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Abstract: Laser powder bed fusion (LPBF) is of great importance for the visual measurement and
analysis of the metallization process, which is the process of solid, liquid, and gas phase transfor-
mations of metal powders under high-energy laser irradiation due to the low boiling point/high
saturated vapor pressure. Since the evaporation of metals involves the interaction of driving forces
such as vapor back pressure, surface tension, and gravity, the movement of the melt pool is not stable.
At the same time, it also produces vaporization products such as vapor plumes and sprays, which
cause defects such as bubbles, porosity, lack of fusion, inclusions, etc., during the manufacturing
process of the parts, affecting the performance and manufacturing quality of the parts. More and
more researchers are using imaging technologies, such as high-speed X-ray, high-speed visible light
cameras, and high-speed schlieren imaging, to perform noncontact visual measurements and analyses
of the melt pool, vapor plume, and spatter during the metal evaporation process, and the results
show that the metal evaporation process can be suppressed by optimizing the process parameters and
changing the processing atmosphere, thereby reducing part defects and improving part performance
and built part quality. This paper reviews the research on metal evaporation mechanisms and visual
measurement methods of metal evaporation, then discusses the measures of metal evaporation, and
finally summarizes and prospects the future research hotspots of LPBF technology, according to the
existing scholars’ research on numerical simulation analysis and visual measurement methods of the
metal evaporation process.

Keywords: laser powder bed fusion; metal evaporation; melt pool; evaporation products; visual
measurement

1. Introduction

Additive manufacture (AM) technology (also known as 3D-printing technology) is
a new production technology developed in the late 1980s [1–3]; the processing principle
is the opposite of traditional additive and subtractive production technology [4], with a
parts production process using layer-by-layer stacking production process [5]. The tech-
nology offers design flexibility, the printing of complex components [6], and lightweight,
personalized design [7]; Mg, Cu, Fe, Al, Mo, and other metals and their alloys can be
formed [8–21], so it is widely used in the aerospace, energy, biomedical, and automotive
industries and other fields of metal parts manufacturing [22]. The metal manufacturing
processes mainly include equal-material manufacturing, subtractive manufacturing, and
additive manufacturing, as shown in Figure 1 [23]. Metal additive manufacturing is one
of the most difficult and advanced additive manufacturing technologies; among metal
additive manufacturing technologies, direct energy deposition (DED) [24,25] and powder
bed fusion (PBF) [26,27] techniques are the most widely used. Powder bed fusion (PBF) is
an additive manufacturing technology used to produce metal parts from metal powder raw
materials with two types of input energy: laser and electron [28–30]. Among these, LPBF
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has become a key technology for metal additive manufacturing because of its excellent
mechanical properties and high accuracy of formed parts [31]. The LPBF process and gas
circulating system is schematically shown in Figure 2 [32]. Figure 2a shows LPBF process
equipment, which mainly consists of a laser, scanning mirror, f-θ lens, protecting mirror,
scraper, substrate, gas pump, and powder bin. Figure 2b shows the schematic diagram
of the circulation of the gas in the forming vessel. This process is also known as selective
laser melting (SLM), direct metal laser sintering (DMLS), or laser metal melting (LMF) due
to the selective melting of metal powders by a high-energy laser beam on a powder bed
according to a designed digital model [33,34]; the printing process of the LPBF technology
is shown in Figure 3. At present, LPBF technology has been successfully used to print on
Mg, Cu, Fe, Al, Mo, and other metals and their alloys, and the formed metal parts have
been widely used in military and civilian applications. LPBF technology has a promising
future in aerospace fuel nozzle fabrication [35], automotive engine bay fabrication [36],
biomedical bone implant fabrication [37], and more. The use of LPBF technology to produce
high-quality, high-performance metal parts has become a sought-after goal with the in-
creasing demand for performance and quality metal parts in various fields. However, LPBF
technology is affected by material properties, process parameters, and the external environ-
ment, resulting in defects such as spheroidization, porosity, alloy loss, cracking, warping,
spalling, incomplete fusion, and inclusions in metal parts, reducing part performance and
forming quality [38–43]; potential defects in LPBF-produced parts are shown in Figure 4.
In order to improve the forming quality of the parts and to reduce the defects in the parts,
more and more scholars have begun to study the physical and kinematic processes of the
interaction of the laser and the metal powder. In the LPBF process, metal vaporization
occurs in addition to the melting of metal powder, and this vaporization has significant
effects on the LPBF process and is the key to the quality control of metal parts [44,45].

The LPBF technique is a process of interaction between a high-energy laser and a metal
powder, which undergoes changes between the solid, liquid, and gas phases under the
irradiation of a high-energy laser, resulting in metal vaporization [46]. Metal vaporization
has the following effects: (1) the vaporization of the metal creates vapor recoil pressure
above the melt pool, which in turn leads to keyhole cavities in the melt pool, accelerating
the flow of liquid in the melt pool while also predisposing the metal to defects such as
porosity [47]; (2) metal vaporization can cause alloying elements to burn out and distort
the composition of the metal material, affecting the mechanical properties of the part [48];
(3) the metal evaporation process will produce plumes and spatters and other evaporation
products, affecting the fluidity of the melt pool. Plumes, spatters, and other evaporation
products, on the one hand, will hinder the propagation of high-energy laser radiation,
resulting in the metal powder being unable to fully absorb the high-energy laser and the
production of an unstable melt pool, destroying the continuity and uniformity of the melt
trajectory; meanwhile, sputtering will sputter down to the powder bed, affecting the quality
of powder deposition [49]. On the other hand, it will gradually fall on the laser protection
mirror, causing optical system damage. Therefore, defects such as porosity, spheroidization,
lack of fusion, slagging, etc., are directly related to the vaporization of the metal [50–54],
especially for metallic materials such as Mg, Zn, Al, and their alloys, which are prone to
vaporization and have important applications. Therefore, it is important to understand the
process of laser interaction with metal powders and to make visual measurements of the
metal vaporization process [55–60]. The laser–metal powder interaction process is a highly
dynamic and complex behavior that is a challenge to study. A deeper understanding of
the metal evaporation process is lacking [61,62], and visual measurement of it can help
us gain a deeper understanding of the physical and kinematic processes behind it, and
thus reduce part defects through the optimization of process parameters and control of
factors such as the building atmosphere. Recently, it has been found that more and more
studies emphasize the effect of metal evaporation [63]. Researchers have used visual
measurement methods, such as high-speed X-ray imaging [64,65], high-speed visible
camera imaging [66,67] and high-speed schlieren imaging [68,69], to analyze the metal
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evaporation process and clearly monitor the interaction process between the laser and metal
powder. Therefore, considering the future development of LPBF technology applications for
additive manufacturing, this paper summarizes the current visual measurement methods
for the metal evaporation process, so that more researchers can understand different visual
measurement methods and then solve metal evaporation problems. This review paper is
organized as follows: Section 2 first explains the mechanism of metal evaporation; Section 3
discusses the visual measurement methods for metal evaporation; Section 4 discusses metal
evaporation suppression measures; and Section 5 provides a conclusion.
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2. Mechanism of Metal Evaporation in the LPBF Process

Metal vaporization is an important physical phenomenon during the interaction
between laser and metal powder, which is the key to melt pool characteristics and form-
ing quality [70], and by studying the interaction between laser and metal powder, the
mechanism of defect generation in LPBF and the factors affecting its forming quality can
be revealed. The degree of vaporization varies from one metal material to another due
to different metal material characteristics and process conditions [71]. Metal evapora-
tion involves rapidly melting metal powder material by high-energy laser radiation and
forming melt puddles as the material temperature reaches the melting point; as the tem-
perature continues to approach the boiling point, the metal vapor suddenly expands into
the surrounding air. The vapor expansion creates vapor recoil pressure on the molten
surface [72], which increases its penetration depth and creates a gas-filled or plasma-filled
depression, often referred to as a keyhole [51]. Porosity defects are caused by keyhole
collapse, trapping shielding gas in the melt pool [73] and creating porosity defects, while
the high saturation vapor pressure of alloying elements exerts recoil pressure on the melt
pool liquid surface [74], causing unstable melt pool flow and droplet splashing, increasing
porosity and other defects. At the same time, metal vaporization causes volatile alloy-
ing elements to evaporate, resulting in alloy composition segregation, which affects the
chemical composition, microstructure, and properties of the part [75]. LPBF is an intense
form of laser-induced metal evaporation due to the high energy density of the laser power
and the fast-scanning speed, so more severe physical phenomena, such as bursts, may
occur in the laser–metal powder interaction during LPBF [76]. In addition, during LPBF,
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there is significant interaction between the different phases (solid, liquid, and gas), with
gas–solid and gas–liquid interactions resulting in vaporization products such as plumes
and sputtering. The following processes of spatter generation during the laser–powder
interaction are shown in Figure 5: (a) protrusion of the melt pool during LPBF under
the combined effect of vapor recoil pressure and the Marangoni effect [53]; (b) formation
mechanisms of spatter: three different types of spatters and typical spatter behavior during
LPBF [77]. In order to understand the metal vaporization mechanism during the interaction
between the laser and metal powder, more and more scholars use numerical simulation
methods to analyze the melt pool, plume, and sputter formation process, showing the
dynamic process of the laser and metal powder interaction, which gives us a more intuitive
and comprehensive understanding of the metal vaporization process.
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Figure 5. (a) Mechanism of posterior protrusion of the melt pool due to vapor recoil pressure and
Marangoni convection [53]; (b) Formation mechanisms of spatter: three different types of spatters
and typical spatter behavior during LPBF [77].

2.1. Numerical Simulation of Melt Pool Formation Process

The melt pool is important in the LPBF process, and the size and morphology of
the pool have a significant effect on part properties, including microstructure, hardness,
and mechanical properties [61,78]. In the metal vaporization process, the molten pool is
depressed by the recoil pressure of the vapor to form a keyhole. Yu-Che Wu et al. [79] used
the discrete element method to numerically simulate and experimentally verify the melt
pool behavior of the selected area laser melting process to numerically simulate whether
the metal powder is evaporating and found that the melt pool is wide and shallow when
evaporation is ignored and narrow and deep when evaporation is considered, as shown
in Figure 6. Meanwhile, Alexis Queva et al. [80] simulated the successive stages of the
laser and metal powder interaction process of the IN718 nickel-based high-temperature
alloy using the level set finite element analysis method, as shown in Figure 7. The dynamic
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behavior of the melt pool process is also influenced by thermodynamic factors, such as the
Marangoni effect, evaporation heat dissipation, etc., in addition to the vapor back pressure
effect. Cao [81] developed a multi-physics factor model of the dynamic behavior of the
melt pool based on the particle scale, as shown in Figure 8. During keyhole formation in
the melt pool, rapid keyhole collapse can lead to the presence of inert gas in the solidified
metal, which in turn leads to gas porosity formation [82]. Yunfu Tian et al. [83] performed
a numerical simulation for experimental verification using single-track laser scanning;
the experimental study showed that insufficient laser energy input made the melt pool
and keyhole unstable and produce porosity defects, as shown in Figure 9. Laser power
and process parameters are closely related, as a lack of laser power leads to melting pool
instability and defects such as porosity. Patiparn Ninpetch et al. [84] studied the thermal
behavior and molten metal flow characteristics by the discrete element method (DEM)
and the computational fluid dynamics (CFD) numerical modeling method to analyze
the influence of process parameters on the scanning orbit and obtained the evolution of
the melt pool for different process parameters, as shown in Figure 10. Meanwhile, Lu
Wang et al. [85] used a coupled multi-physical field model including heat transfer, liquid
flow, metal vaporization, margin effect, and Darcy’s law for numerical simulation, mainly
simulating the velocity field and temperature field of the melt pool, etc., while using high-
speed X-ray imaging for experimental verification, and found that the uneven distribution
of recoil pressure on the surface of the keyhole increases the formation of keyhole pores;
in addition, different process parameters also affect the formation of keyholes, while low
ambient pressure can reduce or even eliminate the formation of keyhole pores, and the
instability of the keyhole leads to the formation process of pores, as shown in Figure 11. In
addition to the numerical simulation analyses of the melt pool by the above scholars, other
scholars have also conducted related studies [86–93], where scholars have mainly focused
on the process of keyhole generation, the influence of process parameters and processing
atmosphere on the melt pool morphology, and the relationship between the unstable state
of the melt pool and part defects. At the same time, a multi-physics field coupling model
was established to simulate the process of laser and metal powder interaction in a more
realistic way. Therefore, the influence of metal vaporization on the melt pool morphology
can be adjusted, and the melt pool morphology can be made more stable by optimizing the
process parameters and changing the processing atmosphere, which in turn can produce a
more stable keyhole morphology and reduce the generation of porosity defects.
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2.2. Numerical Simulation of Plume and Splash Formation Process

The metal vaporization process also produces plumes and splash vaporization prod-
ucts, and the formation of these vaporization by-products is a complex process that causes
manufacturing defects in metal parts [94]. Therefore, in order to understand the evapo-
ration process, most scholars use numerical simulations. Hui Chen et al. [95] established
a multiphase flow model, which includes the momentum and energy exchange between
powder particles and gas, by constructing a bidirectional coupled discrete element method
and a finite volume method to lay the foundation for understanding the generation of
sputtering and spalling during laser powder bed melting. This is the first time that the
kinetic behavior of the gas phase and powder particles in the sputtering and spalling
phenomena are simultaneously reproduced in numerical simulations, which were in good
agreement with the experimental observations. It was also found that in the range of 60◦

to 120◦, the jet angle has no significant effect on spalling and flaking, but when the jet
angle is larger than 150◦, the vortex flow behind the steam jet disappears and the radial
expanding steam jet blows away most of the particles, resulting in the complete exposure of
the spalling zone, the multiphase flow simulation of powder particles, the kinetic behavior
of the gas phase, and the motion of the sputtering particles can be clearly seen in Figure 12.
Sonny Ly et al. [66] also performed a multi-physics field coupled model for simulation and
experimental validation to investigate the physical process effects associated with droplet
spray generation, including the interactions between the metal powder particles and the
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surrounding gas dominated by the entrainment, vapor jet, and material injection processes,
as shown in Figure 13. Sputtering can cause defects in parts. Asif Ur Rehman et al. [96]
used a discrete element modeling approach to illustrate sputter formation and sputter-
induced defects during LPBF of AlSi10Mg alloy, as shown in Figure 14. In addition to
numerical simulations of sputtering, Michael A. Stokes et al. [97] conducted numerical
simulations of stainless steel (SS316L) metallic material to study the physical processes of
the vapor plume, as well as powder particle interactions, during LPBF, and the simulations
captured the transition of the vapor plume structure from unsteady to steady state vapor
flow; and at the same time, there was good agreement with the grain shadow images taken
by high-speed grain shadow imaging, which helps us to better understand the laser–matter
interaction process, as shown in Figure 15 for the plume high-speed grain shadow imag-
ing and numerical simulations. The numerical simulation analyses of vapor plume and
sputtering by scholars are mainly focused on studying the interaction between the reduced
laser powder processing atmosphere and the multiphase coupling model, the principle
of sputtering generation and the effect of sputtering on the formation of defects, and the
effect of process parameters and processing atmosphere on vapor plume and sputtering by
changing different process parameters and the concentration of argon in the processing
atmosphere for simulation. In addition to the numerical simulations of the steam plume
and splash by the above scholars, other scholars [98–104] also performed simulations using
a coupled multi-physics field model to study the formation motion process of the steam
plume and splash.
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3. Visual Measurement Methods of the Molten Metal Evaporation Process in LPBF

Section 2 has discussed the metal vaporization mechanism, and many scholars have
used numerical simulation methods for simulations to deepen our understanding. Next,
visual measurement methods have been used to monitor and analyze the metal evaporation
process, and then the process of laser and powder bed interaction has been controlled by
optimizing the process parameters and changing the processing atmosphere to reduce the
part defects and improve the part-forming quality and performance.

3.1. High-Speed X-ray Imaging

The LPBF process is characterized by fast laser scanning speed, small melt pool
size, and rapid melt pool solidification, and the vapor pressure and melt pool dynamics
generated during metal vaporization occur within the melt pool. Recently, it has been
discovered that a high-speed X-ray imaging technique, as shown in Figure 16, can be used
to observe the dynamic microstructure and defect formation inside metal powders in real-
time, such as the motion of the melt pool, due to its high spatial and temporal resolution
and ability to penetrate metal powders, to study critical problems that could not be explored
before, such as sputtering, keyhole formation, melt pool, and porosity [105]. First, Yuze
Huang et al. [106] revealed keyhole and stomatal behavior using high-speed X-ray imaging
to quantify the kinetics of their formation and found experimentally that keyhole pores are
generated not only in the unstable case, but also in the transitional keyhole region generated
at high power and scanning speed, while stomatal formation was observed, as shown in
Figure 17. Ross Cunningham et al. [107] also investigated the keyhole during LPBF using
ultrafast X-ray imaging, and the experimental results showed that the keyhole existed
in the range of laser power and scanning speed used, and the transformation process
followed the sequence of metal vaporization, melt pool liquid depression, and keyhole
formation during high-energy laser irradiation of the metal using ultrafast X-rays; in
addition to the keyhole, sputtering motion could also be observed. Zachary A. Youngdeng
et al. [108] revealed the characteristics and formation mechanisms of five types of splashes
in the LPBF process by high-speed in-situ X-ray imaging, the observed splashes were
quantified by their velocity, size, and direction, the effects of laser power, scanning speed,
and ambient pressure on the formation and characteristics of the five types of splashes in
the LPBF process were investigated, and the characteristics and formation mechanisms
of the five types of splashes in the LPBF process were shown as in Figure 18. In order
to be able to eliminate the pores generated by stomata, Chu Lun Alex Leung et al. [109]
investigated the underlying physical phenomena of laser–matter interaction between the
first and second layers by in-situ high-speed X-ray imaging, showing that the steam jet
promotes the formation of melt trajectories and exfoliation zones by sputtering, and also
revealed the mechanisms of Marangoni-driven pore formation and pore dissolution and
dispersion by laser remelting. S. Mohammad. H. Hojjatzadeh et al. [110] revealed the
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mechanism of pore formation during LPBF in real time using high-speed X-ray imaging,
revealing that melt ejection and rapid melt pool solidification during pulsed laser melting
led to the formation of the keyhole, and also revealed the kinetics of pore formation to
provide guidance for the development of pore elimination methods; the pore formation
process is shown in Figure 19. In addition, to reduce the effect of sputtering, Qilin Guo
et al. [111] used in-situ high-speed X-ray imaging to observe the transient kinetic process
of powder sputtering during LPBF and quantified the moving velocity, acceleration, and
driving force of powder motion induced by metal vapor jet/plume and argon gas flow;
the data quantified in this paper are important for developing accurate predictive powder
sputtering models and can also be used to fit uncertainty constants and validate the model,
which is important for developing new process techniques to reduce powder sputtering.
Dynamic X-ray images showing the powder motion at different times and pressures are
shown in Figure 20. Ming lei Qu et al. [112] showed that large spatters can be eliminated by
using nanoparticles that can control laser–powder bed interaction instabilities, and verified
this using in-situ high-speed X-ray imaging, ultimately finding two synergistic effects to
prevent large spatter formation: (1) nanoparticle-enabled control of molten pool fluctuation
eliminates the liquid-breakup-induced large spatters; and (2) nanoparticle-enabled control
of the liquid droplet coalescence eliminates liquid-droplet-colliding-induced large spatters.
The nanoparticles found in this paper simultaneously stabilize the melt pool fluctuation
and prevent droplet aggregation, providing a method to eliminate large splashes in metal
additive manufacturing, and the images before and after the addition of nanoparticles in
the LPBF process are shown in Figure 21.

The scholars using X-ray mainly focus on the study of melt pool dynamics, sputtering
dynamics, metal powder phase change process, etc.: for the melt pool, they mainly study
the formation process of the keyhole and the stability of the melt pool; for the sputtering dy-
namics, they mainly study the formation process of sputtering, and the direction of motion,
speed, quantity, etc.; for the metal powder phase change process, they mainly study the
metal vaporization process, the resulting vapor plume, and recoil pressure. The X-ray effect
allows us to observe the changes inside the metal powder during the interaction of the laser
and the metal powder. The above studies help us to investigate the causes of the forming
defects of parts and thus find ways to reduce the forming defects of parts. In addition to
the above scholars who have used X-rays to study the process of laser interaction with
metal powder, there are other scholars who have also conducted relevant studies using X-
rays [113–121]. X-ray observation of the microstructure of molded parts has also been used
to determine the internal grain boundary distribution [122] and to find microscopic defects
(internal porosity, cracks, etc.). S. Mohammad H. Hojjatzadeh et al. [123] investigated the
formation of porosity during LPBF using X-ray and multi-physics field simulation models
and found that the high thermal capillary force generated by the high-temperature gradient
in the laser action zone can rapidly eliminate porosity in the melt pool, providing guidance
for achieving porosity-free 3D printing. Hossein Ghasemi-Tabasi et al. [124] also observed
the crack formation process using X-rays in a miniaturized LPBF simulation chamber as a
way to help us understand the mechanism of crack formation and provide guidance for the
elimination of crack defects. The above study helps us to better understand the process of
the interaction of the laser and the metal powder in the LPBF process as a way to improve
the manufacturing quality and the performance of parts.
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Figure 16. (a) Schematic of the X-ray experiment on laser powder bed fusion; (b) Photograph of
the laser powder bed fusion simulator, along with the high-speed X-ray imaging detector and the
complementary detection system [105].
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Figure 17. (a) Keyhole morphology variations from wide and shallow to narrow and deep through
the (i) quasi-stable, (ii) transition, and (iii) unstable keyhole regimes under different laser scan
velocities; (b) Keyhole collapse in the unstable state to form air holes [106].
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Figure 18. Schematic showing the formation mechanisms of all spatter types: (a) solid spatter (A);
(b) metallic jet spatter (B); (c) powder agglomeration spatter (C1, liquid–solid agglomeration spatter;
C2, liquid–liquid agglomeration spatter); (d) entrainment melting powder spatter (D); and (e) defect
induced spatter (E) [108].
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3.2. High-Speed Visible Light Camera Imaging

Due to their high frame rate and resolution, high-speed visible light cameras are
widely used for online and offline inspection of LPBF. The obtained images can be enhanced,
feature-extracted, and run through target recognition and target segmentation to extract
the surface shape of the melt pool, plume, sputtering evaporation products, holes, areas
without fusion, and other forming defects, and then optimize the process parameters and
change the processing atmosphere to reduce defects and improve the forming quality and
mechanical properties of parts. The coaxial system is the camera and laser optical path
sharing a common optical path, and the side axis is the camera and laser optical path at a
certain angle, as shown in Figure 22 [23]; the coaxial system is mainly used for inspection
of the melt pool surface morphology, and the side-axis system is mainly used for sputtering
inspection. In contrast, the side-axis system is more adaptable and is not limited by the
original laser optical path.
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Figure 22. LPBF monitoring system: (a) coaxial (shared optical path with the laser) and (b) paraxial
(at an angle to the laser) [23].

High-speed visible light cameras can visually monitor the behavior of melt pools,
splashes, vapor plumes, etc. They can also quickly identify defects, while methods such
as image processing and machine learning enable the extraction of melt pool, splash, and
plume features and their analysis. Yingjie Zhang et al. [125] used a high-speed visible light
camera to build a side-axis monitoring system for image acquisition of the melt pool, plume,
and splash during the melting process of the laser powder bed, and then used support
vector machine (SVM) and convolutional neural network (CNN) methods to extract the
melt pool, plume, and splash from the images, and found that the recognition accuracy of
CNN was as high as 92.7%, which was higher than that of the recognition rate of the support
vector machine (SVM); the results of setting up a high-speed visible side-axis monitoring
system and the extracting results are shown in Figure 23. Jie Yin et al. [126] built a high-
speed high-resolution imaging technique to study the laser–matter interaction in LPBF, and
the melt pool, vapor plume, and droplet splash could be clearly observed by the image
filtering algorithm and image enhancement method; the characterization analysis of the
melt pool and splash showed that the melt pool characteristics and splash behavior depend
on the laser input energy, the average ejection velocity and ejection angle of the splash
increase with the laser power, and the high power laser tends to produce a large splash. The
built side-axis shooting system and the observed images are shown in Figure 24. Dekun
Yang et al. [127] built a side-axis monitoring system to capture splash images; proposed a
genetic-algorithm-based maximum entropy double-threshold image processing algorithm
to extract splash features in images; used the Otsu method, triangle threshold segmentation
algorithm, and K-means clustering algorithm for comparison; and found that the maximum
entropy double-threshold image processing algorithm can eliminate errors such as noise,
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splash adhesion, and splash omission. Finally, the relationship between splash area and
splash number and laser energy density was analyzed; the paraxial shooting system built
for LPBF and the extraction results are shown in Figure 25. Ralf D. Fischer et al. [128] built a
high-speed all-optical camera to obtain the three-dimensional sputtering particle trajectories
generated by the laser and powder interaction in LPBF and also calculated the sputtering
particle velocities, which are important for predicting the sputtering particle’s landing
point location on the powder bed and provides a new perspective for the subsequent
analysis of the forming quality. The schematic diagram of the built light field camera and
the three-dimensional sputtering and particle trajectories are shown in Figure 26. Zhenbiao
Tan et al. [129] built a side-axis monitoring system to capture melt pool, plume, and splash
images, proposed a segmentation method based on a CNN, which segmented the image
into a block network, used a CNN and threshold neural network (TNN) to segment each
block, and finally extracted 80.48% of the splash, while the splash connected to the melt
pool could be extracted. The constructed lateral axis monitoring system and the extracted
splash images are shown in Figure 27. Meanwhile, Heng Ma et al. [130] developed a
single high-speed coaxial camera temperature measurement system for the laser powder
bed melting process based on the dual-wavelength temperature measurement principle,
proposed a dual-wavelength image matching method with sub-pixel accuracy and an
overall parameter calibration optimization method, conducted experiments using the built
experimental equipment, obtained single-line scan, single-layer scan, and multi-layer scan
images of melt pool temperature field and melt pool morphology and visualized them,
and finally built images of melt pool temperature with time and different size images of
melt pool morphology. Scholars have used high-speed visible light imaging techniques
mainly to extract melt pool surface morphology and vaporization products such as vapor
plumes and splashes while combining traditional image segmentation algorithms and
newly developed CNN algorithms in deep learning to extract features in the images, which
has laid the foundation for subsequent research on methods to improve part imaging
quality and control part performance. Melt pool, vapor plume, and splash features are
currently being studied using high-speed visible cameras, and there is further research on
melt pool [131–133] and splash [134–145] characteristics.
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Figure 24. (a) Schematic diagram of the experimental setup for in-situ high-speed high-resolution
imaging of LPBF; (b) Laser-matter interaction of chromium–nickel–iron alloy 718 powder bed LPBF;
(c) Polar plots of the average jet velocity and the average jet angle of the spattered material at
different laser powers; (d) The number and particle size of the spattered material as a function of
laser power [126].
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Figure 25. (a) High-speed camera image acquisition; (b) Triangle threshold segmentation algorithm;
(c) K-means clustering algorithm; (d) Otsu’s method; (e) MEDTIA-GA [127].
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Figure 26. (a) Isometric view; (b) X-Y plane of particle tracks from the turnaround experiment
(showing one in every three tracks for clarity, with different colors corresponding to different parti-
cles) [128].
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3.3. High-Speed Schlieren Imaging

To visualize nonconstant gas flows with discontinuities, high-speed schlieren imaging
techniques are often used [146]. High-speed schlieren imaging has been widely used to
visualize gas flow in various applications, such as automotive aerodynamics, ballistics,
and laser welding [147]. LPBF is a process in which metal vaporization occurs during
the interaction between the laser and the metal powder. However, since the vaporization
process cannot be observed with the naked eye, it is necessary to study it to help us
understand the metal vaporization process and determine whether the process parameters
are reasonable and the formation of vaporization products, such as vapor plume and
sputtering by the vaporization phenomenon, is within acceptable parameters. Therefore,
high-speed schlieren imaging is introduced to observe the process of evaporating metal.
Deep learning has also been applied to image analysis of schlieren imaging systems, where
neural networks can effectively capture flow structure features, such as excitation and
vortices [148–150], and extract data information about the flow that can also be used for
prediction [151] and reconstruction [152,153]. To understand how the melt pool and vapor
plume interact during the laser and powder interaction, I. Bithara et al. [76] coupled the
melt pool and plume dynamics by combining the high-speed schlieren imaging technique
and in-situ X-ray method to correlate the vapor plume generated by the interaction of the
laser and metal powder with the keyhole it creates in the melt pool, and judged the stability
of the melt pool by the morphology of the vapor plume. The high-speed visualization
of the fluid motion of the LPBF process helps us to design the process window with
higher efficiency and speed, and lays the foundation for LPBF process monitoring with
the combined imaging of high-speed schlieren imaging technology and X-ray imaging
technology, as shown in Figure 28. Meanwhile, P. Bidare et al. [68] used a combination
of high-speed imaging and schlieren imaging, as well as Multiphysics field simulations,
to reveal the process of laser and metal powder interaction during LPBF. The numerical
simulations also help us to understand and quantify the observed flow behavior by varying
the process parameters, such as laser power and scanning speed, to observe the changes
in the vapor plume morphology, which facilitates the characterization of hydrodynamic
phenomena in the LPBF process, helping to prevent defects in additively manufactured
parts. Figure 29 shows the usage of high-speed imaging and schlieren imaging. For
vaporization by-products such as plumes and spatters, which can be effectively removed
by changing the processing atmosphere, Siegfried Baehr et al. [154] studied the effect of
different argon–helium gas mixtures compared to pure argon on by-products during the
processing of high-strength aluminum alloys using high-speed grain shadowing, which
allows visualization of by-products during the process, and then studied the evaporation
phenomenon during the melting process of the laser powder bed. The images taken by high-
speed grain shadowing are shown in Figure 30. Additionally, P. Bidare et al. [155] studied
the state of the laser beam and powder plume in different processing atmospheres using
high-speed imaging and schlieren imaging techniques. Scholars have now used high-speed
schlieren imaging technology to study the interaction between laser and metal powder
during the melting process of the laser powder bed, combining imaging analysis of melt
pool and vapor plume dynamics, which helps us understand the process in a deeper way,
and then correlate process parameters such as laser power, scanning speed, and processing
environment with part performance and forming quality, helping us optimize process
parameters at high efficiency and speed. However, there are still relatively few studies
using a high-speed schlieren imaging system to study the melting process of the laser
powder bed. With the rapid development of machine learning and artificial intelligence, it
is an important trend to introduce deep learning and other methods into image analysis in
high-speed schlieren imaging, which can help us to quantify the metal evaporation process
by extracting the feature information in the image.
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Figure 29. High-speed imaging and schlieren imaging: (a) high-speed imaging of the plume, schlieren
imaging, and temperature field simulation images and (b) single-track laser scanning images of plume
morphology changes [68].
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images under different inert gas environments [154].

4. LPBF Process Inhibition of Metal Evaporation Measures

Through the numerical simulations of the coupled multi-physical field models of the
LPBF process in Sections 2 and 3 and the summary of the visual measurement methods
by high-speed X-ray, high-speed visible light camera, and high-speed schlieren imaging
techniques, it has been found that LPBF metal evaporation is a complex and highly dynamic
process. Most researchers have mainly focused on the study of molten pools, vapor plumes,
and sputtering. It has also been found that laser energy input and processing atmosphere
are the main influencing factors of forming quality and defects in the metal evaporation
process. Therefore, the suppression of evaporation can be considered in terms of laser
energy input and processing atmosphere.

4.1. Laser Energy Density

The laser and metal powder interaction processes due to the different material proper-
ties of different materials, and therefore materials require different laser energy densities;
meanwhile, the same material in different combinations of laser power and scanning speed
parameters will produce different metal vaporization phenomena and vapor pressures on
the surface of the melt pool, resulting in different keyhole morphologies. The laser energy
density formula is [40]:

E =
P

v·h·t (1)

In this equation, E is laser energy density (in J m−3), P is the laser power (in J s−1), v is
the laser scanning speed (in m s−1), h is the hatch spacing (in m), and t is the powder layer
thickness (in m); the above-influencing factors in the laser power and laser scanning speed
are the main influencing factors. Ross Cunningham et al. [107] found a clear threshold
from the conduction mode to the keyhole by high-speed X-ray imaging and established
the relationship between the keyhole front wall angle, keyhole depth, and laser energy
density, thus clearly finding that the formation of the keyhole in the melt pool is affected
by the laser energy density, and the variation of the keyhole affects the stability of the
melt pool and thus the forming quality. The relationship between the keyhole depth, front
wall angle, and laser energy density is shown in Figure 31. V. Gunenthiram et al. [156]
built a high-speed camera monitoring system to take spatter images of 316L stainless steel,
experimented by varying the laser power and scanning speed in combination with different
process parameters, and found that the different process parameters, such as laser power
and scanning speed, lead to different laser energy densities, and thus the number and
size of spatters produced is also different. The number of spatters with different process



Micromachines 2023, 14, 1351 24 of 36

parameters is shown in Figure 32. Hang Zheng et al. [157] used high-speed visible imaging
to build a paraxial monitoring system to observe the vapor plume and spatter generation
process during single-pass forming of 304 stainless steel; the formation and evolution of
the plume at different laser scanning speeds were observed in an attempt to establish
the relationship between scanning speed, plume stability, spatter generation, and melt
morphology. It was concluded that in the lower laser scanning speed range, the high laser
energy density makes the vapor plume violently unstable and the high recoil pressure
ejects the droplets from the melt pool; when the laser scanning speed exceeds a certain
threshold, the vapor plume tilts backward with respect to the scanning direction. The
images of the vapor plume and splash at different laser scanning speeds are shown in
Figure 33. Through the above studies, it is found that the laser power and laser scanning
speed in the laser energy density are the main factors affecting the LPBF process, and
too large or too small a laser energy density is detrimental to the molten pool; therefore,
scholars should keep studying this to find the appropriate laser energy density threshold
for processing parameters to suppress the metal vaporization process, and other scholars
have also conducted related studies on the influence of laser power and scanning speed on
the metal vaporization process [158–163].
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speeds [157].

4.2. Processing Atmosphere

This can be achieved by optimizing process parameters to achieve an appropriate
laser energy density threshold, in addition to introducing recirculated gas streams of argon
and other noble gases necessary to eliminate evaporation byproducts generated during
metal evaporation [29]. Reducing the impurities that gradually fall on the protective mirror,
so that the metal powder can fully absorb the laser energy, especially for metals with a
high vaporization tendency, such as Zn and Mg [164,165], and also protects the metal
from high-temperature oxidation, which plays a key role in the quality of the formed part.
The influence of the current processing atmosphere on the metal vaporization process is
as follows: S. Traore et al. [166] investigated the effect of the processing atmosphere on
metal vaporization during LPBF, established the processing atmospheres of argon and
helium, observed the state of the melt pool, vapor plume, and sputtering during LPBF of
nickel-based alloys using high-speed visible imaging, and found that changing the gas
atmosphere from argon to helium can affect the melt pool and vapor plume morphology
as shown in Figure 34. C. Pauzon et al. [167] used high-speed shadowing imaging to
image the LPBF process in the presence of pure argon, pure helium, and a mixture of argon
and helium and found that pure helium reduced spatter by at least 60% and a mixture
of argon and helium reduced spatter by 30% compared to pure argon. This high-speed
shadowing demonstrates the accelerated expansion of the vapor plume with the addition
of helium and the reduction in spatter and vapor accumulation at the laser spot, with
images taken by high-speed shadowing as shown in Figure 35. P. Bidare et al. [155] studied
the variation of vapor plume morphologies in the environment of two gases, argon and
helium, and the same gas at different pressures using a high-speed visible light camera
and high-speed schlieren imaging, from which the plume and spatter generated during
the interaction between the laser and the metal powder can be clearly observed, as shown
in Figure 36. From the above research, scholars found that with different inert gases in
the same laser energy density value of the plume, spatter morphology is different, which
may be due to the different physical properties of different inert gases (such as gas density,
thermal conductivity, and other parameters): helium thermal conductivity is much larger
than that of argon and nitrogen, so it affects the laser and powder in the process of heat
transfer, and thus affects the morphology of the melt pool, plume, and spatter; with the
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same inert gas in the case of a different laser energy density threshold, plume and splash
forms are also different due to a number of factors, such as vapor recoil pressure, the
Marangoni effect, surface tension, etc. For the laser energy density threshold, the laser
power and laser scanning speed are the main influencing factors: when the laser power
and scanning speed are different, the dominant effects of steam recoil pressure, Marangoni
effect and surface tension on the molten pool are also different. In summary, the processing
atmosphere affects the metal evaporation process, but also shows that the LPBF process is
a dynamic and complex process, which requires specific analysis of the metal evaporation
process according to different process parameter conditions. However, by reading the
literature, we found that there is little information about the influence of the wind speed
of the inert gas entering the forming room from the air inlet on the metal vaporization
process. Therefore, the study of the influence of the wind speed of the inert gas entering
the forming room on the metal evaporation process may also become a hot research topic,
because on one hand, different wind speeds of inert gas entering the forming room have
different effects on the melt pool, and on the other hand, it can blow away the splashes and
prevent them from falling into the printed part area, causing defects. Ultimately, a properly
controlled machining atmosphere can reduce part defects and improve the quality of part
forming. Other scholars have also conducted related studies on the effect of the processing
atmosphere on the metal vaporization process [168–174].
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5. Conclusions

LPBF is an evolutionary process involving multiple physical fields and complex dy-
namics to achieve high-performance and efficient part manufacturing. Macroscopic defects,
such as cracks and warping, and microscopic defects, such as porosity and inclusions, can
occur in the process. Therefore, the part manufacturing quality and performance are the
key issues hindering the wide application of LPBF technology. Metal vaporization plays
a key role in the quality and performance of part forming in LPBF. In recent years, metal
vaporization and its effects have received increasing attention from scholars, especially
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for Zn, Mg, and other elements and their alloys that are prone to vaporization but also
have important applications. This paper summarizes the current research status and future
development direction of metal vaporization in the laser powder bed melting process.

(1) For the LPBF process, due to the metal vaporization process, vapor plumes, powder
exfoliation, sputtering, and keyholes will be generated, and these phenomena can be
visually observed by high-speed X-ray imaging technology, high-speed visible light
camera imaging technology, and high-speed schlieren system imaging technology to
understand the process of metal vaporization. The process of metal vaporization and
the formation of the keyhole are caused by high temperatures in the melt pool due to
the laser energy density input, and the laser energy density plays a dominant role in
the formation of the keyhole, so the appropriate laser energy density is critical to the
quality of forming. High-speed imaging technology can capture images of the melt
pool surface morphology, the movement of sputtered particles and forming defects
on the part surface, and the quality of the squeegee powder, etc., which helps us
analyze whether the process parameters are set reasonably and facilitates narrowing
the process window with high efficiency and speed.

(2) The interaction of a high-energy laser and metal powder is a complex dynamic process,
which is accompanied by changes in mass, energy, and momentum during the melting
of the metal powder, and also involves the influence of vapor recoil pressure, the
Marangoni effect, surface tension, and other related forces on its vaporization process;
however, this cannot be observed by the naked eye, and the establishment of a multi-
physics coupled model can show more information about the forces involved in the
vaporization process. The numerical simulations are necessary to help us visualize the
vaporization process of the metal powder melting. The current numerical simulations
mainly focus on the variation processes of the melt pool, and there are fewer studies
on the evaporation products, such as plumes, sputters, etc. It is important to select an
appropriate evaporation model for the numerical simulation of the LPBF process.

(3) The laser energy density, powder layer thickness, processing environment, and mate-
rial properties are the main factors influencing the LPBF metal vaporization process.
The evaporation of key metal elements has a critical influence on powder stripping,
plumes, sputtering, porosity, incomplete fusion, and the segregation of alloy element
composition. Therefore, the LPBF process requires an appropriate laser energy density
threshold and an efficient gas recirculation system to suppress the metal vaporization
process, maintain a stable melt pool during the laser and metal powder interaction,
and perform with a stable melt trajectory to improve part imaging quality.

In future research, the following areas should be the main focus:

(1) To further explore the complex processes of the high-energy laser and metal powder
in the laser powder bed process, it is important to understand the metal vaporization
process and its effects on the LPBF process. A multi-physics field-coupled numerical
simulation model is established, while the metal vaporization process is visualized us-
ing visual measurement methods, such as ultra-high-speed X-rays, high-speed visible
light cameras, and high-speed Schlieren imaging systems. Dynamic information about
melt pool temperature, melt pool morphology, keyhole evolution, powder motion,
plume morphology change, sputter motion, and forming defects are obtained by the
above methods to understand the metal evaporation process in depth. The effects of
material properties, powder layer thickness, and processing conditions on the qual-
ity and performance of LPBF forming are considered from the perspective of metal
evaporation, while sputtering is regulated by new materials, such as nanoparticles.

(2) Research on the generation of melt pools and evaporation by-products in the LPBF
process, mainly through some new technical means, such as ultra-high-speed X-rays,
can detect the internal changes in the process of laser and metal powder interaction,
and a high-speed schlieren system can visualize the metal evaporation process by
combining the melt pool images and evaporation product images for joint analysis,



Micromachines 2023, 14, 1351 29 of 36

helping to reveal the metal evaporation process at a deep level and promoting the
high-fidelity development of numerical simulations. By considering the effects of
vapor recoil pressure, the Marangoni effect, and evaporation heat dissipation in the nu-
merical simulation process, an accurate multi-physics coupled evaporation model can
be established, which can provide a realistic simulation of the LPBF metal evaporation
process and more accurately reproduce the laser and metal powder interaction process.
However, numerical simulation is very computationally demanding and consumes
computer resources. Therefore, multi-scale modeling will be needed in the future
to improve computational accuracy and efficiency while revealing the interactions
between materials, processes, structures, and properties with computational accuracy.

(3) Scholars should further explore the vaporization process of Zn, Mg, Al, and other met-
als and their alloy materials, especially focusing on increasing the research on Mg met-
als and their alloys. With the lowest density, high specific strength, biodegradability,
and improved metabolism, Mg is widely used in aerospace, biomedical, automotive,
and other fields, and has a wide range of development prospects. Mg loss due to low
melting point/high saturation vapor pressure element vaporization is severe, result-
ing in alloy composition segregation and reduced part forming quality. To accurately
control the composition and properties of LPBF parts, the metal powder material and
process parameters should be adjusted and optimized to reduce vaporization loss.
At the same time, the prediction of metal evaporation loss by numerical simulation
should be further improved.

(4) The metal vaporization process is an important phenomenon in the process of laser
and metal powder interaction, and it provides a variety of information for in-situ mon-
itoring of the LPBF process, including melt pool, plume, and sputtering characteristics.
This information includes acoustic, optical, thermal, and force signals; it is a key issue
to extract the useful signals we need for quality monitoring and control, while the
combined use of monitoring equipment, such as high-speed X-rays, high-speed visible
cameras, pyrometers, thermal imagers, infrared cameras, and acceleration sensors,
can provide even richer information. The use of artificial intelligence techniques such
as machine learning (supervised, semi-supervised, and unsupervised) and computer
vision to extract useful feature signals from LPBF process data for the analysis of
metal evaporation processes is a major research trend.

The potential limitations or challenges:
High-speed X-ray imaging technology, high-speed visible light cameras, and high-

speed schlieren imaging technology have been applied to the LPBF process, but there are
some limitations and challenges. The two main areas include the following: the first is the
issue of cost. Since the LPBF process has a fast laser scanning speed, large melt pool size,
and other characteristics, ordinary industrial cameras cannot shoot the surface morphology
of the melt pool, plume, and spatter; only with high frame rate, high-resolution, high-speed
cameras can these details be observed, while only through high-speed X-ray imaging
technology can we observe the internal morphology of the melt pool and the internal
microstructure of metal powder. Furthermore, the observation of the vaporization process
using high-speed schlieren imaging technology requires the use of a schlieren concave
mirror. High-speed cameras, X-rays, and schlieren concave mirrors are all relatively
expensive; The second is the optical path problem: high-speed X-ray imaging technology
and high-speed schlieren imaging technology have high requirements for the optical path,
requiring a special optical platform for the adjustment of the optical path, while high-speed
camera imaging technology also requires setting the installation position of the camera
and selecting the appropriate light source, etc. These are the difficulties faced in achieving
accurate measurements of the metal vaporization process.
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