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Abstract: A circularly polarized (CP) and wide-band monopole antenna with a miniaturized size is
suggested in this study. The suggested structure is composed of a U-shaped radiator on the front
side, a partial ground plane with two rectangle slots, and a quadrilateral-shaped parasitic strip on
the back side of the FR4 substrate. A wide-band operation with S11 ≤ −10 dB was achieved by
regulating the radiator and the partial ground that was placed on the second side of the antenna
substrate. The CP was achieved when excited two modes with the same amplitude and a 90◦ phase
difference. This could be generated by regulating the slots’ dimensions in the ground plane. Moreover,
a quadrilateral-shaped parasitic strip placed on the second side with the partial ground was utilized
to extend the 3 dB axial ratio (AR) bandwidth. The suggested structure is simulated, prototyped,
and measured to confirm the desired requirements with a total size of 30 × 32 mm2 (0.4 × 0.42 λ0

at 4 GHz). The tested outcomes have a bandwidth of S11 ≤ −10 dB (81.25%) (5.2 GHz, 3.8–9 GHz)
and a 3 dB axial ratio (AR) bandwidth (30.7%) (1.63 GHz, 4.48–6.11 GHz). The antenna’s different
parameters are discussed, which recommend the suggested antenna to be used in UWB, sub 6 GHz,
and WLAN wireless applications.

Keywords: circular polarization (CP); compact antenna; UWB; AR; wireless systems

1. Introduction

Recently, wireless communication systems of a small and compact size that operate in
a wide-band operation need compact and wide-band antennas that can be easily integrated
with them [1,2]. CP antennas have several benefits, such as better mobility, orientation
flexibility between the transmitting and receiving ends, decreasing multipath interference,
and polarization mismatch [3–5]. Two orthogonal modes with equal magnitudes and a 90◦

phase shift must be generated to produce the CP operation [1].
In modern wireless systems, for example, wide-band circular polarization (CP) an-

tennas, radio frequency identification (RFID), and global positioning systems (GPSs) are
recommended and utilized. Recently, wireless systems have been operated at different
frequency bands. Therefore, wide-band CP antennas are considered a good choice to reduce
the system’s complexity and price [6–8]. Microstrip [9–12], dielectric resonator (DRAs) [7,8],
slot [13,14], and monopole antennas [2–5,15–24] are used to achieve CP behavior.

Microstrip antennas have several advantages, such as low price, simple design, small
size, ease of integration, and simplicity in CP realization. Therefore, the microstrip antenna
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is used in several communication systems. However, conventional CP antennas are pro-
duced with a small 3 dB axial ratio with a large size, which cannot be suitable for wide-band
systems [9,10]. For this reason, monopole antennas can be used to produce a wide-band CP
operation. The monopole antennas can be fabricated easily and have a small size, low price,
stable radiation patterns, wideband bandwidth, and CP operation. Therefore, recently,
researchers have extensively studied them [2,4,5]. To enhance the 3 dB AR bandwidth and
preserve the antenna compactness, a monopole antenna can be utilized [2–5,15–24].

In [2], a parasitic G-shaped strip is added to a C-shaped monopole antenna to generate
a CP operation. The antenna is operated from 3.92 to 7.52 GHz (62.9%). The FR4 substrate
at 1.6 mm is utilized in the design. The antenna had a size of 30 × 32 mm2 and peak gain
of 3.6 dB. Additionally, the ground plane is modified to increase the 3 dB AR bandwidth to
53.92% from 4.28 to 7.44 GHz. The antenna has a simple structure with a wide-band 3 dB
AR bandwidth and is utilized for WLAN communication.

The UWB CP operation generated using a sequential phase feed is investigated in [3].
It is composed of a monopole antenna with a circular arc-shaped radiator on the top of the
RO4003 substrate with a 0.813 mm thickness and a quasi-elliptical strip connected to the
partial ground on the other side. The antenna is operated from 1.8 to 7.3 GHz (120.9%). The
antenna has a size of 120 × 120 mm2 and a peak gain of 11.2 dB. Additionally, the antenna
has a 3 dB AR bandwidth from 1.5 to 7.5 GHz (133.33%). While the AR in [3] has a UWB
operation, the antenna has a larger size and complex design.

In [4], a broadband antenna with a C-shaped monopole patch on the top side and an
open-loop rectangular resonator and modified ground on the back side is investigated to
extend the 3 dB AR to 65.2% from 4.28 to 8.42 GHz. A compact broadband antenna with a
circular C-shaped patch, an improved ground plane, and a large size to extend the 3 dB
AR are investigated in [5]. The antenna is operated from 2.25 to 7.35 GHz (106.3%). The
FR4 substrate of 1.6 mm is utilized in the design. The antenna has a size of 49 × 55 mm2

and a peak gain of 6.55 dB. Additionally, the ground plane is modified to increase the 3 dB
AR bandwidth to 104.7% from 2.05 to 6.55 GHz. The antenna has a simple structure with a
wide-band 3 dB AR bandwidth and is utilized for WLAN communication; however, it has
a large size.

A microstrip antenna utilizing a fractal-defected ground structure is discussed in [9].
The antenna is worked from 1.55 to 1.58 GHz (1.9%). A substrate of a dielectric constant of
10 and 3.88 mm thicknesses is utilized in the design. The antenna has a size of 45 × 45 mm2

and a peak gain of 2.2 dB. The antenna has a simple structure with a narrow 3 dB AR
from 1.572 to 1.578 GHz (0.4%). The antenna has a narrow band of 3 dB AR bandwidth
with a large size. A 3D with complex structure microstrip antenna is introduced in [10].
An L-shaped slot is etched in the patch. The antenna is operated around 1.9 (27.2%). A
substrate of a dielectric constant of 2.7 and 9 mm thicknesses is utilized in the design. The
antenna has a size of 80 × 80 mm2 and a peak gain of 4.3 dB. The antenna has a 3 dB AR
bandwidth of 3%. The antenna has a complex structure with a large size.

In [12], a microstrip antenna with an H-shaped and reactive impedance surface (RIS) is
investigated. The antenna is operated from 4.64 to 7.3 GHz (44.5%). The RO4003 substrate
with 5.88 mm is utilized in the design. The antenna has a size of 32 × 32 mm2. The antenna
has a peak gain of 7.2 dB. Additionally, the antenna has a 3 dB AR bandwidth of 27.5%
from 4.55 to 6 GHz. The antenna has a complex structure and it is utilized for WLAN
communication. A slot antenna with a CPW feed is introduced in [13]. The antenna is
operated from 1.78 to 5.64 GHz (104%). The 1.66 mm FR4 substrate is utilized in the design.
The antenna has a size of 54 × 54 mm2 and a peak gain of 3.8 dB. Additionally, the antenna
has a 3 dB AR bandwidth of 58.6% from 2.85 to 5.21 GHz. The antenna has a simple
structure with a large size and it is utilized for WLAN communication.

Moreover, some modifications are utilized in the monopole antenna to increase the
3 dB AR bandwidth. Lumped capacitors are used in [15]. An inverted U-shaped monopole
antenna attached to lumped capacitors is used to generate the CP operation. The antenna is
operated from 3.75 to 7 GHz (60.5%). A substrate of a dielectric constant of 2.2 and 1.52 mm
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thicknesses is utilized in the design. The antenna has a size of 52 × 55 mm2 and a peak
gain of 4.8 dB. Additionally, it has a 3 dB AR bandwidth of 4% from 4.25 to 5.95 GHz. The
antenna has a simple structure with a large size and works for wireless communication.
Parasitic strips are investigated in [16,18]. A Y-shaped monopole antenna is suggested
in [19]. The antenna is operated from 2.25 to 2.35 GHz (28.6%). A substrate of a dielectric
constant of 2.2 and 3.1 mm thicknesses is utilized in the design. The antenna has a size of
50 × 55 mm2 and a peak gain of 2.9 dB. Additionally, it has a 3 dB AR bandwidth of 4%
from 2.25 to 2.35 GHz. The antenna has a simple structure with a large size and works for
satellite communication.

A slot antenna with an L-shape is suggested in [22]. An L-shaped monopole slot
antenna with a C-shaped feed is utilized to generate the CP operation. The antenna is
operated from 1.48 to 1.93 GHz (30%). The 0.8 mm FR4 substrate is utilized in the design.
The antenna has a size of 70 × 70 mm2 and a peak gain of 2.45 dB. Additionally, it has
a 3 dB AR bandwidth of 32% from 1.42 to 1.97 GHz. The antenna has a simple structure
with a large size and works for satellite communication. A parasitic open-loop resonator is
added to a rectangular monopole antenna to generate the CP operation. The antenna is
operated from 1.48 to 4.24 GHz (96.5%). The 1 mm FR4 substrate is utilized in the design.
The antenna has a size of 50 × 55 mm2 and a peak gain of 3.5 dB. Additionally, the ground
plane is modified to increase the 3 dB AR bandwidth to 63.3% from 2.05 to 3.95 GHz. The
antenna has a simple structure with a wideband 3 dB AR bandwidth and a large size.

A wide-band CP antenna is introduced in this work. A U-shaped radiator on the
front side, a partial ground plane with two rectangle slots, and a quadrilateral-shaped
parasitic strip on the back side are utilized to produce the CP feature. The CP is achieved
when we excited two modes with the same amplitude and a 90◦ phase difference. This
can be generated by regulating the slot’s dimensions and adding a quadrilateral-shaped
parasitic strip to the ground plane. The tested outcomes have a bandwidth of S11 ≤ −10 dB
(81.25%) (5.2 GHz, 3.8–9 GHz) and a 3 dB axial ratio (AR) bandwidth (30.7%) (1.63 GHz,
4.48–6.11 GHz). The designed antenna keeps the same features as a common turnstile
antenna, such as simplicity, low cost, compact, low profile, and broadband CP antenna. All
simulated results are extracted utilizing CST software. The suggested antenna can be used
in UWB, sub 6 GHz, and WLAN wireless applications.

The paper is organized as follows: (I) The literature review is introduced. (II) The con-
figuration of the antenna is investigated. (III) The simulation and measurement outcomes
are provided. (IV) The conclusion is presented.

2. Proposed Antenna Structure
2.1. Antenna Design and Configuration

The proposed wide-band CP monopole antenna with the complete geometrical con-
figuration is shown in Figure 1. FR4 with a total size of 32 × 30 × 1.6 mm3 and εr = 4.4,
tan δ = 0.025 was used as a substrate. The suggested antenna was connected to a 50 Ω
microstrip feed line with an optimal position to enhance the matching of the antenna. An
L-shaped connected to a C-shaped mirror to compose a suggested U-shaped radiator was
added to the front side. Moreover, a partial ground plane with two rectangle slots and a
quadrilateral-shaped parasitic strip was added to the back side of the substrate. The two
rectangle slots were cut from the edge of the ground plane to achieve CP modes at high
frequencies. The wide CP generation was achieved by adding a quadrilateral strip to the
bottom of the substrate, as illustrated in Figure 1. It was used to create a CP mode at a
lower frequency that, in turn, improved the AR over the desired frequency. Table 1 presents
the dimensions of the antenna.

The suggested structure was passed through four stages to achieve the desired final
design. The four-step antenna design procedure is illustrated in Figure 2. In Ant. #1, an
L-shaped radiator on the front side with the partial ground on the bottom was designed,
as shown in Figure 2. As displayed in Figure 3 (the green curve), the antenna is operated
at dual-wide-band ranges. The first started from 3.5 to 5.9 GHz and the second worked
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from 6.5 up to 10 GHz. To extend the impedance bandwidth to cover the two ranges from 4
up to 9 GHz, as shown in Figure 3 (the red curve), the mirror of a C-shaped radiator was
connected to an L-shape to achieve the U-shaped radiator, as shown in Figure 2 (Ant. #2).
From the two steps, the desired wide-band operating bandwidth can be achieved; however,
the CP behavior is not generated, which is related to AR, as shown in Figure 4. Therefore, to
achieve the CP feature, a rectangular part was cut from the two edges of the ground plane
as Ant. #3 was introduced to improve the antenna matching, as shown in Figures 2 and 3
(blue curve). Moreover, a CP mode was excited at 5.5 GHz, as shown in Figure 4. The 3 dB
AR was operated from 5.2 to 6 GHz.
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Figure 1. The antenna’s complete geometrical configuration.

Table 1. The antenna dimensions.

Parameter Length [mm] Parameter Length [mm] Parameter Length [mm]

Lsub 30 L3 4.5 Lg 2.8

Lp 12 L4 4.45 h 1.6

L f 11 L5 5.77 Wsub 32

L1 3.5 L6 2.5 Wp 19.25

L2 5.5 Lgnd 9 W f 3

W1 1.4 W3 6 W5 4.45

W2 2.5 W4 5.77 W6 2.5

W7 10 d 9.9

The CP radiation can be obtained by achieving two orthogonal modes with equal
amplitudes and a 90◦ phase difference. However, the conventional monopole antenna,
as shown in Figure 2 (Ant. #1, Ant. #2), has little radiation in the horizontal direction.
In addition, the horizontal currents in the ground plane moved in opposite directions;
therefore, the horizontal current was annulled, which decayed the horizontal polarization.
Therefore, linear vertical polarization was generated, as illustrated in Figure 4. Thus, by
modifying the ground plane and adding the parasitic strip, as shown in Figure 2 (Ant.
#3, Ant. #4), orthogonal horizontal and vertical currents were produced. Moreover, the
direction of the current distribution in the ground plane changed, generating CP and
increasing the AR value, which tended to increase the bandwidth of the axial ratio, as
shown in Figure 4.
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Finally, in Ant. #4, the back side of the structure was added with a quadrilateral shape,
as shown in Figure 2, to enhance the 3 dB AR band. A quadrilateral-shaped parasitic
strip was utilized to balance the electric-field magnitudes of both vertical and horizontal
components to make them achieve the same value with a 90◦ phase difference between
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them for the CP generation. By adding the parasitic strip, the path of the electric current
was increased in the antenna that shifted the frequency band. Furthermore, the CP mode
was generated at a lower frequency band from 4.48 to 6.11 GHz, as shown in Figure 4.
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Figure 4. ARs of the designed four antennas.

The CP generation behavior could be understood by displaying the antenna distribu-
tion current at different orthogonal phases at 5.8 GHz, as presented in Figure 5. It is shown
that at 0◦ the current was generated along the positive Y-direction. At the 90◦ phase, it was
radiated along the negative X-direction, while at 180◦ and 270◦, the currents were generated
in the negative Y- and positive X-directions, respectively. Moreover, we concluded that the
current rotated in a counter-clockwise direction.
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2.2. Analysis and Parametric Study

From the previous section, it can be noticed that the dimension of the quadrilateral-
shaped strip can affect the 3 dB AR. Therefore, a parametric study was utilized to show



Micromachines 2023, 14, 1308 7 of 12

its effect. Figure 6 shows the effect of L4 on the antenna’s performance. By increasing the
length of L4 from 1.45 to 7.45 mm, the antenna was operated from 4 to 9 GHz with a good
impedance bandwidth as shown in Figure 6a, while the 3 dB AR bandwidth decreased as
illustrated in Figure 6b. When L4 = 1.45 mm, the 3 dB AR bandwidth was extended from
4.48 to 4.8 GHz. Additionally, when L4 = 4.45 mm, the 3 dB AR bandwidth was extended
from 4.48 to 6.11 GHz. Finally; when L4 = 7.45 mm, the 3 dB AR bandwidth was extended
from 4.7 to 5.5 GHz. The length of L4 was chosen to be 4.45 mm.
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Furthermore, Figure 7 shows the W6 effect on the antenna’s performance. By increas-
ing the length of W6 from 2 to 3 mm, while keeping L4 = 4.45, the antenna was operated
from 4 to 9 GHz with a good impedance bandwidth as illustrated in Figure 7a, while the
3 dB AR bandwidth decreased as shown in Figure 7b. When W6 = 2 mm, the 3 dB AR
bandwidth was extended from 4.48 to 6 GHz. Moreover, when W6 = 2.5 mm, the 3 dB AR
bandwidth was extended from 4.48 to 6.11 GHz. Finally, when W6 = 3 mm, the 3 dB AR
bandwidth was extended from 4.48 to 5 GHz and from 5.6 to 6.2 GHz. The length of W6
was chosen to be 2.5 mm. Finally, by elaborating on the parametric study outcomes, the
final dimensions achieved the desired bandwidth from 4 to 9 GHz and satisfied the 3 dB
AR bandwidth from 4.48 to 6.11 GHz.
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3. Experimental Outcomes and Investigations

The photolithography method was utilized in the fabrication process. Figure 8 shows
the prototype layout photo of the suggested antenna in the top and back views. FR4, with
a total size of 32 × 30 × 1.6 mm3, and εr = 4.4, tan δ = 0.025 were used in the fabrication.
Additionally, it was tested using a vector network analyzer (R&S ZVA 67) to show the
reflection coefficient S11, as shown in Figure 9a. The VNA screenshot result of the tested
antenna is illustrated in Figure 9b. The tested results show the antenna worked at the
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frequency band from 3.8–9 GHz (81.25%) with S11 ≤ −10 dB, while the simulated outcomes
illustrate that the antenna is operated from 4 to 9 GHz. The two results display good
matching between them, with some slight deviations between them due to the fabrication
tolerance and SMA soldering process.
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The setup of the far-field results was conducted inside an anechoic chamber, as il-
lustrated in Figure 10. A horn antenna operating at a suitable range of frequency and
connected to an RF signal generator was utilized as a transmitter antenna. On the other
hand, there was a suggested antenna (antenna under test), which was placed inside the
same chamber on a supporter that could rotate 360◦ in both the elevation and horizontal
planes. The antenna was connected to a spectrum analyzer to measure the received signal.
Additionally, there was a motion controller that controlled the motion of the antenna. The
overall equipment, such as the motion controller, spectrum analyzer, and RF generator, was
controlled to be operated synchronously. The antenna rotated around its axis with a certain
step and stopped for some seconds; on the other hand, the spectrum analyzer measured
the received power at this angle during the stopping time. The suggested antenna was
rotated in two planes xz (ϕ = 0◦) and yz (ϕ = 90◦) planes. The co- and cross-polarization
results at 5.5 and 5.8 GHz are shown in Figures 11a,b and 12a,b, respectively. More than a
−15 dB difference between the two components was accomplished in both planes.
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The gain of the antenna was measured, as illustrated in Figure 13. It ranged from 1.8
to 3.8 dBi at the designed frequency band with a peak of 3.6 dBi. Moreover, the AR was
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tested, as displayed in Figure 14, and the achieved 3 dB AR extended from 4.48–6.11 GHz
(30.7%) with a reasonable trend between the two outcomes.
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Finally, the suggested design was compared with others to evaluate the novelty
of the work, as presented in Table 2. The suggested antenna had a more simple de-
sign than [3,10,11], a more compact size than [5,9,13–19,22–25], a broader bandwidth
than [2,9,10,12,15,17,19,21,22,25], and a broader 3 dB AR than [9,10,12,15,19]. Finally, it was
deduced that the suggested antenna could be applied in UWB, sub 6 GHz, and WLAN
wireless applications.
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Table 2. The suggested design in comparison with other works.

Refs. Size
(mm2) εr/h (mm) f 0/BW (%) AR (%) Gain (dBi) Complexity

[2] 30 × 32 4.4/1.6 5.72/62.94 53.92 3.6 Simple
[3] 120 × 120 3.55/0.813 4.55/120.9 133.3 11.2 Complex
[5] 49 × 55 4.4/1.5 4.3/106.3 104.7 6.55 Simple
[9] 45 × 45 10/3.18 1.575/1.9 0.4 2.2 Simple
[10] 80 × 80 2.7/9 1.9/27.2 3 4.3 Complex
[11] 90 × 90 3.38/0.8 2/115.2 106.1 7 Complex
[12] 32 × 32 3.38/5.588 5.5/44.5 27.5 7.2 Complex
[13] 54 × 54 2.55/1 4/104 58.6 3.8 Simple
[14] 48 × 48 4.4/1 4.2/114.4 110.5 4.5 Simple
[15] 52 × 55 2.2/1.52 5.4/60.5 30.7 4.8 Simple
[16] 35 × 42 4.4/1.6 3.95/118 104.4 5.2 Simple
[17] 70 × 70 4.7/3.2 2.45/51.4 56.2 2 Simple
[18] 50 × 55 4.4/1 3.4/88 64.7 2.25 Simple
[19] 50 × 55 2.2/3.1 2.45/28.6 4 2.9 Simple
[20] 32 × 39 4.4/1.5 4.9/102 37.5 2.25 Simple
[21] 30 × 30 4.4/1 6.3/55.5 42.6 5.3 Simple
[25] 40 × 40 4.4/1.6 7.9/73.39 58.08 4.22 Simple
[22] 70 × 70 4.3/0.8 1.7/30 32 2.45 Simple
[23] 50 × 50 3.5/1.52 5.8/101 49.8 4.36 Simple
[24] 50 × 55 4.4/1 2.86/96.5 63.3 3.5 Simple

This work 30 × 32 4.4/1.6 6.4/81.25 30.7 3.8 Simple

4. Conclusions

A miniaturized size and wide-band CP monopole antenna was suggested, fabricated,
and tested. The suggested antenna was 30 mm × 32 mm (0.4 × 0.42 λ0 at 4 GHz).

A U-shaped radiator on the front side, a partial ground plane with two rectangle slots,
and a quadrilateral-shaped parasitic strip on the back side were utilized to produce the CP
feature. The CP was achieved when we excited two modes with the same amplitude and
a 90◦ phase difference. This could be generated by regulating the slot’s dimensions and
adding a quadrilateral-shaped parasitic strip to the ground plane. The antenna’s different
parameters were discussed and investigated. The tested outcomes had a bandwidth of
S11 ≤ −10 dB 81.25% (5.2 GHz, 3.8–9 GHz) and an AR bandwidth of 30.7% (1.63 GHz,
4.48–6.11 GHz). Based on the achieved outcomes, it can be suggested that the antenna
is considered a good choice for several wireless systems, such as UWB, sub 6 GHz, and
WLAN applications.
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