas injection. The gate–source
voltage of the measured transfer curve was −30 V to 60 V, and a drain voltage of 10 V was
applied. The on-current and off-current of the C1 TFT were measured to 6 × 10−4 A and
4.8 × 10−14 A, respectively, and the calculated on/off ratio was measured to as high as
1.25 × 1010 A/A. Figure 2b shows the output curve of the C1 TFT presenting conventional
n-type operation. To measure the output curve, a range of the gate–source voltage is 0 V to
60 V and a drain voltage of 0 V to 50 V were applied, respectively. The contact resistance
of a-IGZO TFT was evaluated using the transmission line method (TLM) method. As
shown in Figure 2c, the extracted contact resistance is 0.4 Ω·cm using the TLM method. The
contact resistance is related to charge injection, which affects electrical characteristics such
as mobility and on/off ratio [40–42]. Therefore, the reduced contact resistance promotes
charge injection to the channel, and the C1 TFT had improved mobility and on/off ratio
performance. Figure 2d shows the transfer curves with three types of a-IGZO TFTs in
different oxygen gas flow rates. The O2/Ar mixed gas ratios of the C2 and C3 TFTs are
1.7:100 and 17:100, respectively. The on-current of the a-IGZO TFT decreases as the oxygen
flow rate increases. The electrical characteristics of the optimized a-IGZO TFT depend on
the composition ratio of the a-IGZO target. The low conductivity of a-IGZO TFT fabricated
with no oxygen component a-IGZO target is overcome by injecting the oxygen gas [43].
On the other hand, the a-IGZO TFT deposited by injecting additional oxygen gas into
the a-IGZO target with an oxygen component has reduced oxygen vacancies, resulting in
low conductivity. The on-currents at VGS = 60 V of the C1 and C2 TFTs were measured
to 4.7 × 10−6 A and 6 × 10−4 A, respectively. The C2 TFT has 127 times less on-current
compared to the C1 TFT. Therefore, the on/off ratio of the C2 TFT was 1.24 × 106 A/A,
which was decreased compared to that of the C1 TFT. The C3 TFT had reduced oxygen
vacancy compared to C1 and C2 TFTs by injecting the highest amount of oxygen gas during
a-IGZO sputtering. The low conductivity of the C3 TFT is attributed to the reduced carrier
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density due to excessive oxygen vacancy. Therefore, the C3 TFT has an average current of
67 pA in the gate–source voltage and ranges from −30 V to 60 V and could not be converted
to on-state by the positive gate–source bias voltage.
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The electrical parameters with the three types of a-IGZO TFTs were compared (Figure 3a–d).
The electrical parameters include carrier mobility (µ), turn-on voltage (Vto), subthreshold
swing (S.S.), and on/off ratio. The electrical parameters of the C3 TFT were uncalculated
due to insufficient switching behavior due to the low conductivity of a-IGZO. The carrier
mobility of the C1 TFT and C2 TFT is 12.3 cm2/V·s and 0.58 cm2/V·s, respectively. The
carrier mobility of the C1 TFT is 21 times higher than that of the C2 TFT. Also, the Vto is
−3 V and −5 V, respectively, and S.S. is 3.7 V/dec and 4.9 V/dec, respectively. As a result,
the optimized C1 TFT achieved a high on/off ratio and carrier mobility. In addition, the
electrical characteristics of C1 transistors with Vto close to zero gate–source voltage and
low S.S. potentially enable low voltage operation and low power consumption. The high
electron mobility and reduced S.S. of C1 TFT compared to C2 TFT are achieved due to the
reduced oxygen vacancy and interface trap density (Dit) in a-IGZO. The extracted Dit of
the C1 TFT and C2 TFT was 4.4 × 1012 cm−2 eV−1 and 5.8 × 1012 cm−2 eV−1, respectively.
Appropriate oxygen vacancy and interface trap density minimize the trapping of charge
carriers in C1 TFT, thereby increasing charge carrier mobility. Also, they decrease the S.S.,
inducing clear switching behavior of a-IGZO TFT [44–46]. Therefore, optimizing oxygen
vacancy and interface trap density is crucial for improving the performance of a-IGZO
TFTs, leading to enhanced charge carrier mobility and reduced S.S.
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Next, we performed an atomic force microscope (AFM) analysis to investigate the mor-
phological characteristics of a-IGZO films fabricated by oxygen flow rate. Figure 4a–c shows
the AFM image (5 µM × 5 µM) and height information of a-IGZO films using fabrication
methods with C1, C2, and C3, respectively. The height information of the a-IGZO surface
did not become rough when oxygen gas flow was increased [47,48]. The morphological
characteristics changes on the surface of a-IGZO are related to the concentration of oxygen
vacancy. The defect, such as oxygen vacancy, induces rough surface morphology of a-IGZO
films. As a result, a high concentration of oxygen vacancy causes the surface of a-IGZO
morphology to be rough, while a low concentration of oxygen vacancy induces a smoother
surface morphology [31,49]. In addition, the average roughness (Ra) and root mean square
roughness (Rq) were calculated from the height information of a-IGZO using the AFM
measurement (Figure 4d). The Ra value of C1, C2, and C3 was 0.134, 0.111, and 0.089 nm,
respectively. In addition, the values of Rq are 0.151, 0.134, and 0.126 nm, increasing with
the oxygen flow rate.
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(a) C1 TFT. (b) C2 TFT. (c) C3 TFT. (d) Average roughness (Ra) and root mean square roughness (Rq)
of three IGZO films with different oxygen flow rates.

To investigate the chemical composition difference between the three types of a-IGZO
films, X-ray photoelectron spectroscopy (XPS) analysis was performed. Figure 5a–c shows
the O 1s spectra of the a-IGZO films according to the oxygen gas flow during deposition.
The O 1s spectra of the a-IGZO are separated into sub-peaks associated with O2- ions, such
as metal-oxide (M-O) bonds, metal-hydroxyl (M-OH) bonds, and oxygen vacancies. The
sub-peaks of O 1s indicate binding at 530 eV, 532 eV, and 531 eV, respectively. The M-O
bonds (530 eV) are formed by bonding O2- ions with elements of a-IGZO metals such as
indium, gallium, and zinc. Also, the M-OH bonds (532 eV) were referred between the
metals of a-IGZO and the hydroxyl group. In addition, the oxygen vacancies (531 eV) are
defects of the a-IGZO channels, which were generated by oxygen atoms and are related to
the carrier concentration of a-IGZO. The oxygen gas injected during sputtering reduced
the oxygen vacancies of the deposited a-IGZO film. The relative areas of oxygen vacancies
in C1, C2, and C3 were 30.6%, 29.6%, and 27.4%, respectively, which oxygen vacancies
are reduced when injected oxygen gas was increased. The oxygen vacancy is known to
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have a significant effect on the change of electrical characteristics in a-IGZO thin firm
TFTs [50]. Adequate oxygen vacancies increase the conductivity of a-IGZO by generating
free electrons [51]. In addition, the M-OH bond of a-IGZO was decreased as the oxygen
flow rate increased [52]. The relative area of M-OH bond in C1, C2, and C3 were 9.5%, 9%,
and 4.95%, respectively. The M-OH bond acts as a deep-level trap that prevents charge
transport in the a-IGZO, inducing the operation of the unstable TFT [53]. As a result, the
optimized C1 TFT has improved electrical characteristics due to adequate oxygen vacancies
and reduced M-OH bonding.
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plot method (d) a-IGZO films deposited in C1. (e) a-IGZO films deposited in C2. (f) a-IGZO films
deposited in C3.

Moreover, the changes in the optical bandgap of a-IGZO with oxygen gas flow were
investigated. Figure 5d–f shows the optical bandgap of a-IGZO calculated by the Tauc
plot method using UV–visible absorption data. The a-IGZO in the C1 condition without
oxygen injection showed the smallest optical bandgap of 3.63 eV. On the other hand, the
optical bandgaps of C2 and C3 increased by oxygen injection are 3.81 eV and 4.34 eV,
respectively. As a result, the optical bandgap of a-IGZO was increased as the injected
oxygen gas was increased.

4. Conclusions

In summary, the electrical characteristics of oxygen flow rate injection were investi-
gated. As a result, when oxygen flow rate injection was not performed, the best electrical
characteristics such as mobility, Vto, and on/off ratio were shown. The decreased oxygen
vacancy in a-IGZO caused by an increased oxygen gas flow rate results in a decreased
conductivity. The C1 TFT without oxygen gas injected has enhanced charge carrier mobil-
ity due to high oxygen vacancy. In addition, AFM and XPS analyses were performed to
confirm the mechanism of the change in electrical properties due to oxygen flow injection.
In the AFM analysis, the improvement of electrical properties was confirmed through
wide contact with the electrode material because the C1 device had the greatest roughness.
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Finally, through XPS analysis, it was confirmed that the electrical characteristics of the C1
device with the highest oxygen vacancy were the best. Through this result, we believe
that the development of oxide semiconductor research and process condition research will
be inexhaustible.
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