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Abstract: Cobalt nanoparticles were synthesized using the gamma radiolytic technique, and the
particle size was found to be reduced from 12± 1 to 7± 1 nm by increasing the dose from 10 to
60 kGy. The UV-visible absorption spectra were measured and exhibited a steady absorption maxima
at 517 nm in the UV region, which blue-shifted toward a lower wavelength with a decrease in particle
size. By taking the conduction electrons of an isolated particle that are not entirely free but are
instead bound to their respective quantum levels, the optical absorption of the cobalt nanoparticles
can be calculated and simulated via intra-band quantum excitation for particle sizes comparable
to the measured ones. We found that the simulated absorption maxima of electronic excitations
corresponded to the measured absorption maxima. Moreover, the structural characterizations were
performed utilizing dynamic light scattering (DLS), transmission electron microscopy (TEM), and
X-ray diffraction (XRD).

Keywords: radiolytic synthesis; cobalt nanoparticles; optical properties; conduction energy;
simulation using quantum mechanical calculations

1. Introduction

Nanostructured materials possess different properties relative to their macroscopic-
structured counterparts. These materials play a significant role in technology as they are
incorporated into components, systems, and devices [1–4]. These properties may lead
to new applications with increased functionalities. Metallic nanoparticles have many
applications in electronics, catalysis, photonics, and biochemical sensing and imaging [5,6].
They have attracted significant attention in the field of catalysis due to their considerable
catalytic activity [7,8]. Scientists have investigated colloidal metal nanoparticle catalysts
in various reactions in homogeneous catalysis, including the decomposition of hydrogen
peroxide [7,9] and hydrazine in aqueous solutions [9].

The properties of nanostructured magnetic materials differ from bulk materials be-
cause their small dimensions allow for quantum effects, as well as domain suppression and
configurational anisotropy [10,11].

Among the various types of nanostructures, magnetic nanomaterials based on alloys
of metals of the iron subgroup (Fe and Co) and their various oxide forms have unique
magnetic, electronic, and optical properties [12,13]. For instance, cobalt ferrite (CoFe2O4)
magnetic nanomaterials have been studied, including the investigation of the magnetic
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and electrical properties of CoFe2O4 spinel ferrite materials [14]. Additionally, other Co-
based compound research includes the study of the efficiency of thermally annealing
nanostructures for phase transformations of the FeCo–Fe2CoO4/Co3O4 spinel type [12].

Magnetic particles of nanometer size have received considerable attention for progress-
ing fundamental and technological interests due to their potential applications in motors,
electrical power transformation, magnetic fluids, and magnetic resonance imaging [15–19].

Among magnetic materials, cobalt nanoparticles have received considerable attention
due to their high saturation magnetization and high coercivity [5,20]. Moreover, cobalt
nanoparticles display structure-dependent magnetic and electronic properties.

There have been numerous approaches to synthesizing metal nanoparticles such as
cobalt nanoparticles, including thermal decomposition [21,22], gas vapor condensation [23,24],
solution phase metal salt reduction [25,26], the water–oil inverse micelle technique [27],
solvothermal synthesis [28], solution phase decomposition [21,29,30], the double agent reduc-
tion method [31], the electrodeposition method [32–35], the casting method [36], the X-ray
method [37], and gamma irradiation [5,38–42]. Among these techniques, the gamma irradia-
tion method presents some advantages over conventional methods. It is an uncomplicated
process that provides fully reduced and very pure metal nanoparticles which are free from
other products or reducing agents [42–46].

The radiation method has significantly contributed to progress in various types of
research [6,47–51]. The interaction of ionizing radiation, such as gamma rays, with aqueous
solutions leads to the generation of randomly distributed reducing and oxidizing agents
with large redox potentials. Through the use of scavengers, the environment in the solution
can be modified to generate a high concentration of reducing agents. These species can
readily react with solvated metal ions and decrease their oxidation state [52–54]. Subse-
quently, the metallic atoms obtained in the solution nucleate into clusters and grow into
particles [6,51–54].

The optical properties of metal nanoparticles have been of interest in physical chem-
istry [55]. Currently, the optical absorption of metal nanoparticles is subordinated through
their localized surface plasmon resonances (LSPRs), which are related to the collective
coherent oscillation of conduction electrons in resonance accompanied by the incident
electromagnetic wave and are regulated via the dielectric constants of the particles and the
medium [56,57]. In addition, the explanation for the catalytic action of metal nanoparti-
cles is still unknown [58] since the oscillating conduction electrons of metal nanoparticles
may not be able to participate in a photocatalytic process. Hence, a new theory of metal
nanoparticles is necessary to explain the photocatalytic action.

This article presents a procedure to synthesize colloidal cobalt nanoparticles which
are acquired using a gamma radiolytic technique. The optical absorption of the prepared
nanoparticles was measured and compared with the simulated values. In addition, the
effect of dose on the particle size of the Co nanoparticles was investigated. Furthermore,
TEM, DLS, and UV-Vis spectroscopy were employed to characterize the structural and
optical properties of the cobalt nanoparticles.

2. Experimental
2.1. Materials

Cobalt dichloride hexahydrate (CoCl2·6H2O) was used as a metal precursor, poly(vinyl
pyrrolidone) (PVP) was used as a capping agent to diminish the agglomeration of Co
nanoparticles, isopropyl alcohol (IPA) was used as a radical scavenger of hydrogen and
hydroxyl radicals, and tetrahydrofuran (THF) and deionized water were used as solvents
for the metal complex and polymer, respectively. Nitrogen gas in the highly pure form of
99.5% was used to remove oxygen from the solution.

2.2. Procedure

First, 22.44 ×10−4 M of CoCl2·6H2O was dissolved in 50 mL of THF before being
introduced into an aqueous solution of 3 g of PVP in 150 mL of deionized water. After
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adding 25 mL of IPA, the solution was magnetically stirred and bubbled with 99.5% nitrogen
gas for 1 h before filling several glass tubes with the mixed solution. The specimens were
irradiated with 60Co gamma rays at various doses of 10, 20, 30, 40, 50, and 60 kGy.

2.3. Characterization

The optical absorbance spectrum was measured using a UV–visible spectrophotometer
(Perkin Elmer, Lambda 900 UV/Vis, Waltham, MA, USA). There was no treatment for the
irradiated specimens prior to the optical absorption analysis. The particle size and the size
distribution were determined using a HITACHI transmission electron microscope (TEM;
H 7500), employing an accelerating voltage of 100 kV. The TEM specimens were processed
by positioning a drop of the irradiated solution on a copper grid and allowing the sample
to dry naturally overnight.

Moreover, the particle size and the size distribution of the specimens were measured
utilizing a Zetasizer Nano ZS instrument (Malvern Instruments, Malvern, UK) which was
equipped with a 4 mW He-Ne laser [59]. The intensity-averaged particle diameters and the
polydispersity index (PDI) values (an estimate of the distribution width) were calculated
from the cumulate analysis, as defined in the ISO 13321 (International Organization for
Standardization) [60].

The intensity size distributions were acquired from an analysis of the correlation
functions using the general purpose algorithm in the instrument software. This algorithm
is founded upon a non-negative least squares fit [61,62].

3. Results and Discussion
3.1. Experimental Process
Radiolytic Reduction Method

The interaction of gamma photons with matter includes several distinctive procedures
depending on the energy of the photons and on the atomic number of the medium and its
density. In an aqueous solution, 1.25 MeV 60Co gamma rays interact with matter, resulting
in the formation of secondary electrons.

These free and energetic electrons can induce several reactive species, such as a large
number of the hydrated electrons (e−aq), hydroxyl radicals (OH•), and hydrogen radicals (H•)
that are produced during the radiolysis of aqueous solutions via irradiation (Equation (1)).

The hydrated electrons (e−aq) possess reductive properties as they have a very negative
reduction potential of Eo = −2.87 V [52,54], while the OH• possess the strongest oxidative
properties with an oxidation potential of Eo = +2.73 V [53,54]. The hydrogen radicals (H•)
are a strong reducing agent with a redox potential of E0 = −2.3 V [52].

H2O → e−aq, H3O+, H•, OH•, H2, H2O2 (radiolysis of water by gamma rays) (1)

Nucleation and Growth
The hydrated electrons arising from the radiolysis of water can easily reduce all metal

ions to zerovalent atoms (M0). The atoms, which are formed via the radiolytic method, are
distributed homogeneously throughout the solution. This is a result of the reducing agents
generated by the radiation, which can deeply penetrate the sample and randomly reduce
the metal ions in the solution. These newly formed atoms act as individual centers of
nucleation and further coalescence. The binding energy between two metal atoms or atoms
with unreduced ions is stronger than the atom–solvent or atom–ligand bond energies [51].
Therefore, the atoms dimerize when encountering or being associated with the excess metal
ions [53]:

M0 + M0 → M2 (2)

M0 + M+ → M+
2 (3)
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The charged dimer clusters M+
2 may further be reduced to form a center of cluster

nucleation. The competition between the reduction of free metal ions and the absorbed
ones could be controlled by the rate of reducing agent formation [63]. The reduction of
ions that are fixed on the clusters favors cluster growth rather than the formation of newly
isolated atoms. The bonding between clusters with unreduced ions or two charged clusters
is also strong, and these association processes are fast [53].

Formation of Co Nanoparticles
In the formation of cobalt nanoparticles, the electrons liberated via gamma irradiation,

in turn, reduce the metal ions of Co2+ into zerovalent metals of Co0, which is known as the
nucleation process. The formation of Co nanoparticles can be described by the following
reactions [5,52]:

CoCl2 −→ Co2+ + 2Cl− (ion dissociation) (4)

Co2+ + 2e−aq −→ Co0 (first nucleation) (5)

Co0 + Co0 −→ Co0
2 (agglomeration) (6)

Co0
m + Co0 −→ Co0

m+1 (agglomeration) (7)

In the synthesis procedure, cobalt dichloride dissociates into positive Co2+ cations and
negative 2Cl− anions, Equation (4). The hydrated electrons reduce Co2+ into zerovalent Co
atoms (Co0) via the nucleation process, Equation (5). A number of Co0 atoms can agglomer-
ate to form Co0

2 or Co0
m+1 nanoparticles, as shown in Equations (6) and (7), respectively.

The hydroxyl radicals formed in the radiolysis of water (Equation (1)) are able to
oxidize the ions or the atoms into a higher state of oxidation. To prevent this oxidation, the
radicals were scavenged efficiently by adding isopropanol.

The radicals of hydroxyl and hydrogen are strong reducing agents in an aqueous col-
loidal solution; hence, the addition of isopropanol to the precursor solutions was required.

IPA scavenged radicals of hydroxyl and hydrogen and simultaneously was changed
into IPA radicals, Equations (8) and (9), which eventually reduce Co2+ ions into Co0, as
shown in Equation (10).

OH• + CH3 −CH(OH)−CH3 −→ CH3 −C•(OH)−CH3 + H2O (radicals formation) (8)

H• + CH3 −CH(OH)−CH3 −→ CH3 −C•(OH)−CH3 + H2 (radicals formation) (9)

Co2+ + 2[CH3 −C•(OH)−CH3] −→ 2[CH3 −CO−CH3] + Co0 + 2H+ (nucleation) (10)

For metal and alloy composite samples, the appearance of oxygen can lead to great
changes in the electronic parameters that will seriously affect the practical application of
the materials obtained. It is well known that complex transition metal compounds easily
oxidize [64,65].

In this research, there was no oxygen in the prepared samples since the final solutions
were already bubbled with 99.5% nitrogen gas to remove oxygen [42,66,67]. Moreover,
the hydroxyl radicals that can oxidize the ions were unable to oxidize them because the
radicals were scavenged by the addition of isopropanol [66,67].

3.2. DLS Results

The size distribution of the Co nanoparticles at different radiation doses was deter-
mined using a dynamic light scattering spectrophotometer. Dynamic light scattering was
carried out to monitor the hydrodynamic sizes of the magnetic nanoparticles. The analyses
based on the DLS particle size analyzer and the results show that the average size of the Co
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nanoparticles at different doses was approximately between 7± 1 nm and 12± 1 nm, as
demonstrated in Figure 1.

Micromachines 2023, 14, x FOR PEER REVIEW 5 of 14 
 

 

3.2. DLS Results 

The size distribution of the Co nanoparticles at different radiation doses was deter-

mined using a dynamic light scattering spectrophotometer. Dynamic light scattering was 

carried out to monitor the hydrodynamic sizes of the magnetic nanoparticles. The anal-

yses based on the DLS particle size analyzer and the results show that the average size of 

the Co nanoparticles at different doses was approximately between 7 ± 1 nm and 12 ± 1 

nm, as demonstrated in Figure 1. 

 

Figure 1. The size distribution of Co nanoparticles at different radiation doses was measured using 

the DLS technique. 

3.3. TEM Images of Colloidal Co Nanoparticles 

The TEM images of the particle distribution of the Co nanoparticles synthesized via 

the gamma radiolytic reduction methods are exhibited in Figure 2a,c for doses of 60 and 

50 kGy, respectively. 

The TEM images demonstrate well-dispersed spherical particles. The average parti-

cle sizes of the Co nanoparticles synthesized at 60 and 50 kGy, as determined from the 

Figure 1. The size distribution of Co nanoparticles at different radiation doses was measured using
the DLS technique.

3.3. TEM Images of Colloidal Co Nanoparticles

The TEM images of the particle distribution of the Co nanoparticles synthesized via
the gamma radiolytic reduction methods are exhibited in Figure 2a,c for doses of 60 and
50 kGy, respectively.
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Figure 2. (a) TEM micrograph and (b) size distribution and Gaussian fitting of Co nanoparticles,
irradiated with 60 kGy. (c) TEM micrograph and (d) size distribution and Gaussian fitting of Co
nanoparticles irradiated with 50 kGy.

The TEM images demonstrate well-dispersed spherical particles. The average particle sizes
of the Co nanoparticles synthesized at 60 and 50 kGy, as determined from the Gaussian fitting
of the size histogram, shown in Figure 2b,d, are 6.6± 0.5 nm and 7.6± 0.5 nm, respectively.

The comparison between the results of TEM and DLS revealed that the sizes of the
Co nanoparticles synthesized at 50 kGy and 60 kGy using DLS are 7.8 nm and 6.9 nm,
which are approximately close to the TEM results. It was discovered that the measurements
made via DLS utilizing intensity distribution presented good results when compared to the
TEM results.

3.4. XRD Analysis of Co Nanoparticles

Figure 3 indicates the XRD patterns of the Co nanoparticles synthesized via the gamma
radiolytic reduction method at doses of 20 kGy and 50 kGy. The XRD peaks were matched
perfectly with the (111), (200), and (220) crystalline planes of the face-centered cubic (FCC)
structure of cobalt nanoparticles. The intensity of these peaks increased with an increasing
dose, which is probably due to the increase in the number of Co nanoparticles.
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Figure 3. XRD patterns of Co nanoparticles synthesized via the gamma radiolytic method at doses of
20 kGy and 50 kGy.

The mean crystallite size of Co nanoparticles may be assessed from the width at the
XRD peak utilizing Scherrer’s equation [68], which is provided by:

D =
kλ

βCosθ
(11)

where D stands the average crystallite size, k is the particle shape factor that alters with the
method of taking the width and shape of the crystallite (k = 0.89), λ is the X-ray wavelength
used (0.1542 nm), β is the angular line width of the half-maximum intensity, and θ is Bragg’s
angle in degrees.

The average crystallite sizes of the Co nanoparticles were calculated using the domi-
nant (111) reflection of the XRD pattern and were found to be 11± 1 nm and 8± 1 nm for
Co nanoparticles synthesized at 20 kGy and 50 kGy, respectively. The particle sizes are in
good agreement with the values determined by the TEM and DLS methods.

3.5. Optical Properties
3.5.1. Experimental

The absorption spectra of the Co nanoparticles synthesized at different radiation doses
from 10 kGy to 60 kGy are shown in Figure 4. The results showed that the absorbance
was enhanced via increasing the dose owing to the number of Co nanoparticles multiplied
with the increasing dose. Since the number of Co2+ ions that were reduced to zerovalent
Co0 atoms increased by increasing the radiation dose, this shows that the number of Co
nanoparticles of smaller sizes increased with an increasing dose.



Micromachines 2023, 14, 1383 8 of 14Micromachines 2023, 14, x FOR PEER REVIEW 8 of 14 
 

 

 

Figure 4. UV–visible absorption spectra of colloidal Co nanoparticles synthesized at doses from 10 

to 60 kGy. 

Table 1. Average particle sizes, maximum absorption peaks, and conduction energies of Co nano-

particles synthesized via the radiolytic reduction method at doses of 10 to 60 kGy. 

Dose 

(kGy) 

Particle Size 

(nm) 

Absorption Peak 

λmax (nm) 

Conduction Energy 

(eV) 

10 11.9 ± 0.8 517 2.398 

20 10.9 ± 0.6 516 2.403 

30 9.5 ± 1.4 515 2.408 

40 8.8 ± 1.4 514 2.412 

50 7.8 ± 1.1 513 2.417 

60 6.9 ± 1.7 512 2.423 

3.5.2. Theoretical Model and Simulation 

The theory of the light absorption of metal nanoparticles was presented using classi-

cal electrodynamics, which delineated the coherent oscillation of conduction electrons 

known as the localized surface Plasmon resonance (LSPR) [69]. However, the physical pa-

rameters of the particles are not expressed in the classical formulation. 

The current model is an effort to elucidate the UV experimental results of the Co 

nanoparticles. Our approach is to observe specific Co nanoparticles at various sizes ac-

quired from the experiment. The common factor of the optical properties of the Co nano-

particles would be the number of conduction electrons possessed by an individual Co 

particle which is directly contributing to the absorption spectrum. 

A theory of metal nanoparticles should consider the particle’s geometric structure 

and the electronic structures of metallic atoms. The conduction electrons of metal nano-

particles rely on several physical parameters, including particle size, crystalline structure, 

crystalline constant, the number of conduction electrons, and their quantum numbers. 

The optical absorption of metal nanoparticles may be depicted via quantum mechan-

ical interpretation through intra-band excitations of conduction electrons. 
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60 kGy.

In addition, the absorption maximum was blue-shifted toward a lower wavelength
with an increasing dose, demonstrating that the particle size decreases as the dose increases.
By decreasing the particle size, the conduction electrons are less attracted to the core of
the particle, and after receiving photon energy, they can be excited to higher energy levels,
yielding the blue shift.

The conduction band energy E of metal nanoparticles may be acquired from the
absorption maxima λmax according to E = hc/λmax, where h is Planck’s constant and c
represents the speed of light. The conduction band energy represents the amount of energy
required to excite the conduction electrons from the lowest energy state to higher energy
states impacted by UV-visible electromagnetic radiation.

The maximum absorption peaks and conduction energies of the Co nanoparticles
synthesized at doses from 10 to 60 kGy are exhibited in Table 1.

Table 1. Average particle sizes, maximum absorption peaks, and conduction energies of Co nanopar-
ticles synthesized via the radiolytic reduction method at doses of 10 to 60 kGy.

Dose
(kGy)

Particle Size
(nm)

Absorption Peak
λmax (nm)

Conduction Energy
(eV)

10 11.9± 0.8 517 2.398
20 10.9± 0.6 516 2.403
30 9.5± 1.4 515 2.408
40 8.8± 1.4 514 2.412
50 7.8± 1.1 513 2.417
60 6.9± 1.7 512 2.423

3.5.2. Theoretical Model and Simulation

The theory of the light absorption of metal nanoparticles was presented using classical
electrodynamics, which delineated the coherent oscillation of conduction electrons known
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as the localized surface Plasmon resonance (LSPR) [69]. However, the physical parameters
of the particles are not expressed in the classical formulation.

The current model is an effort to elucidate the UV experimental results of the Co
nanoparticles. Our approach is to observe specific Co nanoparticles at various sizes acquired
from the experiment. The common factor of the optical properties of the Co nanoparticles
would be the number of conduction electrons possessed by an individual Co particle which
is directly contributing to the absorption spectrum.

A theory of metal nanoparticles should consider the particle’s geometric structure and
the electronic structures of metallic atoms. The conduction electrons of metal nanoparticles
rely on several physical parameters, including particle size, crystalline structure, crystalline
constant, the number of conduction electrons, and their quantum numbers.

The optical absorption of metal nanoparticles may be depicted via quantum mechani-
cal interpretation through intra-band excitations of conduction electrons.

The density functional theory of conduction electrons may be achieved from the
Thomas–Fermi–Dirac–Weizsacker model, which is fundamental for all ground-state proper-
ties, such as the absorption of metal nanoparticles. The Euler–Lagrangian equation E[ρ(r)]
of this model can be written as:

5
3

Ck

∫
ρ(r)2/3dr +

η

8

[
|∇ρ(r)|2

ρ2(r)
− 2
∇2ρ(r)

ρ(r)

]
+ v(r) +

∫
ρ(ŕ)
|r− ŕ|dŕ− 4

3
Ce

∫
ρ(r)1/3dr = E0 (12)

where ρ(r) is the density of conduction electrons of a Co nanoparticle, E0 is the Fermi
energy, and r is the displacement of conduction electrons from the center of the spherical
nanoparticle, which is dependent on the Bohr radius a0, the atomic number Z, and the
principle, angular, and spin quantum numbers n, l, and, s, respectively.

In Equation (12), the first term is the Thomas–Fermi kinetic energy of the homogeneous
free electron gas, with Ck being a constant. The second term is the Weizsacker correction to
the Thomas–Fermi kinetic energy via the inclusion of the exchange and correlation energy
terms of inhomogeneous electron density, with η as a constant. The third term is the poten-
tial energy of the system. The fourth term represents the classical Coulomb potential energy
of electron–electron interactions. The last term is the non-classical exchange–correlation
energy, involving all the remaining quantum effects not captured by the kinetic energy and
the classical Coulomb potential, and Ce is the Thomas–Fermi–Dirac non-classical exchange–
correlation energy constant. The association between the density ρ(r) and absorption σ(r)
may be written as ρ(r) ≈ (Z/σ(r))3/2, where Z is the atomic number. The transformation
of the density energy functional E[ρ(r)] into absorption energy functional E[σ(r)] can be
attained mathematically.

In the calculation and simulation, each conduction electron is allowed to follow the
excitation event interactively from the lowest energy state to higher energy states near the
Fermi level to create the absorption spectrum.

Figure 5 displays the calculated and simulated absorption spectra, showing the ab-
sorption maxima designed for an isolated Co nanoparticle of a diameter from 7± 1 to
12± 1 nm.

The absorption peak is accredited to the intra-band quantum transitions from the low-
est energy state of {n = 3; l = 2} to the higher energy states of {n ≥ 4; ∆l = 0, ±1; ∆s = 0}.
It is clear that the theoretical absorption spectra (Figure 5) and the experimental absorption
spectra (Figure 4) are not similar in terms of the maximum intensity and the peak width.
The reason is that the calculated and simulated spectra were based on an isolated single Co
nanoparticle of a given diameter, while the measured spectra were obtained from many
synthesized Co nanoparticles of different diameters.
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Figure 5. Calculated and simulated absorption spectra for isolated Co nanoparticles of different diameters.

The absorption spectrum calculated and simulated through quantum mechanical treat-
ment demonstrates that the absorption maximum is red-shifted from 509.63 to 517.43 nm,
with an increase in the particle size from 6 to 12 nm. An increase in the absorption max-
ima displays a quantum confinement effect of nanomaterials. The calculated conduction
energies and maximum absorption peaks of the Co nanoparticles are shown in Table 2.

Table 2. The theoretically calculated conduction energies, maximum absorption peaks, and average
particle sizes of Co nanoparticles.

Particle Size (nm) Absorption Peak λmax (nm) Conduction Energy (eV)

6 509.63 2.433
7 511.52 2.424
8 513.52 2.415
9 514.47 2.410
10 515.41 2.406
11 516.42 2.401
12 517.43 2.396

3.6. Interpretation between the Measured and Simulated Absorption Spectra

According to Figure 4, the UV experimental absorption spectra reveal that the ab-
sorption increases with the number of particles present in the medium. The absorption
maximum is blue-shifted toward a lower energy wavelength as the particle size diminishes
at higher doses. On the other hand, in Figure 5, the calculated and simulated absorption
spectra include all conduction electrons present in the particle. Hence, a larger particle
size with more conduction electrons would yield a higher intensity absorption spectrum
since the number of iterations needed enhances larger particle sizes. The absorption maxi-
mum is red-shifted as the particle size enhances. The most important knowledge of the
experimental and theoretical absorption spectra is that the maximum absorption peaks
for a given particle size are coincidently in good agreement between the measured and
simulated results indicated in Table 3.
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Table 3. The simulated and measured values of the absorption peaks.

Particle Size (nm)
Absorption Peak λmax (nm)

Experiment Theory Difference (%)

12 517 517.43 0.083
11 516 516.42 0.081
10 515 515.41 0.080
9 514 514.47 0.091
8 513 513.52 0.101
7 512 511.52 0.094

A comparison between the experimental and theoretical absorption maxima of Co
nanoparticles at various particle sizes is demonstrated in Figure 6. The conduction band
data decreases with increasing particle size due to the quantum confinement effect of the
conduction electrons of the Co nanoparticles.
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The conduction band of the experiment reduced from 2.423 to 2.398 eV through the
increase in nanoparticle size from 7± 1 nm to 12± 1 nm. Furthermore, the theoretical
conduction band decreased from 2.433 to 2.396 eV via the increasing particle size.

The number of atoms is numerous for larger particles, and so the conduction electrons
are more attracted to the protons of the particle and decrease the conduction band energy,
whereas for the smaller particle sizes, there are fewer atoms, and the electrons are less
attracted to the core, increasing the conduction band energy of the Co nanoparticles.

4. Conclusions

The Co nanoparticles exhibited absorption maxima in the region of 517 nm, which is
blue-shifted with a decrease in particle size. The agreement between the measured and
theoretical absorption peaks indicates that those measured absorption peaks come from
the intra-band excitation of conduction electrons of {n = 3; l = 2} quantum energy states
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to higher quantum energy states. The reason must be associated with the dose, which
produces a particular particle size, which is the most important parameter in the calculation
to compare with the experimental results.

Hence, we conclude that in metal nanoparticles, the intra-band quantized excitation of
conduction electrons could occur from the lowest energy states to the highest energy states
when the particles receive energy from electromagnetic radiation. The new theory is funda-
mentally reliable for the quantum mechanical description of the absorption phenomenon
of metal nanoparticles.
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