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Abstract: In order to improve the production quality and qualification rate of chips, X-ray nondestruc-
tive imaging technology has been widely used in the detection of chip defects, which represents an
important part of the quality inspection of products after packaging. However, the current traditional
defect detection algorithm cannot meet the demands of high accuracy, fast speed, and real-time chip
defect detection in industrial production. Therefore, this paper proposes a new multi-scale feature
fusion module (ATSPPF) based on convolutional neural networks, which can more fully extract
semantic information at different scales. In addition, based on this module, we design a deep learning
model (ATNet) for detecting lead defects in chips. The experimental results show that at 8.2 giga
floating point operations (GFLOPs) and 146 frames per second (FPS), mAP0.5 and mAP0.5–0.95 can
achieve an average accuracy of 99.4% and 69.3%, respectively, while the detection speed is faster than
the baseline yolov5s by nearly 50%.

Keywords: chips; defects; deep learning; X-ray images

1. Introduction

There are three main stages in the production of chips: design, manufacturing, and
packaging and testing [1,2]. Among them, testing is an important part that determines
whether the chip can be put into the market or not. The frequent start and stop of electronic
devices can aggravate the thermal cycling stress of the chip [3], which can lead to structural
deformation, lead breakage, and even solder joint failure [4]. The defects, such as missing
and redundant chip solder joints, interconnections, and lead bonding fractures, are the
main components of the testing session. Detecting defects in chips is of great importance to
improve the quality of chips and reduce production costs.

In order to better ensure the quality of the chip, a number of researchers and scholars
have conducted a lot of research on lead bonding defect detection. Pecht et al. [5] used an
electromagnetic resonance technique instead of the conventional lead bond tension test to
detect the quality of lead bonding. Luo et al. [6] obtained the vibration of the wire by micro
force sensors and interpreted the vibration signal in time, frequency, and phase domains to
determine the integrity of the lead bonding. Feng et al. [7] evaluated bond quality using a
time-frequency analysis of the electrical signal at the bond obtained from the ultrasonic
generator. Kannan [8] proposed a technique based on the forced-resonance principle
for detecting multilead bonding. However, these physical inspection methods are only
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applicable to the inspection before the chip is packaged, and new defects may be generated
during the packaging process, so the chip needs to be reinspected after packaging.

The main defect of a packaged chip lies in the internal connection condition, so nonde-
structive X-ray inspection testing technology [9] should be used to reconstruct the internal
image of the chip for defect determination using image reconstruction technology [10]. In
actual production, since relying on the naked eye to discriminate X-ray chip images leads to
low efficiency and a high error rate [11]; the experience, energy, and emotion of the workers
can seriously affect the judgment results. In recent years, automatic vision-inspection tech-
nology (AVI) has been widely used in semiconductor defect inspection in order to reduce
manual misjudgment. Sreenivasan et al. [12] determined solder joint quality based on the
shape, size, and location of the solder joint. Huang et al. [13] introduced switching median
filtering in the Canny algorithm, and the results showed a more pronounced edge detection
of lead, along with better denoising. Perng et al. [14] were the first to propose a combination
of image processing techniques and lead bonding simulation for the automatic detection
of multilayer IC wire bonding locations. Lin et al. [15] proposed a spatial convolutional
attention mechanism (SCA) and designed a lightweight mobile network that performs well
in lead defect detection. Chan [16] combined machine learning, support vector machine
(SVM,) and Hoff circle transform algorithms to detect the quality of bonded balls, but man-
ual assistance is required to achieve higher accuracy. Xie [17] employed the utilization of
3D point cloud technology to identify lead bonding regions. They converted the extraction
process into a point cloud classification problem, resulting in the precise categorization of
lead bonding defects. Kao et al. [18] have developed a deep-learning-based solution aimed
at detecting the improper installation of wire bonding headers in wire bonding equipment,
resulting in significant cost reduction in manufacturing. Chen et al. [19] proposed a data-
driven approach consisting of data preprocessing, feature engineering, and classification
and combined this with neural networks to detect the quality of lead bonding. Although
computer vision detection methods have been widely applied to wire bonding detection,
there are still several significant issues that cannot be ignored: (a) Traditional machine
vision detection is slow and requires the design of different feature extraction algorithms
to extract various defect features; (b) there are multiple defect types and complex target
backgrounds that severely affect detection accuracy; (c) some current deep learning net-
work models have enormous computational and parameter requirements, placing high
demands on computer performance; (d) the inference speed of certain models fails to meet
the requirements. Therefore, this paper proposes a convolutional neural network-based
approach with higher speed and more accurate and lighter performance to implement in a
network for detecting lead bonding defects inside a chip.

Based on the above problems in this paper, we propose the ATSPPF module, which
can better fuse multi-scale features and can, at the same time, be adaptively weighted
according to the contributions to space and channels so as to extract more useful feature
information. In order to better detect lead bonding defects, we constructed a network with
faster detection speed and higher accuracy compared to yolov5 based on the proposed
ATSPPF module. We used X-ray equipment to obtain the internal lead bonding defect
images of defective chips and then trained the constructed dataset (WBD) on the network
model proposed in this paper. The network we designed stands out for its exceptional
speed and accuracy in comparison to existing advanced detection methods. The main
components and highlights of the paper are summarized as follows:

1. A novel ATSPPF module is introduced, which enables comprehensive feature extrac-
tion. This module effectively combines features from various scales and employs
adaptive weighting in both the spatial and channel domains to enhance the expression
of features;

2. Based on the ATSPPF module, an accurate and fast chip wire bonding defect detection
model framework, ATNet, was specifically designed to achieve the automated, rapid,
and highly accurate detection of lead bonding defects;
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3. Within the dataset, the average detection accuracy (mAP0.5) achieved was an impres-
sive 99.4%, while the detection speed reached 146 frames per second (FPS), outper-
forming other state-of-the-art networks, such as yolov5s and yolox.

2. Related Work
2.1. Data Acquisition and Augmentation

Due to the special nature of chip inspection, CT equipment is used to obtain the
internal defects of the chip. As shown in Figure 1, the chip is placed on a rotating platform,
and X-rays pass through the chip; the X-ray intensity will be attenuated to different degrees,
and the detection panel will receive the attenuated X-ray intensity. Finally, by leveraging
the intensity information of the rays, an X-ray image is reconstructed to depict the internal
structure of the chip accurately. Pre-processing the obtained images is an important step
to improve the correct rate of detecting lead bonding defects. In order to obtain better
image quality and reduce the effect of noise on subsequent detection, image denoising is
performed on the acquired images. In this paper, we first implement a typical method based
on a median filter to remove the pepper noise from the image. With this nonlinear filtering
process, the noise caused by various signal transmission errors can be well removed,
while the edge information of the lead is well preserved. The wire part of the image is
subsequently cropped to obtain the region of interest (ROI), which can largely reduce the
influence of the background on the recognition results.
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Figure 1. Schematic diagram of the CT equipment.

As shown in Table 1, there are five types of lead chip bonding defects in this paper,
namely: high loop, low loop, broken wire, sagged wire, and missing wire. Sample images of
these defects and the process of extracting ROI regions are shown in Figure 2. The amount
of data has a great impact on network training. Data expansion can make the network
have better generalization and robustness and can prevent the network from over-fitting.
Generally, image data can be expanded by random scaling, stretching, shearing, rotating,
changing transparency, brightness, and other operations. In addition, some other scholars
have proposed more unique data-enhancement methods, such as Mixup [20], Mosaic [21],
and CutMix [22]. Therefore, to enhance the network’s generalization and robustness, the
random combination of random scaling, cutting, rotating, and changing transparency and
brightness is used to expand the data of the obtained image, and a set of lead defect data
(Dataset-WBD) is constructed for training the network.

Table 1. Five chip defect types and the number of each type of defect collected.

Sample

Micromachines 2023, 14, x FOR PEER REVIEW 4 of 17 
 

 

 
Figure 2. Shows the image preprocessing section and the extraction method flow for obtaining ROI 
prefetching. 

Table 1. Five chip defect types and the number of each type of defect collected. 

Sample 

 

 
 

    

Number 712 724 642 664 656 
Type high loop broken wire low loop wire missing sagged wire 

2.2. Object Detection 
Currently, the majority of target detection networks can be categorized into three 

components: the backbone, neck, and detection head. The backbone part is used to extract 
the semantic features of the image; the neck part is to operate the features extracted at 
different stages of the backbone to make better use of the feature map, and the detection 
head is to detect the predicted object and the specific location of the object. 

Backbone: The selection of an appropriate backbone network plays a crucial role in 
determining the overall performance of the network, so the selection of a backbone should 
conform to the characteristics of the dataset. At present, the main backbone networks in-
clude ResNet [23], MobileNet [24], Darknet 53 [25], Swin Transformer [26], VGG [27], etc. 
These backbone networks have fully verified their advantages in feature extraction in 
many experiments. On the basis of these backbone networks, researchers have fine-tuned 
them as their own backbone networks so as to make them more suitable for their own 
datasets. 

Neck: Early networks, such as VGG, AlexNet [28], and Resnet, only used simple con-
volution operations to predict the final layer of the feature extraction network. However, 
the deep network is not sensitive to small target objects, so it often has no good effect on 
detecting small target tasks. In order to effectively avoid this problem, Lin et al. [29] de-
veloped an architecture with a horizontal connection and a top-down channel (FPN struc-
ture), which is used to fuse adjacent feature maps, make information flow between adja-
cent layers, form multi-scale feature maps, and enhance feature extraction. Szegedy et al. 
[30] pointed out that more network branches would reduce the parallelism of the model. 
Therefore, the recognition speed of the network will be reduced to a certain extent after 
the introduction of the FPN structure, but the detection accuracy will be greatly improved. 
Liu et al. [31] introduced a new bottom-up aggregation path based on the FPN structure, 
which enhances and shortens the information path between the top and bottom layers. In 
addition to the several different neck layer structures and methods mentioned above, 
there are also methods of path aggregation, such as BiFPN [32] and ASFF [33]. 
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ROI prefetching.

2.2. Object Detection

Currently, the majority of target detection networks can be categorized into three
components: the backbone, neck, and detection head. The backbone part is used to extract
the semantic features of the image; the neck part is to operate the features extracted at
different stages of the backbone to make better use of the feature map, and the detection
head is to detect the predicted object and the specific location of the object.

Backbone: The selection of an appropriate backbone network plays a crucial role in
determining the overall performance of the network, so the selection of a backbone should
conform to the characteristics of the dataset. At present, the main backbone networks
include ResNet [23], MobileNet [24], Darknet 53 [25], Swin Transformer [26], VGG [27], etc.
These backbone networks have fully verified their advantages in feature extraction in many
experiments. On the basis of these backbone networks, researchers have fine-tuned them
as their own backbone networks so as to make them more suitable for their own datasets.

Neck: Early networks, such as VGG, AlexNet [28], and Resnet, only used simple con-
volution operations to predict the final layer of the feature extraction network. However,
the deep network is not sensitive to small target objects, so it often has no good effect on
detecting small target tasks. In order to effectively avoid this problem, Lin et al. [29] devel-
oped an architecture with a horizontal connection and a top-down channel (FPN structure),
which is used to fuse adjacent feature maps, make information flow between adjacent
layers, form multi-scale feature maps, and enhance feature extraction. Szegedy et al. [30]
pointed out that more network branches would reduce the parallelism of the model. There-
fore, the recognition speed of the network will be reduced to a certain extent after the
introduction of the FPN structure, but the detection accuracy will be greatly improved.
Liu et al. [31] introduced a new bottom-up aggregation path based on the FPN structure,
which enhances and shortens the information path between the top and bottom layers. In
addition to the several different neck layer structures and methods mentioned above, there
are also methods of path aggregation, such as BiFPN [32] and ASFF [33].

Head: This part is to recognize the feature map of the target extracted from the Neck
part. At present, there are two main head detectors: one-stage and two-stage. The one-
stage target detector directly predicts the feature map, while the two-stage detection is
different from the one-stage detector. It utilizes the region proposal network (RPN) to select
candidate regions on the feature map and then identifies and locates the candidate regions.
The two-stage detector can generally obtain more accurate results, but the detection process
requires the use of the RPN network to select a specific area, which can lead to a slow
detection speed. The one-stage detector offers a faster detection speed compared to the
two-stage detector, but it may result in relatively lower detection accuracy.
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2.3. The Position of the Target Object

In yolov5, each grid in the feature map of the prediction head section generates three
prediction frames of different scales to predict the exact location of the target, so an object
in the original map is covered by multiple prediction frames at the same time. In order to
select the most suitable predictor box, the box with the largest intersection-to-parallel ratio
(IOU) is chosen as the predicted target object location. However, there is no intersection
between the real frame and the prediction frame, which will result in a loss of 0. The
gradient cannot be backpropagated, and training is not possible. Moreover, since the real
frame will have a certain tilt angle, it will lead to the inability to select the most suitable
prediction frame with the same intersection ratio. Rezatofighi [34] proposed the concept
of GIOU on the basis of IOU, which is used to calculate the minimum area of the region
that encloses the real frame and the predicted frame and then calculate the proportion of
the region that does not belong to the two frames in the region, and finally subtract this
proportion from IoU to get GIoU. It can not only well reflect the overlap between the real
frame and the predicted frame part but can also pay more attention to the non-overlapping
part of the region, which can better reflect the overlap between the two. Zheng et al. [35]
proposed DIOU, with a faster convergence rate, which can directly minimize the distance
between two target frames and provide direction for the movement of the prediction frame.
Meanwhile, Zheng introduced a weight parameter to extend DIOU and propose CIOU.
This modification aims to address the issue of varying width and height between the
predicted frame and the actual frame, thereby optimizing the overall performance. In order
to optimize the training results, CIOU is used as the position loss of the prediction frame in
this paper. The equation for computing CIOU can be represented as follows.

CIOUdist = IOU −
(

ρ2(box1, box2)

c2 + αυ

)
, (1)

where ρ2(box1, box2) denotes the Euclidean distance between the centroid of box1 and box2.
c denotes the diagonal distance of the smallest closed region that can contain both box1 and
box2. In Formula (3), ωgt, hgt, ω, and h represent the width and height of the real frame and
the width and height of the prediction frame, respectively.

The formulas for α, υ, and LOSSCIOU are as follows.

α = v/(1− IOU + v), (2)

v =
4

π2

(
arctan

ωgt

hgt − arctan
ω

h

)2

, (3)

LOSSCIOU = 1− IOU +
ρ2(box1, box2)

c2 + αv, (4)

2.4. Activation Functions

In artificial neural networks, the activation function plays a very important part,
similar to the model of neurons in the human brain, where the activation function ul-
timately decides what to send to the next neuron. Its main role is to add a nonlinear
operation to all implicit and output layers, enhancing the intricacy and expressiveness
of the neural network’s output. The commonly used activation functions are Sigmoid,
Tanh, ReLU, LeakyReLU, SELU, and SiLU. In this paper, we mainly use two activation
functions, LeakyReLU and SiLU, for which the expressions and corresponding first-order
f ′(x) derivatives are as follows.

The SiLU activation function is expressed as follows, where σ(x) is the sigmoid
activation function, and x is the input:

f (x) = x·σ(x), (5)
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f ′(x) = f (x) + σ(x)(1− f (x)), (6)

The LeakyReLU activation function, where α is a constant with a value of 0.01:

f (x) =

{
αx x < 0
x x > 0

, (7)

f ′(x) =

{
α x < 0
1 x > 0

, (8)

3. Methodology

The Yolov5 framework utilizes C3 as the backbone layer, which enables it to recognize
more intricate features. In this study, we propose the CGC module, building upon the
structure of C3. Additionally, we introduce a novel feature fusion method called ATSPPF.
This method adaptively assigns weights based on the contributions from spatial and
channel dimensions, enhancing the network’s sensitivity to valuable spatial and channel
information. By incorporating these advancements, the network becomes more proficient
at identifying lead bonding defects across multiple scales. Yolov3-tiny, known for its fast
detection speed due to its low computational requirements and simple network structure,
excels in swiftly detecting simple features in industrial settings. Hence, we combine
the network architecture of yolov3-tiny with the CGC module and ATSPPF module to
propose ATNet, a network specifically designed for lead bonding defect detection. Figure 3
illustrates the structure of ATNet. Detailed descriptions of the CGC module and ATSPPF
module proposed in this study will follow.
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3.1. CGC Module

The C3 structure consists of three convolutional operations followed by a bottleneck
layer. On the other hand, the CGC module modifies the bottleneck layer in C3 by substi-
tuting it with Ghostconv. Additionally, one of the convolution operations in the branch is
eliminated and replaced with a residual connection. Experiments in Dataset-WBD showed
that the use of the CGC module could improve mAP0.5 and mAP0.5–0.95 by 0.5% and 1.5%,
respectively, compared to the use of the C3 module.



Micromachines 2023, 14, 1375 7 of 15

Han et al. [36] pointed out that due to the process of feature extraction by the network,
a significant portion of redundant and duplicated features can occur if the number of
channels is too large. Therefore, to achieve a better balance between extracting enough
features and computational cost, the Ghostconv module was proposed. When compared
with standard convolution, ghost convolution results in a substantial decrease in both
computational workload and parameter quantity and the result of feature extraction is not
much different from normal convolution. In this paper, we detail how the CGC module
is constructed based on adopting Han’s similar idea. As illustrated in Figure 4, the CGC
module uses a residual structure. Firstly, the number of channels will be reduced to c/2
using a standard convolution of 3 × 3. The result is input into Ghostconv, and then,
by utilizing a 1 × 1 convolution, the number of channels is expanded to align with the
dimensions of the original input feature map. This enables the addition operation to be
carried out between the original input feature map and the resultant feature map. The
inclusion of the residual connection guarantees the stability of the network.
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In order to address the problems of gradient vanishing, gradient explosion, and
overfitting that may be caused by the network depth being too deep, a residual connection
is introduced into the CGC module, and the network’s capacity for learning is enhanced
at the same time. The residual connection can be represented by the following equation.
Where Hl denotes the input, Hl+1 denotes the output, the nonlinear variation of the input
is defined as F(x,w), and w denotes the weight parameter of the function F.

Hl+1 = Hl + F(xl , w, b), (9)

By incorporating the Ghostconv module and residual structure into the CGC mod-
ule, several benefits are achieved. These include significant reductions in computational
requirements, the acquisition of ample features, and ensuring network stability.

3.2. ATSPPF Module

VoVNet [37] incorporates the one-shot aggregate (OSA) module as its backbone,
which enhances both the recognition speed and accuracy of the network when compared
to the baseline DenseNet. Lee et al. [38] introduced residual connectivity and an effective
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squeezed excitation attention module (eSE) based on OSA, which avoids performance
degradation due to the depth of the network being too deep while using eSE to further
enhance the features. Inspired by this, a new spatial scale fusion module (ATSPPF) is
proposed in this paper, and the specific structure diagram is shown in Figure 5 below.
After performing standard convolution operations on the input features, we utilize three
maximum pooling operations with kernel sizes of 5 × 5, 9 × 9, and 13 × 13 to extract
feature information at various scales. These pooling operations ensure that features across
different scales are preserved. The resulting feature maps from convolution and pooling are
then stacked along the channel dimension to avoid any loss of feature information. Finally,
a standard 1 × 1 convolution is employed to reduce the number of channels from 4C to C.
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For the target detection task compared to the classification task, the size of the features
to be recognized varies, so using feature maps of different scales can be more beneficial for
detection. In order for the network to enhance its focus on the valuable feature channel
information and spatial information and selectively ignore some less important feature
channels, the CBAM attention mechanism module can be introduced at the end in parallel.
Then, the number of channels of 2c is again transformed into c for subsequent residual
connections, and finally, the residual connections are used to ensure the stability of the
network. Table 2 presents the detailed structure of the ATSPPF module.

3.3. Feature Map

Different feature maps have different sensory receptiveness and different sensitivities
to the same size lead bonding defects. Yolov5s eventually predicts feature maps of 19 × 19,
38 × 38, and 76 × 76 in size. Among them, the 76 × 76 feature map is more suitable
for detecting small targets, while for medium and large targets, feature maps of 19 × 19
and 38 × 38 in size are more effective. As illustrated in Figure 6, the feature maps are
76 × 76, 38 × 38, and 19 × 19 from left to right scale, respectively. For the 76 × 76 feature
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map, the resulting anchor box is too small to completely contain the defective parts, while
for the 19 × 19 and 38 × 38 feature maps, recognition is better. Therefore, in order to
reduce the complexity and computational effort of the network, we use feature maps of
13 × 13 and 26 × 26 in size based on yolov3-tiny. There are three different feature scales
and corresponding anchor sizes of yolov5s. In Figure 6, the sizes of the anchors are not in
proportion to the real anchor frame size, and this just wants to express that the different
sizes of anchors will affect whether the objects can be detected.

Table 2. Detailed architecture of ATSPPF.

Layer Name Filters Output Shape

CBL 128 20 × 20 × 128
MaxPool (k = 5) / 20 × 20 × 128
MaxPool (k = 9) / 20 × 20 × 128

MaxPool (k = 13) / 20 × 20 × 128
Concat / 20 × 20 × 512

CBL 256 20 × 20 × 256
CBAM 256 20 × 20 × 256
Concat / 20 × 20 × 512

CBL 256 20 × 20 × 256
Add / 20 × 20 × 256
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Architecture: Based on the CGC and ATSPPF modules, this paper proposes an ATNet
network with a strong feature-extraction ability and detection speed. The ATSPPF module
is integrated at the end of the backbone network to facilitate the processing of significant in-
formation and bring the enhanced features closer to the output layer, resulting in improved
accuracy for recognition outcomes.

4. Experiments
4.1. Experimental Setup

We implement our net using PyTorch deep learning framework and train it on an
NVIDIA GeForce RTX 3050 graphics card 4G and an Interl 2.30GHz i7-11800H CPU.
Dataset-WBD is divided into a train set and a test set according to the proportion of 90%
and 10%. The training set is employed to optimize network parameters by minimizing
the loss function, while the test set is utilized to assess the trained network’s accuracy
in detecting wire bonding defects. The network is trained with the Stochastic Gradient
Descent (SGD) optimizer with a linear decay learning rate scheduling strategy, in which
the learning rate is initially set to 0.01 and gradually reduced to 0.001. We specify the batch
size as 8, the momentum parameter as 0.937, and the weight decay rate as 0.0005. The input
image is uniformly transformed to 640 × 640 size and normalized. The anchor dimensions
were set to [10, 14], [23, 27], [37, 58] on the feature map of p/16 and [81, 82], [135, 169], [344,
319] on the feature map of p/32.

4.2. Evaluation Criterion

In the task of chip defect target detection, the Intersection over Union (IOU) is em-
ployed to assess whether a detected result corresponds to a true defect. If the IOU value
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surpasses the predetermined threshold (usually set at 0.5), it is classified as a positive sam-
ple; otherwise, it is regarded as a negative sample. In the target detection task, precision
and recall are crucial metrics for evaluating the performance of network recognition, which
are defined as follows:

Precision = TP/(TP + FP), (10)

Recall = TP/(TP + FN), (11)

where TP (true positive) refers to the number of true defects detected; FP (false positive) is
the number of incorrectly predicted defects, which are not defects; and FN (false negative)
indicates the number of actual defects missed. Note that (TN) (true negative) indicates the
number of samples correctly predicted to be negative. For the prediction frames detected
by the network, the discrimination between TP or FP is determined by the ratio of the
overlap area between the prediction box and the true box, which is defined as follows.

γ = area(A ∩ B)/area(A ∪ B), (12)

where γ is the overlap ratio, A ∩ B represents the intersection area between the true box
and the predicted box, and A ∪ B represents the total area between them. It will be set
to 0.5 in this experiment. mAP0.5 refers to the average accuracy when the IOU is 0.5, and
mAP0.5–0.95 refers to the average accuracy of 0.5 in increments of 0.05 to 0.95. In this paper,
mAP0.5 and mAP0.5–0.95 are used to evaluate the indicators for judging the comprehensive
ability of all categories and choose the time complexity GFLOPs and the space complexity
parameters to represent the differences between the different methods.

4.3. Ablation Studies

We utilized ablation experiments to assess the benefits of the CGC module and the
ATSPPF module, which were introduced in this paper, on the ATNet network. The out-
comes of the experiments are presented in the following Table 3. Experiment 2 is 0.1%
and 1% higher than Experiment 1 in mAP0.5 and mAP0.5–0.95, respectively, while the de-
tection speed is also improved by nine frames. In experiment 3, after adding the ATSPPF
module, the mAP0.5–0.95 is 1.8% higher compared to experiment 1. In experiment 4, after
introducing both CGC module and ATSPPF module, the mAP0.5 and mAP0.5–0.95 can reach
99.4% and 69.4%, respectively, and the detection speed can reach 146 (FPS). In order to
detect wire bonding defects in real time and accurately in production, the combination of
comprehensive comparison experiment 4 is more consistent with the requirements. The
attention mechanism is incorporated into the ATSPPF module.

Table 3. Ablation study of ATNet.

Number C3 CGC ATSPPF mAP0.5 mAP0.5–0.95 FPS

1 X — — 0.992 0.677 142
2 — X — 0.993 0.687 151
3 X — X 0.989 0.695 97
4 — X X 0.994 0.693 146

At present, three attention mechanism modules are commonly used: SE, CA, and
CBAM. As shown in Table 4, after introducing three different attention mechanism modules
into the ATSPPF module, the CBAM detection yields the highest result among the three
options. Therefore, we use CBAM as the attention module in ATSPPF.
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Table 4. Comparison of the effects of different attention mechanisms in the ATSPPF module.

SE CA CBAM mAP0.5 mAP0.5–0.95

X — — 0.992 0.692
— X — 0.992 0.687
— — X 0.994 0.693

4.4. Comparison of State-of-the-Art Models

Here, we benchmark our approach against state-of-the-art defect detection methods.
Table 4 lists the details of different performance indicators (mAP0.5, FPS, GFLOPs). It
can be seen from Table 5 that the method proposed in this paper has great advantages in
precision and detection speed compared with other methods. The detection results can
be guaranteed that mAP0.5 reaches 99.4% when the detection speed is 146 FPS. For Faster
R-CNN-ResNet50, Dynamic RCNN-ResNet50, and RetinaNet-ResNet50, their detection
speed is less than 30 FPS, which is far from the requirement of real-time wire bonding
detection. Due to their great GFLOPs, these methods also have high hardware requirements.
Compared with YOLOv3-tiny, which has a similar network structure, the detection accuracy
and speed of both are similar, but our method is much lower than YOLOv3-tiny in terms of
both model size and computational complexity (GFLOPs), and the detection speed is nearly
50% higher than the baseline yolov5s. Our method has demonstrated its effectiveness in
detecting defects, as illustrated in Figure 7. The detection results of our approach on the
test dataset of Dataset-WBD are depicted.

Table 5. The recognition results in comparison to the state-of-the-art methods on the WBD dataset.

Method mAP0.5 (%) FPS GFLOPs (G) Params (M)

Faster R-CNN-ResNet50 95.8 23 250.0 108.0
Dynamic R-CNN-ResNet50 95.9 21 248.5 107.0

RetinaNet-ResNet50 95.9 28 227.9 93.4
SSD300-VGG16 94.4 56 30.8 92.5

VFNet-ResNet50 95.1 21 224.5 98.3
Yolov5n 98.8 105 4.5 1.9
YOLOv3 98.8 64 155.0 117.0

YOLOv3-tiny 99.2 143 13.0 8.28
YOLOv5s 99.1 96 16.0 7.2
YOLOXs 97.1 56 13.2 8.5

GhostNet-YOLOv5s 99.0 53 8.3 5.4
ATNet(ours) 99.4 146 7.2 3.97Micromachines 2023, 14, x FOR PEER REVIEW 12 of 16 
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In addition, in order to validate the effectiveness of the ATSPPF module, the module
was introduced into the backbone tail part of other networks for training, and the results
are shown in Table 6. From the table, it is apparent that the introduction of the ATSPPF
module improves the Recall and mAP0.5–0.95 of the yolov3 network by 0.8% and 1.1%,
respectively. In Faster-RCNN, although there is a small decrease in Recall, the accuracy
is improved by 0.3%, and both mAP0.5 and mAP0.5–0.95 have a larger improvement. For
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different SSD backbone networks, almost four indicators have been improved to varying
degrees. In addition, for the three networks, YoloR [39], LFyolo [40], and Sclaed_yolov4,
the overall comprehensive detection performance has also been improved by introducing
the ATSPPF module at the end of the feature extraction network. This shows that ATSPPF
uses a pooling operation to fuse receptive field with different scales and introduces an
attention mechanism, which can extract multi-scale information of the image, making
the feature map have more abundant expression ability, thus effectively improving the
detection performance of the model. In the network architectures of YOLOv5 and YOLOv3,
both models incorporate three detection heads. This necessitates the network to allocate
additional time for positional regression of targets detected by different prediction heads.
However, it is possible that an object may be detected simultaneously by two detection
heads, significantly impacting the convergence speed of the network. Therefore, as depicted
in Figure 8, it can be observed that ATNet, which incorporates two detection heads, achieves
faster convergence rates than YOLOv5 and YOLOv3 across three metrics: mAP0.5, recall,
and precision. This also reflects the effectiveness of the ATSPPF module and the network
structure we have designed from another perspective.

Table 6. The recognition results in comparison to the state-of-the-art methods.

Method Backbone Recall Precision mAP0.5 mAP0.5–0.95

Original

Yolov3 \ 0.988 0.993 0.988 0.703
Faster-rcnn resnet50 0.990 0.984 0.958 0.692

SSD vgg16 0.938 0.952 0.944 0.681
SSD mobilenetv2 0.942 0.957 0.935 0.686

YoloR \ 0.965 0.956 0.961 0.689
LFyolo \ 0.981 0.978 0.971 0.699

Sclaed_yolov4 \ 0.931 0.956 0.959 0.708

With ATSPPF

Yolov3 \ 0.996 0.997 0.992 0.719
Faster-rcnn resnet50 0.987 0.987 0.965 0.698

SSD vgg16 0.945 0.966 0.957 0.690
SSD mobilenetv2 0.954 0.953 0.942 0.692

LFyolo \ 0.959 0.966 0.984 0.696
YoloR \ 0.987 0.982 0.981 0.709

Sclaed_yolov4 \ 0.961 0.966 0.976 0.711

In order to validate the generalization performance of our method, we performed
training on the publicly available dataset NEU-DET [41] and compared the experimental
results. The results are shown in Table 7. The NEU-DET dataset has more complex defect
types and is more difficult to detect. Although Yolov3-tiny has a similar structure to our
method, Table 6 shows that our method has both 19.4% and 15% higher indicators in
mAP0.5 and mAP0.5–0.95 than Yolov3-tiny. In addition, it performs better on this dataset
than other networks. This indicates that our approach demonstrates superior performance.

Table 7. Comparison of recognition results for the NEU-DET dataset with state-of-the-Art methods.

Method mAP0.5 (%) mAP0.5–0.95 (%) GFLOPs (G) Size (M)

YOLOv5-mobilenetv3 67.6 32.6 11.3 13.8
YOLOxs 63.3 31.2 13.2 68.5

SSD300-VGG16 67.6 29.6 30.8 186.0
YOLOv7-tiny 65.5 29.1 13.2 12.3

YoloR 61.8 26.2 80.7 141.0
LF-YOLO 59.5 23.4 16.3 14.9

PicoDst-s [42] 59.1 24.3 13.8 3.1
Yolov3-tiny 52.1 20.2 13.0 17.5
YOLOv5s 69.8 32.5 16.0 6.7

ATNet(ours) 71.5 35.2 7.2 8.5
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5. Conclusions

Wire bonding defect detection after chip packaging is essential to reduce production
costs, improve chip life, and ensure the normal operation of equipment. Therefore, this
paper proposes an automatic real-time chip detection method based on a convolutional
neural network. We designed two modules: the CGC and ATSPPF modules, and based on
the highly efficient network structure of yolov3-tiny, we have proposed an ATNet defect
chip detection network using these two modules. The experimental results indicate that
the mAP0.5 and detection speed of the ATNet method are 99.4% and 146 fps, respectively,
which are much higher than our baseline yolov5. The GFLOPs and model size were also
reduced by 48.75% and 35.82%, respectively, and the detection speed has seen a near 50%
improvement. At the same time, for the mAP0.5, recall rate, and recognition accuracy,
ATNet converges faster than yolov5s. In the future, we will continue to optimize the
algorithm to achieve higher accuracy, faster detection speeds, and lower model complexity.
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