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Abstract: At present, research on intelligent wheelchairs mostly focuses on motion control, while
research on attitude-based adjustment is relatively insufficient. The existing methods for adjusting
wheelchair posture generally lack collaborative control and good human–machine collaboration.
This article proposes an intelligent wheelchair posture-adjustment method based on action intention
recognition by studying the relationship between the force changes on the contact surface between
the human body and the wheelchair and the action intention. This method is applied to a multi-part
adjustable electric wheelchair, which is equipped with multiple force sensors to collect pressure
information from various parts of the passenger’s body. The upper level of the system converts the
pressure data into the form of a pressure distribution map, extracts the shape features using the VIT
deep learning model, identifies and classifies them, and ultimately identifies the action intentions
of the passengers. Based on different action intentions, the electric actuator is controlled to adjust
the wheelchair posture. After testing, this method can effectively collect the body pressure data of
passengers, with an accuracy of over 95% for the three common intentions of lying down, sitting up,
and standing up. The wheelchair can adjust its posture based on the recognition results. By adjusting
the wheelchair posture through this method, users do not need to wear additional equipment and are
less affected by the external environment. The target function can be achieved with simple learning,
which has good human–machine collaboration and can solve the problem of some people having
difficulty adjusting the wheelchair posture independently during wheelchair use.

Keywords: wheelchair posture adjustment; human intention recognition; deep learning

1. Introduction

Wheelchairs, a commonly used medical rehabilitation device, can provide assistance
for the travel and daily activities of the elderly and disabled. In the daily life of patients, it
is often necessary to adjust the angle of the backrest and other parts of the wheelchair to
meet their daily needs. For example, being in a lying position during rest is more conducive
to body relaxation; sitting upright while eating is more beneficial for the swallowing
function [1]; when sitting for a long time, it is necessary to adjust the angle of the wheelchair
backrest in a timely manner to reduce the pressure on the buttocks and avoid pressure
ulcers [2]; and some disabled athletes need to use wheelchairs to complete sports events,
adjusting the posture of the wheelchair to change the position of the body’s center of gravity
during use [3]. During the use of wheelchairs, the adjustment function of wheelchair
posture and travel function are equally important.

During the use of electric wheelchairs by the elderly and some disabled individuals,
it is difficult to accurately operate control panels in the form of buttons or screens due
to factors such as decreased visual function and limited finger or upper-limb mobility.
In addition, with the diversification of wheelchair functions, its control methods have
become more complex, making it difficult for some groups, especially elderly users, to
learn and master. For the hard problem of consciousness problem of operation in the use
of wheelchairs, many scholars have studied and designed a variety of different types of
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human–computer interfaces to adapt for different types of disabled people [4,5] to improve
the human–machine collaboration between humans and intelligent wheelchairs. Common
human–machine interaction methods include speech recognition [6–8], head posture [9],
EEG signals [10], electromyographic signals [11–13], and eye movement control [14]. How-
ever, the above human–computer interaction interfaces are mainly applied to the movement
control of intelligent wheelchairs, and there is still a lack of adjustment methods that com-
bine human–computer interactions in the adjustment function of wheelchair posture.

Regarding the method of adjusting the posture of a wheelchair, a multifunctional
wheelchair was designed in reference [15] where the posture of the back and legs can be
adjusted individually or in combination, and the adjustment mechanism of the wheelchair
legs can also achieve the function of overcoming obstacles. In reference [16], the wheelchair
seat was equipped with an adjustable threaded rod under it, which could adjust the
posture of the seat by adjusting the height of the threaded rod. The wheelchair handle
designed in reference [17] was equipped with a switch to control the hydraulic linkage,
which could adjust the wheelchair posture by controlling the extension and retraction of
the hydraulic linkage. The wheelchair used in reference [18] can change the angle of the
backrest by manually adjusting the rotation axis at the backrest. The wheelchair designed
in references [19,20] uses buttons to control the electric push rod on the wheelchair to
achieve angle adjustment functions for the backrest, seat cushion, and other parts of the
wheelchair, while reference [21] used touch-screen control. Based on the above literature,
most existing wheelchair posture adjustment methods can only adjust the backrest, seat
cushion, and pedals of the wheelchair separately, making it difficult to achieve collaborative
control of multiple parts of the wheelchair. Therefore, during the adjustment process, it
is easy to encounter situations where the wheelchair posture does not match the normal
physiological posture of the human body; in addition, the posture adjustment function
of standard electric wheelchairs lacks human–machine interaction and shared-control
methods [22], often relying on the help of nursing staff, and lacks good human–machine
collaboration during the use of wheelchairs, which to some extent limits the independent
mobility of patients [23]. In our previous work [24], we developed an IoT intelligent
wheelchair that can control the functions of wheelchair pedals and backrests through
mobile apps. However, this process relies on manual control by the users and also lacks
active perception and collaborative control for the users. This paper mainly conducts
further research on methods for wheelchair posture adjustment.

According to analyses of the characteristics of people’s movements when using
wheelchairs, when the user has the intention to stand, the contact force at the backrest of
the wheelchair will significantly decrease, while the force at the pedal will increase. At the
same time, the force area at the seat cushion will change (including the position of the force
area and the size of the contact surface area). Due to the fact that people usually need to use
wheelchair armrests to complete their up-movements, a downward force will be applied to
the armrests. Based on these characteristics, this article proposes an intelligent wheelchair
posture adjustment method based on action intention recognition, which judges the action
intention by the change in contact force between the human body and the wheelchair.

Normally, the main contact areas between the human body and the wheelchair include
the seat cushion, backrest, pedals, and armrests. For the first three areas, we installed
array-type membrane pressure sensors to collect the force signals of the wheelchair, while
at the armrests, we used four tension pressure sensors. The sensors at the seat cushion,
backrest, pedal, and armrest correspond to the user’s buttocks, legs, back, feet, and arms,
respectively. Through these force sensors, the wheelchair can fully perceive the changes
in the user’s body force and identify potential intention information by identifying the
changes in data. Due to the use of array sensors, the collected data matrix can be equivalent
to gray image data, so this paper proposes a pressure image recognition algorithm based on
VIT (Vision Transformer) for this part of data. At the same time, the VIT model has a higher
efficiency in data utilization and can perform well even with a smaller dataset capacity. At
present, the VIT model has a wide range of applications in image recognition tasks, such as
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object detection, image classification, and action recognition [25,26]. After practical testing,
this method can effectively recognize and classify pressure images generated by different
action intentions.

Compared with other intention recognition methods [27–29], obtaining intention infor-
mation through body posture can better unleash user autonomy, making it easier for elderly
people who may struggle to learn and operate them. At the same time, there is no need to
wear additional equipment during use, which improves comfort and is more conducive to
the health of skin tissue. In addition, due to the fact that the triggering of pressure signals
is not affected by environmental factors such as sound and light, the system has stronger
robustness and a wider range of applications. In summary, the system designed in this
article is suitable for standard wheelchairs with various posture adjustments. Its operation
is simple and easy to promote, and it is very user-friendly, especially for the elderly group.
It has more practical significance in the application field of electric wheelchairs. The main
contributions of this article are as follows:

• The system designed in this article deploys multiple force sensors on the upper part of
the wheelchair, which provides a more comprehensive perception of human posture
and is less affected by external environmental interference, enabling better recognition
of human movement intentions;

• A pressure image classification model based on VIT is proposed, which converts
pressure data into image form and classifies it to achieve recognition of action intention;

• This study also proposes an adaptive pressure-data acquisition method, which is
applied to the pressure sensor acquisition card at the seat cushion to ensure good
recognition performance for users of different weights.

The organizational structure of this article is as follows: In Section 2, the overall
structure design and operation mode of the system are introduced. In Section 3, the data
collection method and processing process are introduced. In Section 4, by analyzing the
characteristics of two different types of sensor data, the corresponding data classification
and recognition methods are provided. In Section 5, the feasibility of the intention recogni-
tion method and wheelchair posture collaborative adjustment method is verified through
experiments. Section 6 provides conclusions and future prospects.

2. System Design
2.1. Electric Wheelchair Platform

The system designed in this article is applied to an electric wheelchair, which is
equipped with multiple adjustable electric actuators, mainly including two electric push
rods and an angle adjustment motor. Through the control of the motor drive board,
functions such as backrest rotation, pedal lifting, and seat cushion rotation can be achieved.
The various actuating mechanisms and positions of the wheelchair are shown in Figure 1.

Micromachines 2023, 14, 1265 4 of 18 
 

 

 

Figure 1. Actuator and installation position of electric wheelchair. 

2.2. Selection and Installation of Sensors 

There are two types of sensors used to detect force signals from the human body: 

array-distributed flexible film pressure sensors are used in the backrest, seat cushion, and 

footrest; and a tension pressure sensor is selected at the armrest. 

The array sensors installed at the backrest and seat cushion have 1024 independent 

sensing units, and the sensors at the foot pedal have 256 sensing units. Compared with 

other human pressure detection schemes [30–34], the thin film pressure sensor selected in 

this article has the advantages of large format, moderate sensing point size, and high 

resolution, as well as a wide range of applications in detecting the force distribution on 

the sole, seat cushion, and back. In addition, considering the behavior habits of people’s 

upper limbs when using wheelchairs, this article also installed four resistance strain-type 

tension and pressure sensors at the armrest of the wheelchair to sense the placement of 

the human arm. This resistance strain sensor is composed of elastomer, a resistance strain 

gauge, a compensation circuit, and other parts. When the elastomer is deformed by 

external tension or pressure, it will transfer the strain to the resistance strain gauge and 

change its resistance value and then convert it into a corresponding voltage signal or 

current signal through the circuit [35]. The installation positions of the two sensors on the 

wheelchair are shown in Figure 2. 

 

Figure 2. Diagram of sensor installation positions. 

2.3. Data Acquisition Software 

We have developed a system data collection software based on PyQt on the PyCharm 

platform. PyQt is a cross-platform toolkit for creating GUI (graphical user interface) 

Figure 1. Actuator and installation position of electric wheelchair.



Micromachines 2023, 14, 1265 4 of 17

2.2. Selection and Installation of Sensors

There are two types of sensors used to detect force signals from the human body:
array-distributed flexible film pressure sensors are used in the backrest, seat cushion, and
footrest; and a tension pressure sensor is selected at the armrest.

The array sensors installed at the backrest and seat cushion have 1024 independent
sensing units, and the sensors at the foot pedal have 256 sensing units. Compared with
other human pressure detection schemes [30–34], the thin film pressure sensor selected
in this article has the advantages of large format, moderate sensing point size, and high
resolution, as well as a wide range of applications in detecting the force distribution on the
sole, seat cushion, and back. In addition, considering the behavior habits of people’s upper
limbs when using wheelchairs, this article also installed four resistance strain-type tension
and pressure sensors at the armrest of the wheelchair to sense the placement of the human
arm. This resistance strain sensor is composed of elastomer, a resistance strain gauge, a
compensation circuit, and other parts. When the elastomer is deformed by external tension
or pressure, it will transfer the strain to the resistance strain gauge and change its resistance
value and then convert it into a corresponding voltage signal or current signal through the
circuit [35]. The installation positions of the two sensors on the wheelchair are shown in
Figure 2.
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2.3. Data Acquisition Software

We have developed a system data collection software based on PyQt on the PyCharm
platform. PyQt is a cross-platform toolkit for creating GUI (graphical user interface)
applications, which can run on system platforms such as Windows, Linux, or Mac OS.
It successfully integrates the Python programming language with the cross-platform Qt
graphical user interface application framework and is currently one of the most powerful
GUI libraries [36,37]. The running interface of the software is shown in Figure 3, and the
functions of each region are as follows:

1. The display area of force distribution map: The collected data are converted into visual
graphics using the heatmap function provided in the Seaborn library. Seaborn is a
Python visualization library based on Matplotlib, which allows for a more intuitive
view of pressure distribution;

2. Serial port parameter setting area: The parameters that can be set for the serial port
include the baud rate and serial port number. Other default parameters include the
stop bit, check bit, and data bit as 1, NONE, and 8, respectively;

3. Data transmission and display area: The upper half is the data-receiving display area,
and the lower half is the data-sending display area, both of which support HEX mode;

4. Time display area: Used to display the date when the upper computer is running.
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3. Data Acquisition and Processing
3.1. Dataset

The dataset used in this article was collected from 20 volunteers, whose height and
weight ranges were recorded. Each volunteer sat in a wheelchair according to their personal
habits and repeated four movements, including sitting upright, lying down, getting up,
and standing, to collect 50 pieces of data each (with the wheelchair lying flat when getting
up). Each piece of data included the pressure data at the armrests, seat cushions, backrest,
and pedals.

3.2. Data Acquisition

The overall structure of the system is shown in Figure 4. We collected pressure
information from the human body through sensors (A) and supporting data acquisition
cards (B). The collection card of the thin film pressure sensor was designed by us, and each
collection card comes with an MCU for preprocessing the pressure information. Through
this distributed architecture, the collection rate of the system can be greatly accelerated.
The collection card of the tension pressure sensor adopts the HYDG-BS rail-type transmitter
produced by China Bengbu Hengyuan Sensor Technology Co., Ltd. (Bengbu, China) (which
was calibrated before use). All data acquisition cards are connected to the RS485 bus of
the system. The data acquisition, storage, and visualization operations are completed
through the data acquisition software introduced in Section 2.3. The interaction between
the acquisition software and the 485 bus is completed by the overall MCU (C). In addition,
the control functions of each linear actuator of the wheelchair are also completed by the
MCU (C).

3.3. Adaptive Pressure-Data Acquisition Method

In the actual testing process, we noticed that the seat cushion is the main force bearing
part of the wheelchair and the main data source for intention recognition. However,
different body types of passengers can produce different pressure effects. Therefore, we
propose an adaptive pressure-data collection method. This method aims to ensure that
passengers of different weights have pressure data with relatively uniform characteristics,
reducing recognition errors caused by weight differences among users.
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This function acts on the data acquisition card of the thin film pressure sensor at the
seat cushion. The working principle of this data acquisition card is as follows: the core
working circuit of the acquisition card is a voltage series negative-feedback amplification
circuit, with the input voltage Ui coming from the DAC pin of the MCU and the output
voltage Uo connected to the reverse input terminal of the operational amplifier through
the reverse feed resistance R f . The feedback resistor R f is a fixed value resistor with a
resistance value of 100 kΩ, and the resistance R represents the sensing unit on the pressure
sensor. The sensing unit is essentially a varistor, and its characteristic curve is shown in
the following figure. Finally, the pressure on the sensing unit is determined based on the
output voltage Uo collected by the ADC pin of the MCU.

According to the characteristics of the series negative-feedback amplification circuit,
the output voltage in Figure 5 can be expressed as:

Uo = (1 +
R f

R
)×V− = (1 +

R f

R
)×Ui (1)
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From Equation (1), it can be seen that when Ui is a constant value, if the weight of
the passenger is relatively light, the resistance value of resistance R only slightly decreases
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due to the small pressure, and the range of the output voltage Uo change is small; on
the contrary, a person with a larger weight sitting in a wheelchair will cause a significant
decrease in the resistance value of resistance R, which will result in a large number of
sensing units reaching the upper limit value of the measurement. Therefore, the acquisition
card needs to adaptively adjust the output voltage Ui value before starting the measurement
to ensure that the subsequently collected pressure values are always within a relatively
uniform range. In the process of data collection, we define the point where the pressure
value reaches its maximum value as the full pressure point, and its quantity is represented
by M. The proportion P of the full pressure point of the sensor can be expressed as:

P =
M

1024
(2)

The method designed in this section adjusts the output voltage Ui by detecting the
proportion of the full pressure point. The output voltage Ui can be expressed as:

Ui = Ui0 ×
[

1 +
M0 −M

1024

]
(3)

In the formula, Ui0 is the initial voltage, and M0 is the default number of full pressure
points in the system. After one or more adjustments, when P ∈ (0.15, 0.25) is reached, the
algorithm adjustment is considered complete. The current output voltage Ui is recorded
and set, and subsequent data from this frame are considered valid.

3.4. Pressure Data Visualization Processing

The pressure data form of the thin film pressure sensor is 32 × 32 (or 16 × 16). The
data arrangement characteristics of the matrix are similar to the image data, with a frame
of 32 × 32. The pressure data of 32 can be seen as a graph composed of 32 × 32. A picture
composed of 32 pixels can be converted into image format for this form of data. We use
the upper computer in Section 2.3 to visualize the collected pressure data, where different
colored blocks represent sensing units with different pressure values. This transforms the
classification problem of pressure data into an image classification problem. To facilitate
subsequent recognition, the image is converted to 224 × 224. The images before and after
processing are shown in Figure 6.

Micromachines 2023, 14, 1265 8 of 18 
 

 

 
Figure 6. Raw pressure data images and converted images. 

4. Methods 
In the system studied in this article, there are two types of data generated by human 

action intentions: one is pressure images from thin film pressure sensors, and the other is 
tension pressure sensor data from the armrest. Therefore, the method in this article is 
mainly divided into two parts: (1) Classifying pressure images under different human 
intentions using the VIT algorithm; (2) Serialization and classification method for armrest 
pressure data. 

4.1. VIT-Based Pressure Image Recognition Algorithm 
4.1.1. Pressure Image Input Processing 

The Transformer model was originally used in the field of natural language 
processing, mainly dealing with two-dimensional sequence data such as text, sentences, 
and paragraphs. Therefore, before using the Transformer model to recognize pressure 
images, the first step is to reduce the dimensionality of the three-dimensional image data 

and convert it into a two-dimensional sequence shaped like ( ),ND  ( N  represents the 
length of the sequence, D  is the dimension of the vector). 

For a pressure image H W Cx R × ×∈  ( H  and W  represent the height and width of the 
image, C represents the number of image channels), first divide it into several fixed-size 

P image blocks, each of which can be represented as 
2( )N P C

px R∈  . Flatten these image 
blocks to obtain a sequence of image blocks with a length of N . 

2/N HW P=  (4) 

At this point, the dimensions of the image block are ( )2P C×  , and then it is 
transformed into D   through linear mapping to obtain a two-dimensional sequence 

( ),ND  containing image information. Then, insert a class token for classification before 
the image sequence with dimensions consistent with the image sequence, and the image 

sequence becomes ( )1,N D+  . Finally, a position embedding is added to the image 
sequence, which preserves the original position information of the image block and 
prevents the loss of position information in subsequent recognition processes. After 

adding position encoding, the dimensions of the image sequence remain ( )1,N D+ . The 
above process is the entire process of pressure image preprocessing, which essentially 

involves dimensionality reduction of the image data. The sequence ( )1,N D+  obtained 
through the above operations is the input data of the Transformer model, and the above 
process is called input embedding, as shown in Figure 7. 

Figure 6. Raw pressure data images and converted images.

4. Methods

In the system studied in this article, there are two types of data generated by human
action intentions: one is pressure images from thin film pressure sensors, and the other
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is tension pressure sensor data from the armrest. Therefore, the method in this article is
mainly divided into two parts: (1) Classifying pressure images under different human
intentions using the VIT algorithm; (2) Serialization and classification method for armrest
pressure data.

4.1. VIT-Based Pressure Image Recognition Algorithm
4.1.1. Pressure Image Input Processing

The Transformer model was originally used in the field of natural language processing,
mainly dealing with two-dimensional sequence data such as text, sentences, and para-
graphs. Therefore, before using the Transformer model to recognize pressure images, the
first step is to reduce the dimensionality of the three-dimensional image data and convert
it into a two-dimensional sequence shaped like (N, D) (N represents the length of the
sequence, D is the dimension of the vector).

For a pressure image x ∈ RH×W×C (H and W represent the height and width of the
image, C represents the number of image channels), first divide it into several fixed-size
P image blocks, each of which can be represented as xp ∈ RN(P2C). Flatten these image
blocks to obtain a sequence of image blocks with a length of N.

N = HW/P2 (4)

At this point, the dimensions of the image block are
(

P2 × C
)
, and then it is trans-

formed into D through linear mapping to obtain a two-dimensional sequence (N, D)
containing image information. Then, insert a class token for classification before the image
sequence with dimensions consistent with the image sequence, and the image sequence
becomes (N + 1, D). Finally, a position embedding is added to the image sequence, which
preserves the original position information of the image block and prevents the loss of
position information in subsequent recognition processes. After adding position encoding,
the dimensions of the image sequence remain (N + 1, D). The above process is the entire
process of pressure image preprocessing, which essentially involves dimensionality reduc-
tion of the image data. The sequence (N + 1, D) obtained through the above operations is
the input data of the Transformer model, and the above process is called input embedding,
as shown in Figure 7.
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Figure 7. Image data conversion process.

4.1.2. Feature Extraction Method

The extraction of data features in Transformer Encoder is mainly achieved through the
multi-head attention module, which is composed of multiple self-attention modules. When
extracting features from a single self-attention module, the two-dimensional sequence
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containing pressure image information after input embedding is first divided into multiple
one-dimensional subsequence components x.

X = {x1, x1, x1, . . . , xN+1} (5)

xi = (i, D) (6)

Each component xi is linearly transformed through three matrices WQ, WK, WV (ran-
domly initialized and updated with training parameters) to obtain three vectors qi, ki, vi.

qi, ki, vi = xiWQ, xiWK, xiWV (7)

Here, q represents query and k represents key. Next, perform the weighted inner
product operation on all vectors q and k, respectively, to obtain the value αi,j, which is
essentially to match how approximate the information of these two vectors is.

αi,j =
qikj
√

dk
(8)

In the equation,
√

dk is the square root of the dimension of the k vector, and it is
divided by this value to maintain the stability of the gradient value in subsequent training.
Then, perform the So f tmax operation on αi,j and multiply it with vector vi to obtain the
final feature vector bi.

So f tmax(zi) =
ezi

C
∑

c=1
ezc

(9)

Attention(Q, K, V) = So f tmax
(

QK√
dk

)
V (10)

The essence of the So f tmax function is to sum all the values in αi,j to 1. The entire
feature extraction method can be represented by the following formula, where it is the case
of a single self-attention module. The multi-head attention module divides each group of
qi, ki, vi into multiple components based on the number of heads for self-attention operation
then finally concatenates all the obtained results bi to obtain the output result, as shown in
Figure 8.

MultiHead(Q, K, V) = Concat(head1, . . . , headh)WO (11)

headi = Attention(QWQ
i , KWK

i , VWV
i ) (12)
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4.1.3. Stress Image Classification and Intent Recognition

After extracting features from the image sequence data through the Transformer
Encoder, we extract the CLS token classification vector (dimension (1, D)) and input it
into the fully connected layer for pressure image classification. The entire classification
function is implemented by the MLP head layer. The classification results of each part are
weighted according to a certain weight to obtain the final classification result Pα, which can
be expressed as:

Pα =
4

∑
i=1

µiPi (13)

When the probability Pα reaches 85%, it is considered as a valid classification, and
then the preliminary human intention can be identified according to the target category.
The data transmission and recognition during the entire algorithm operation process are
shown in Figure 9.

Micromachines 2023, 14, 1265 10 of 18 
 

 

The essence of the Softmax  function is to sum all the values in 
,i j  to 1. The entire 

feature extraction method can be represented by the following formula, where it is the 

case of a single self-attention module. The multi-head attention module divides each 

group of , ,i i iq k v   into multiple components based on the number of heads for self-

attention operation then finally concatenates all the obtained results ib   to obtain the 

output result, as shown in Figure 8. 

( ) 1, , ( ,..., ) O

hMultiHead Q K V Concat head head W=  (11) 

( , , )Q K V

i i i ihead Attention QW KW VW=  (12) 

 

Figure 8. Feature extraction process of multi-head attention. 

4.1.3. Stress Image Classification and Intent Recognition 

After extracting features from the image sequence data through the Transformer 

Encoder, we extract the CLS token classification vector (dimension ( )1, D ) and input it 

into the fully connected layer for pressure image classification. The entire classification 

function is implemented by the MLP head layer. The classification results of each part are 

weighted according to a certain weight to obtain the final classification result P , which 

can be expressed as: 

4

1

= i i

i

P P 
=

  (13) 

When the probability P  reaches 85%, it is considered as a valid classification, and 

then the preliminary human intention can be identified according to the target category. 

The data transmission and recognition during the entire algorithm operation process are 

shown in Figure 9. 

 

 

(a) (b) 

Figure 9. VIT model identification process: (a) data transfer process; (b) weight of each part, A–D
represents four different intentions.

4.2. Handrail Pressure Data Serialization Classification Method

According to the working characteristics of the pull-pressure sensor at the armrest,
the sensor will output a negative value when under pressure and a positive value when
under tension. The higher the absolute value, the greater the force. We will divide dataset
D in Section 3.1 into four sub datasets, D1, D2, D3, D4 according to intention, then convert
the data from the four sensors into vector form in a fixed order.

Di =
{

si
1, si

2, . . . , si
n

}
(14)

Perform averaging operations on the data of each sub-dataset to obtain four benchmark
sequences S1

0, S2
0, S3

0, S4
0.

Si
0 =

n
∑

j=1
si

j

n
(15)

Each reference sequence contains four elements, representing the values of four pres-
sure sensors. The arrangement order of the four sensors and the corresponding reference
sequence with different intentions are shown in the following Figure 10.

For an unknown sequence collected, we use Euclidean similarity to determine the
degree of similarity between the unknown sequence and the reference sequence in order to
determine which situation the sequence is most likely to belong to. Euclidean similarity
can be expressed using the following formula.

E(p, q) =

√
n

∑
i=1

(pi − qi)
2 (16)
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In the equation, E represents distance, and the elements p and q come from unknown
sequences and reference sequences, respectively, and the calculation process is shown in
Figure 11.
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By comparing the similarity between the unknown sequence and the four benchmark
sequences, the smaller the distance E is, the closer the unknown sequence is to a certain
benchmark sequence. The probability of Pβ belonging to this sequence can be expressed as:

Pβ = (N − Emin)/N (17)

In the formula, N is the similarity threshold, set according to the measurement range of
the sensor; and Emin is the minimum of the four distance values. Finally, determine whether
the unknown sequence belongs to a certain action intention based on the probability Pβ.

Based on the intention recognition situation in Section 4.1, when both Pα and Pβ are
greater than 85%, it is determined that the human body has intention to act. When the
Pα is greater than 85% and no pressure is detected at the armrest, it is also determined
that the human body has intention to move. In other cases, it is believed that no obvious
action intention has been identified. In addition, in the case of potential motion intention
recognition errors, if the user can change their body’s center of gravity, the system’s safety
stop can be triggered; that is, they only need to slightly lean to transfer the center of gravity
to the side of the wheelchair. When the system detects that the human body’s sitting
posture is not correct, all linear actuators will stop operation and restore the initial state.
Throughout the use of the wheelchair, the priority of the safety function is higher than that
of the intention recognition function.
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5. Experiments and Results

This section verifies three aspects through experiments: (1) Adaptive pressure-data
collection; (2) The accuracy of human action intention recognition; (3) The collaborative
adjustment function for chair posture.

5.1. Performance Test of Adaptive Pressure-Data Collection Algorithm

The default parameter configuration of the system is based on a weight of 65 kg, where
the Ui0 size is 1.5 V and M0 is 200. Two volunteers weighing 54 kg and 78 kg were used to
test for the effectiveness of the adaptive pressure-data collection, as shown in Figure 12.
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Figure 12. Adaptive pressure-data acquisition algorithm effect diagram: (a) results for 54 kg subject;
(b) results for 78 kg subject.

The point with a pressure value of 9 in the figure is the full pressure point (value ∈
[3, 9]). The number of full pressure points M and the proportion of full pressure points P
before and after adjustment are shown in Table 1. The adjusted proportion of full pressure
points P ∈ (0.15, 0.25) meets the expected effect.

Table 1. Adaptive pressure-data collection algorithm test data table.

Weight Data Status M P

54 kg Unadjusted 99 0.0966
Adjusted 158 0.1542

78 kg Unadjusted 473 0.4619
Adjusted 204 0.1992

5.2. Human Movement Intention Recognition Effect Test

In the actual test, the pressure image recognition algorithm uses the VIT-Base/16
model. We divide the dataset in Section 3.1 into a training set and verification set according
to the ratio of 9:1 and train the network parameters using the transfer learning method.

The formal experimental session consisted of twenty participants, including fourteen
males and six females, with a range of height, body mass, and weight scores ranging from
165 cm to 178 cm and 58 kg to 86 kg. The experimental process was as follows:

• Before the experiment began, each participant was naturally sitting in a wheelchair,
with their body and limbs in free contact with various parts of the wheelchair. The
system used the method described in Section 3.3 to adjust the pressure data at the seat
cushion. As this part of the experiment only tested the accuracy of intention recogni-
tion, in order to maintain consistency in the experiment, the adjustment function of
the wheelchair was turned off during the testing process;

• After the adjustment was completed, the formal experimental phase began. Each
participant was free to make any number of attempts to lie down, stand up, and
stand up within a 5-min time frame. The experimental process is shown in Figure 13,
where A1~A4 represent the normal sitting posture, B1~B4 represent the state when
the human body has the intention to stand up, C1~C4 represents the state when the
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human body has the intention to lie down, and D1~D2 represents the state when the
human body has the intention to sit up;

• The number of occurrences of actual action intentions during the experiment was
recorded by on-site researchers. The system will automatically detect the human
body’s action intentions and record the number of occurrences. Except for the three
types of action intentions mentioned above, the number of occurrences is not counted.
Finally, the accuracy of recognition is obtained by dividing the number of intentions de-
tected by the system by the actual number of action intentions (the detection frequency
of the system is 2 Hz).
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Figure 13. Human movement intention recognition experiment, (A): sitting, (B): standing up,
(C): lying down, (D): sitting up.

The data recorded throughout the entire experimental process are shown in Table 2,
with the accuracy rates of intention recognition for lying down, getting up, and standing
being 95.12%, 98.7%, and 100%, respectively.

Table 2. Intent recognition experiment data sheet.

Intentions Occurrence Times Recognition Times Accuracy Rates

Lie down 82 78 95.12%
Get up 77 76 98.7%

Stand up 79 79 100%

5.3. Wheelchair Posture Adjustment Function Test

This section mainly tests the wheelchair posture adjustment function. Before starting
the test, the wheelchair was first reset, and all parts were adjusted to the angle when sitting
upright. Next, the wheelchair posture adjustment functions corresponding to the intentions
of lying down, getting up, and standing were tested. The posture changes of the wheelchair
during the experiment are shown in Figure 14:

• Part A in the figure shows the posture adjustment process of the wheelchair when the
passenger has a lie-down intention while sitting upright. When the system detects
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that the user has a lie-down intention while sitting upright (Figure 15(A1)), the push
rod at the backrest of the wheelchair will contract to adjust the angle of the backrest in
a counterclockwise direction. The angle adjustment motor at the pedal will also syn-
chronously rotate counterclockwise to lift the pedal, and the two electric actuators can
achieve collaborative control throughout the entire process to ensure that the human
body always maintains a comfortable and reasonable posture (Figure 15(A2–A4));

• Part B in the figure shows the posture adjustment process of the wheelchair when the
passenger intends to sit up while lying down. When the system detects that the user
in a lying state has an intention to sit up (Figure 15(B1)), the electric push rod at the
backrest of the wheelchair will extend to adjust the backrest in a clockwise direction,
and the angle adjustment motor at the pedal will synchronously rotate clockwise to
lift the pedal. Throughout the entire process, the backrest and pedals of the wheelchair
will be in a synchronized adjustment state (Figure 15(B2–B4));

• The Figure 15(C1–C5) parts in the figure show the posture adjustment process of
the wheelchair when the passenger intends to stand up while lying down. When
the system detects that the user is in a sitting position and has an intention to stand
up (Figure 15(C1)), the push rod under the seat cushion will extend to support the
cushion part. At the same time, the angle adjustment motor at the pedal will rotate
clockwise to meet the standing needs and the above two functions will be performed
simultaneously (Figure 15(C2,C3)). After completing the auxiliary standing function,
the person can leave the wheelchair (Figure 15(C4)). When it is detected that the
person has left the wheelchair, the wheelchair will automatically reset to its initial state
(Figure 15(C5)).
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6. Conclusions and Prospects

In this study, we propose an intelligent wheelchair posture adjustment method based
on action intention recognition. Firstly, the system takes pressure signals from various parts
of the human body as inputs and can assist in controlling the wheelchair by identifying
features with different intentions. Compared with traditional control methods, this system
breaks free from the constraints of manual joystick- and button-control methods and
improves the synergy in the wheelchair attitude-based adjustment process. Due to the
fact that the pressure signal comes from human contact, it is less affected by the external
environment compared to technologies such as speech recognition. At the same time,
there is no need to wear any equipment during use, providing higher comfort. Users only
need to control the wheelchair according to their usage habits, making it easy to operate
and master.

In the design process of the system, we designed a data acquisition card equipped
with MCU for several main array thin film pressure sensors, which can independently
collect and process pressure data, improving the overall performance and operational
efficiency of the system. In order to adapt the system to a wider audience, we added an
adaptive pressure-data collection algorithm to the data collection card. This algorithm can
adjust the cushion pressure data of users with different weights, providing distinctive input
data for subsequent recognition functions. We also proposed using the VIT deep learning
classification model to identify pressure distribution images. By visualizing the pressure
data, the recognition of pressure data is combined with image classification tasks. After
experimental testing, the recognition accuracy of each intention is above 95%. When the
intention is recognized, the wheelchair makes corresponding adjustments, and the system
operates stably within a certain time range.

In response to the poor performance of some intention recognition, we plan to consider
expanding the system’s dataset and training the model by collecting more user position
data to improve the recognition rate of the model. In addition, we are also considering
combining intention recognition with the operation of wheelchairs, developing more types
of intention recognition and corresponding functions, and improving the human–machine
interaction experience of intelligent wheelchairs.
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