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Abstract: An ultrasensitive single-axis in-plane micro-optical-electro-mechanical-system (MOEMS)
accelerometer based on the Talbot effect of dual-layer gratings is proposed. Based on the Talbot effect
of gratings, the acceleration can be converted into the variation of diffraction intensity, thus changing
the voltage signal of photodetectors. We investigated and optimized the design of the mechanical
structure; the resonant frequency of the accelerometer is 1878.9 Hz and the mechanical sensitivity
is 0.14 µm/g. And the optical grating parameters have also optimized with a period of 4 µm and
a grating interval of 10 µm. The experimental results demonstrated that the in-plane MOEMS
accelerometer with an optimal design achieved an acceleration sensitivity of 0.74 V/g (with better
than 0.4% nonlinearity), a bias stability of 75 µg and an acceleration resolution of 2.0 mg, suggesting
its potential applications in smartphones, automotive electronics, and structural health detection.

Keywords: optical micro-grating; Talbot effect; optical interference; micro-accelerometer

1. Introduction

At present, MEMS accelerometers are widely used in the fields of smartphones, au-
tomotive electronics and seismic and structural health detection [1–5]. Different types of
acceleration detection have been used, such as optical [6], capacitance [7], piezoresistive [8],
piezoelectric [9] and so on [10,11]. Compared to other sensing technologies, capacitive
sensing is highly attractive in the literature due to its ease of compatibility with integrated
circuit [12]. However, it is sensitive to electromagnetic interference. It is inevitably subject to
parasitic capacitance and fringe effects, which will affect sensitivity and accuracy. Therefore,
optical sensing has been considered as one of the most promising candidates in the field of
structural health detection and inertial navigation due to its advantages of high precision,
corrosion resistance and intrinsic immunity to electromagnetic interference [13–15].

Different types of MOEMS accelerometers have been investigated and significant
results have been achieved [16–20]. Optical-fiber-based accelerometers have commonly
been used for optical detection, but the integration of optical fibers with micromechanical
structures in small bulks is not easy [21,22]. Grating-interference accelerometers have
received much attention due to their advantages in terms of high sensitivity, low cost
and lower power consumption [23]. However, they restrict the integration of multi-axis
accelerometers on the same substrate [24]. With the advantages of a tunable linear range
and ease of integration, a grating-Talbot-effect-based accelerometer has been proposed. In
2022, our group demonstrated a MOEMS out-of-plane accelerometer based on the Talbot
effect of dual-layer gratings with a sensitivity of 3.1 V/g and a bias stability of 0.15 mg [25],
which verified the feasibility of a grating-Talbot-based accelerometer with low noise, low
power consumption and high sensitivity.
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In this work, we propose an in-plane MOEMS accelerometer based on the Talbot effect
of dual-layer gratings. This accelerometer takes advantage of a periodical change in Talbot
pattern with high acceleration-displacement sensitivity. Using this approach, individual
lateral and vertical axis accelerometers based on the Talbot effect can be fabricated on the
same die, which can reduce the orthogonality error and optimize the performance of each
axis. Moreover, the linear working range of MOEMS accelerometers can be designed and
provided in certain applications. Here, the mechanical sensing structure is meticulously
designed and optimized at a full scale range of 200 g. The experimental results show that
the MOEMS accelerometer has a high sensitivity of 0.74 V/g, a bias stability of 75 µg and
an acceleration resolution of 2.0 mg.

2. Sensing Principle

The optical mechanism of the in-plane grating-Talbot-based accelerometer is schemati-
cally described in Figure 1. When the laser light (model MDL-III-1550, 1550 nm wavelength,
with a collimated diameter of 800 µm) propagates to grating I, the light travels through
it and arrives at grating II (the interval of gratings is d0), and is deposited on the proof
mass. The light is directly transmitted by grating II, and this forms the Talbot effect of
near-field diffraction. We record the diffraction intensity beneath the dual-layer gratings.
The accelerometer structure consists of proof mass, dual-layer gratings (with the side length
of a), spring beams and anchors. When it senses the acceleration in the X direction, the
proof mass will be removed from its initial position, resulting in bending and distortion
in the four spring beams, and the proof mass will move horizontally relative to grating I
along with the lateral movement of grating II in the sense direction (under the condition
of ignoring the influence of cross-axis sensitivity). The relative position variation in dual
gratings will lead to an intensity difference of near-field diffraction. Thus, the change can
be measured to obtain the acceleration, which is detected by a photodetector (PD).
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Figure 1. Schematic diagram of the dual-layer diffraction gratings-based accelerometer.

Based on a dual-layer gratings model, a series of simulations was carried out using
the finite-difference time-domain (FDTD) method. When the collimated laser irradiates
the dual-layer gratings, it will form a self-generated image of the grating pattern in the
Z-direction at periodic intervals, which is called the Talbot effect as shown in Figure 2a.
The periodic repetition of the field distribution in the near field of the grating can be seen
through the Talbot effect transmitted by the gratings [26–29]. According to the theory
of near-field diffraction gratings [30], the self-generated image is repeated with a Tal-
bot period of approximately dt = 2d2/λ [31] and the Talbot imaging region is within
D < πdt(2N − 3)/4, where d is the spatial period of the grating, λ is the wavelength of the
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incident light and N is the number of cycles of the laser beam passing through the grating.
To obtain the maximum diffraction efficiency, the position of the lower grating is located
at the position of the Talbot image with a tolerance of ±0.5 µm. Therefore, the interval
between the upper and lower gratings was chosen to be 10 µm. We also investigated the
influence of the grating parameters on the diffraction intensity distribution by optimizing
the parameters of dual gratings; the grating parameter selected were a period of 4 µm, an
Al grating thickness of 300 nm, and a duty ratio of 0.5. Figure 2b shows the relationship
between the diffracted light and the displacement of the lower grating in the in-plane
direction, with the period of d and linearity coefficients of 0.999 (Figure 2c). From the linear
fitting, the sensitivity of the optical diffraction effect is 20%/µm. Although the optimal
grating period is 2 µm, we still chose the grating period of 4 µm for processing due to
the accuracy of the lithography (MA6-IV, with an accuracy of less than 1 µm). In the next
step, the optical sensitivity and resolution of the accelerometer will be greatly improved by
employing the stepping lithography (with an accuracy of 0.1 µm).
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Figure 2. (a) The Talbot pattern of dual-layer diffraction gratings. (b) Simulation curve for the
diffraction efficiency versus the displacement along the sensitive axis of accelerometer. (c) Linear
fitting for the diffraction efficiency curve in the linear region of (b).

3. The Design and Fabrication of MOEMS Accelerometer

To obtain a mechanical structure with high sensitivity in the in-plane direction and
low cross-axis sensitivity [32], we simulated the structure and optimized the parameters of
the accelerometer (including the width and length of the cantilever beam and the size of
the proof mass), and analyzed resonance frequency, stress and optimized parameters in
detail [33]; the optimal parameters are shown in Table 1. Due to cross-axis interference being
inevitable, we assessed the effect of deformation on the sensing axis when the non-sensing
axis was subjected to acceleration. According to the simulation, the response sensitivity of
the accelerometer in a non-sensing direction is 0.42 nm/g (Y-axis) and 0.29 nm/g (Z-axis),
respectively.
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Table 1. The parameters of the accelerometer structure.

Design Parameter Values

Young’s modulus of silicon 170 GPa
The Poisson ratio of silicon 0.28

Density of silicon 2329 kg/m3

Supporting beam length 1500 µm
Supporting beam width 150 µm

Sensing beam length 1300 µm
Sensing beam width 30 µm

The gap between two beams 50 µm
Frame length 4800 µm

Mass block thickness 100 µm

Another important parameter of a MOEMS accelerometer is the operating bandwidth,
which depends on the characteristics of mechanical structure. In order to calculate this
parameter, we analyzed the resonant frequency of the accelerometer, which depends on
the stiffness and proof mass [34]. Figure 3 shows the mechanical mode of the proposed
accelerometer. The stresses are concentrated in the beam structure. The mass in the sensing
direction is 15.3 mg, and the elastic coefficient is K = 1343 N/m. When the structure
withstands an acceleration of 200 g, it reaches the allowed stress of silicon. The first
mode frequency of the accelerometer is 1878.9 Hz, and the second, third and fourth mode
frequencies are 8453.6 Hz, 12,172 Hz and 12,235 Hz, respectively. The resonant frequencies
of other modes are far from the working mode, avoiding the coupling of other modes with
the working mode and effectively suppressing the cross-axis sensitivity induced by other
different modes. The bandwidth of the accelerometer is 626.3 Hz.
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In the FEA simulation, the sensor has a displacement sensitivity of 140 nm/g. Due to
the photoelectric conversion efficiency of PD being 0.86 A/W at a wavelength of 1550 nm,
the photoelectric sensitivity of the grating-Talbot-based accelerometer can be calculated as
15.4 V/µm. Therefore, the total sensitivity of the MOEMS accelerometer can be calculated
as 2.1 V/g.

The detailed fabrication of the MOEMS accelerometer using micro-nano technology
is shown in Figure 4. Highly reflective films composed of aluminum are first patterned
on the glass substrate using magnetron sputtering (Figure 4a). Then, the upper grating
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layer is fabricated by dry etching after spin coating a 1.5 µm thick photoresist (AZ5214) for
photolithography (Figure 4b). To ensure the interval of the dual-layer grating, we etched a
10 µm shallow groove in the center of the silicon substrate (Figure 4c). For the subsequent
electrostatic actuator and anodic bonding, the electrode grooves were etched by reactive
ion etching (RIE) (Figure 4d). A 300 nm thick SiO2 layer was grown by PECVD to prevent
conductivity of the electrodes to the wafer (Figure 4e). Though magnetron sputtering,
spin-coating of a photoresist and photolithography, the lower grating and Al wires were
also fabricated by metal dry etching (Figure 4f,g). The cantilever beams were also etched
with deep reactive ion etching (DRIE) after wet etching the SiO2 layer (Figure 4h,i) and
then releasing the sensitive structure (Figure 4j). Finally, the micro-grating layer and the
structure layer were combined together via anodic bonding (Figure 4k).
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4. Experiment and Discussion

A block diagram of the experimental setup for the static acceleration measurement
test of the proposed accelerometer is shown in Figure 5. All of these configurations were
mounted on a high-precision rotary table (model. AP180/M, Thorlabs, Shanghai, China)
that generates input accelerations by rotating the table from 0◦ to 90◦, which means that the
input accelerations can be applied between 0 g and 1 g. A frequency-stabilized laser with a
power of 1.1 mW served as the light source in our configuration, and the transresistance
resistor of PD is 1.8 kΩ. To reduce the impact of frequency noise on device performance,
we used phase-modulation techniques to suppress 1/f noise and other ambient noise. As
shown in Figure 5, the realization of phase modulation requires a piezoelectric ceramic
transducer (PZT), signal generator, demodulation module, low-pass filter and processing
circuit. The signal generator sends two identical signals to a PZT and demodulation module,
respectively. The diffraction intensity detected by the PD is modulated by applying a signal
voltage to the PZT, then demodulated by multiplying the same frequency sinusoidal signal
and loaded on low-pass filter and A/D converter to be recorded in the computer.

In order to measure the sensitivity of the accelerometer, we recorded experimental data
at different values of acceleration. The average value was measured four times forward
and backwards. A linear fitting for the output curve versus the acceleration along the
sensitive axis is given in Figure 6a. The output of the MOEMS accelerometer can be written
as follows:

Vout = 0.74491x + 9.00977 (1)

where x is the acceleration along the sense axis of the accelerometer. The sensitivity of
the sensor is 0.745 V/g, and the R2 after linear fitting is 99.6%. From Figure 6a, it can be
seen that the error bars of the measurement exist during the acceleration increasing and
decreasing process, which may be derived from the inconsistency of the stiffness of the
cantilever beams and thus different non-linearity forwards and backwards. In addition, the
accuracy of the rotary table has a tolerance of ±0.3◦ during the measurement. Moreover,
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the direction of the non-sensitive axis is subject to acceleration provided by gravity, and
the cross-axis sensitivity may influence the measurement accuracy. Figure 6b depicts the
output signal of the root mean square (RMS) deviations when the applied acceleration
on the accelerometer sensing axis is constant, which indicates that the noise level of the
MOEMS accelerometer is 1.5 mV. Combined with acceleration sensitivity, the maximum
acceleration resolution can be calculated according to the formula

resolution =
Noise density

Sensitivity
=

1.5 mV
0.74 V/g

= 2.01 mg (2)Micromachines 2023, 14, x 6 of 8 
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In addition, long-term experimental data were recorded when the applied acceleration
was zero. Figure 6c shows the Allan deviation of the raw data, in which the raw data have a
sampling rate of 50 Hz. It demonstrates that the bias stability is 75 µg. For a better analysis
of bias stability, we tested at different times of the day and the experimental results are
shown in Figure 6d. It is clear that the fluctuations in the bias stability at different times of
day is caused by fluctuations in temperature and environment vibrations, which affect the
power of the laser and the stability of the accelerometer, thus contributing to the higher bias
stability. The device’s performance can be further improved by reducing the laser intensity
fluctuations and relative intensity noise and spectral purity of the laser.
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5. Conclusions

In this paper, a MOEMS accelerometer based on the Talbot diffraction effect of dual-
layer gratings is proposed. We simulated and analyzed the accelerometer working in a
mode frequency of 1878.9 Hz and an operating bandwidth of 626.3 Hz. The experimen-
tal results demonstrated a sensitivity of 0.74 V/g with a better than 0.4% nonlinearity.
Moreover, the Allan deviation suggests that the bias stability of the accelerometer is 75 µg,
and the performance of the accelerometer is susceptible to environmental factors (such
as fluctuations in temperature and environment vibrations). This research shows the fea-
sibility of implementing an in-plane Talbot-effect-based MOEMS accelerometer. Further
analysis is performed for the bias temperature sensitivity and three-axis integration on the
same substrate.
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