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Abstract: Identification technology based on biometrics is a branch of research that employs the
unique individual traits of humans to authenticate identity, which is the most secure method of
identification based on its exceptional high dependability and stability of human biometrics. Common
biometric identifiers include fingerprints, irises, and facial sounds, among others. In the realm of
biometric recognition, fingerprint recognition has gained success with its convenient operation
and fast identif ication speed. Different fingerprint collecting techniques, which supply fingerprint
information for fingerprint identification systems, have attracted a significant deal of interest in
authentication technology regarding fingerprint identification systems. This work presents several
fingerprint acquisition techniques, such as optical capacitive and ultrasonic, and analyzes acquisition
types and structures. In addition, the pros and drawbacks of various sensor types, as well as the
limits and benefits of optical, capacitive, and ultrasonic kinds, are discussed. It is the necessary stage
for the application of the Internet of Things (IoT).

Keywords: fingerprint sensors; optical; piezoelectric; Internet of Things; ultrasonic

1. Introduction

The biometric traits of individuals include a wealth of information and are the basis
for a variety of well-established biometric technologies. As a new information authen-
tication technique, biometric identification based on human features may significantly
improve the quality of life for individuals and foster economic growth. Recently, bio-
metric identification technology has been utilized not only by government agencies to
identify persons and protect public safety but also by businesses and social groups for a
variety of commercial purposes. As a result of the development of biometric identifica-
tion technology, biological traits provide major benefits, such as passwords, and human
biometric characteristics for identity authentication have attracted considerable attention.
Biometric identification mainly includes iris recognition [1–3], facial recognition [4], voice
recognition [5], retina recognition [6], palm print recognition [7], vein recognition [8,9],
fingerprint recognition [10–12], and so on. Biometric technology has vast applicability and
business potential. Physiological and behavioral features are constant and distinct, and the
likelihood of two individuals having identical physiological characteristics is quite remote.

The fingerprint is a pattern created by the ridged skin at the tip of a human finger [13].
The fingerprint is formed before birth, and its shape does not alter as the individual
matures [14]. There are several methods for acquiring fingerprint pictures, which is the
initial stage of fingerprint identification [15]. Many fingerprint acquisition methods exist:
optical, capacitive, temperature [16], ultrasonic, and electromagnetic wave [17] fingerprint
acquisition technology. After fingerprint photos are accepted, pre-processing is undertaken
to simplify the extraction of fingerprint features, classifying fingerprints according to several
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characteristic points, then comparing them to those stored in the database to determine if
they are the same.

Early fingerprint identification technology was mainly developed in cell phones.
After Siemens demonstrated the feasibility of fingerprint identification technology in cell
phones in 1998, companies such as Fuji, Motorola, and Apple began to produce fingerprint
identification technology in cell phones, and so far, under-screen fingerprint technology is a
major trend in cell phones. Fingerprint identification technology has developed particularly
rapidly due to its great portability and high-cost performance, gradually becoming one
of the more common biometric identification methods than others in life, e.g., attendance
systems at work, smart door locks for family, identity determination in society, etc.

In recent years, fingerprint identification technology, from early ink identification to
optical identification and capacitive identification, in particular the ultrasonic fingerprint
identification system, has been gradually discovered by everyone. Ultrasonic fingerprint
identification can reduce the error rate of fingerprint identification technology and improve
the accuracy of fingerprint identification technology in the case of pollution identification.
As the Figure 1 shows, the ultrasonic fingerprint sensor has high integration, which can ef-
fectively solve problems such as the size and accuracy of the fingerprint sensor. Fingerprint
recognition technology is currently a convenient, highly reliable, and low-priced biometric
technology with great potential for large-scale applications.
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Figure 1. An illustration showing a summary of characteristics, physical principles, and technologies
for the fabrication of fingerprint sensors in different applications. TFT (thin film transistor), MEMS
(micro electromechanical system), and OCT (optical coherence tomography).

In this review, recent progress on fingerprints is summarized from research all over
the world in more than 250 references, with 40% being published in the last five years.
This work reviews the mechanism, characteristics, and industry application of fingerprint
sensors. The first section outlines modern biometric technologies and describes the develop-
ment and application of specific biometric technologies, which is helpful in understanding
the background of fingerprint recognition technology. The second section discusses the
mechanism of optical fingerprint sensors and details the structure of various types of optical
fingerprint sensors, enumerating the characteristics and application fields of various types
of sensors. The third section discusses the characteristics and application fields of various
types of optical fingerprint sensors. The fourth section describes the structure and charac-
teristics of fingerprint sensors based on self-capacitance and mutual-capacitance. The fifth
section provides ultrasonic fingerprint identification technology based on various sensors.
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2. Biometric Recognition Mechanism

Recently, biometrics as a security technique has emerged [18]. Combining the phys-
iological properties of the human body with computers, optics, and acoustics [19] led to
the development of a range of biometric technologies, including iris, voice, fingerprint,
face, etc., technology. Their comparison is shown in Table 1. Such features can be identi-
fied using advanced technologies to clarify personal identifying information [20]. Such
physiological traits can provide stronger assurance for information security and lower the
danger of data loss, leakage, etc. Moreover, biological features are a kind of characteristic
information that accompany human beings, have high anti-counterfeiting performance, are
difficult to fabricate or steal, are portable, and can be accessed at all times [21]. Nowadays,
the research of biometric identification technology has made remarkable achievements in
many fields [22]. For example, biometric identification technology plays a positive role in
criminal identification and confirmation in the field of public security [23]. It can realize
the encryption and decryption of relevant parts of the computer information system [24].
The use of biometric identification technology in the process of electronic commerce and
monetary transactions can ensure the circulation of funds in social life [25]. Furthermore, it
can provide remote medical monitoring [26] and other medical fields [27].

Table 1. Comparison of different biometrics.

Comparative Aspects Method Market Speed/
Person

False
Rejection

Rate/%
Advantage Disadvantage
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2.1. Iris Recognition

Iris recognition is a biometric system that identifies an individual based on the iris
tissue in the human eye [28]. Iris fiber tissue is very intricate. The composition of its
quantitative characteristic points may reach 266, which is an order of magnitude greater
than comparable biometric technologies. To attain maturity, fiber tissue is created during
the fetal stage, and the development process is highly unpredictable. Once generated,
it cannot be altered, hence providing security, uniqueness, stability, unforgeability, and
non-falsifiability [29]. According to the study, the iris can still be used for detection within
5–7 h to 21 days after human death [30]. The market for iris recognition technology is quite
modest, although studies have demonstrated its viability on mobile phones [31] and in
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access control systems [32]. IOM (iris on the move) technology is a high-speed, easy, and
high-throughput long-distance iris recognition security solution. It can reach a distance of
3 m to capture and analyze the iris photographs of several individuals.

Malgheet [33] has provided a summary of the many techniques for iris recognition
research. Lei [2] proposed a model-agnostic meta-learning (MAML)-based several-shot
learning method (new-shot learning) for iris recognition to solve the problem of a limited
number of samples in deep learning for iris recognition technology; Sun [25] proposed an
open-set iris recognition method based on deep learning that can effectively differentiate
iris samples of location classes without impacting the known iris recognition capability.
Wang [34] introduced a cross-spectral iris identification algorithm based on convolutional
neural networks (CNNs) and supervised discrete hashing, which not only achieves superior
performance than previously examined CNN [35] designs but also greatly reduces the
template size.

2.2. Facial Recognition

The face is the most straightforward identifier of private information. Currently,
facial recognition is prevalent, less expensive than other biometric technologies, does not
require direct touch, and can be performed at a distance [3,36]. Multiples with a similar
appearance, face occlusion, and facial photographs and videos might affect the accuracy of
facial recognition. Fourati [37] distinguished faces in videos and images by image quality
assessment and motion cues; Afaneh [38] provided matching decisions for multiples with a
correct rate of more than 95% by constructing a biometric system; Kute [39] discovered local
correlations in faces to achieve recognition and confirmation of obscured faces; Zeng [40]
proposed a simultaneous occlusion invariant depth network (SOIDN) to simultaneously
recognize and match unobscured and synthetically obscured faces and make full use
of the relationship between the two; Zhang [41] proposed hierarchical feature fusion,
which can be used in strong illumination and occlusion situations to improve recognition
accuracy, especially to achieve good recognition results, and can be applied to smart cities;
Madarkar [42] extracted the facial occlusion part to establish non-coherent samples, and
improved the recognition of occluded faces through a non-coherent dictionary.

Expression recognition has a significant influence on the field of pattern recognition in
facial recognition. Approximately 55% of human-to-human communication is transmitted
by facial expressions, according to studies [43], and facial expressions are the best tool
for identifying human emotions and intentions [44]. The identification of facial expres-
sions is important to artificial intelligence and has enormous promise in psychological
research, driver fatigue monitoring, interactive game creation, virtual reality [45], intel-
ligent education [46], and medical fields [47]. After recognizing facial expressions, Wu
comprehended the emotional content of images and generated image captions using the
Face-Cap model [48]; Cha used surface electromyography (sEMG) around the eyes [49]
(sEMG reference) to react to the user’s facial expressions [50], thereby performing expres-
sion recognition.

2.3. Finger Vein Recognition

Vein technology uses the veins beneath the epidermis, such as finger veins, hand veins,
foot veins, and palm veins, for identification authentication [51]. Veins are fundamental
properties that are exclusive to living beings [52] and are difficult to duplicate and forge [53].
Compared to fingerprint recognition, blood must be flowing in vivo to be detected; to a
certain extent, the security degree is high. Additionally, the vein pattern is distinct even
after several deliveries. Vein pictures of the hand are typically obtained under transmission
illumination utilizing near-infrared (700–900 nm) [54], and the images can vary significantly
according to the hand’s size, thickness, and placement angle. Compared to the same
camera capture approach, Prommegger [55] utilized numerous cameras to acquire veins
from different angles to increase the identification rate around the fingers. Despite its
rarity, vein recognition offers a multitude of applications: Immanuel [56] used biometric
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authentication protection of finger veins for ATM network security. Su [57] integrated
finger veins with ECG signals for personal identification, and the method was significantly
better than separate systems in terms of recognition accuracy and security. Yang [58]
encrypted medical data by vein recognition, and information was stored on a card to
achieve convenience and privacy of information.

2.4. Voice Recognition

Voice recognition comprises speech and non-speech recognition, and voice recogni-
tion systems typically sample at a rate of 8000 Hz or more, with a frame size of 256 or
512 samples. It has several uses, including audio monitoring, sound event detection, and
ambient sound recognition [59]. Hu [60] used pathological speech recognition to detect
various vocal cord diseases while reducing laryngoscopy, which can be applied to medical
facilities lacking laryngoscopy during telemedicine. Wijers [61] used a bio recorder to
associate African lions with their vocals, find features, and locate and distinguish the vocal
information transmitted to the lion’s roar. Nakamura [62] developed the ability to match
and record an individual’s voice through accurate recognition of vocal features to improve
the efficiency of the recordings. Beritelli [63] conducted identity verification based on the
measurement of heartbeat frequency with an accuracy of up to 90%.

2.5. Fingerprint Recognition

Fingerprints are phenotypic genetic features that people are born with and form at the
end of their fingers. Under normal circumstances, fingerprints vary, mainly in the detailed
features of fingerprint ridges and valleys [64]. These detailed features are the key to the
fingerprint recognition process. The fingerprint recognition process relies mainly on the
bifurcation points and nodes in Figure 2. When the fingerprint is taken on the scanner
surface, the ridge skin area is shown as black (or dark gray value), while the valley area
and the background area are white (or light gray value).
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Each individual has a distinct and stable fingerprint, recognizable by the irregular
lines on the finger belly. Figure 2 depicts the different categories of fingerprint charac-
teristics [65,66]: sweat holes, patterns of lines, early lines, scars, etc., on fingerprint lines.
The earliest fingerprint recognition was collected with ink and paper, and the emergence
of electronic computers spurred the development of fingerprint collection methods that
enhanced the resolution and clarity of fingerprint images and were conducive to improving
the processing efficiency of computers. Fingerprint sensors can employ the biometric code
for a variety of purposes, including mobile phone unlocking [67], attendance systems [68],
mobile payment [69], access control unlocking [70], ID cards [71], medical information [72],
driver’s licenses, and so on. Its primary function is to identify personal data [73].

3. Optical Fingerprint Recognition

Optical fingerprint sensors, which use the principles of light refraction and reflection
to produce pictures, have replaced ink for obtaining fingerprints since the invention of com-
puters [74]. Charge-coupled devices are the central elements of optical scanning systems
(CCD and CMOS). CMOS and CCD image sensor development began concurrently [75].
Due to the constraints of the process level at the time, CMOS resolution was low, there
was a great deal of noise, light sensitivity was low [76], and the quality was poor; it also
acheived little improvement. In contrast, CCD image sensors have dominated the mar-
ket for two or three decades due to their broad effective light sensitivity area, uniform
acquisition, low noise, and other advantages. Due to advancements in integrated circuit
design technology and process levels over the past decade, CMOS’s previous problems
have been substantially eliminated. Intra-pixel amplification, column-parallel structure,
and random reading are incomparable to CCD [77]. CMOS sensors are smaller in size
(to achieve the same image effect), consume less energy, and have improved integration
and electronic-voltage conversion efficiencies [78–82]. Active CMOS image sensors (CIS)
have developed rapidly in recent years [83–85] and have gradually become the primary
choice for most imaging fields. Omni Vision, Micron, Panasonic, Toshiba, etc., have made
significant breakthroughs in CIS pixels, making CIS development a later trend.

With the continuous development of optical fingerprint sensors, from single prism
optical total reflection technology to optical thin film transistor (TFT) technology, and then
to optical coherence tomography type technology, the resolution and clarity of the scanned
image have been greatly enhanced, as has the success rate of fingerprint identification.

3.1. Single Prism Recognition Method

In 1971, optical fingerprint capture machines began obtaining pictures by scanning
the fingerprint left on the surface of the finger, a process subject to interference. Various
designs of optical fingerprint sensors emerged thereafter. Early optical fingerprint scanners
typically required a separate light source and prism. Figure 3a is a typical total reflection
principle, and this total reflection identification is affected by finger moisture and folds [86].
Figure 3b shows the imaging device placed beyond the critical angle, and only the light
reflected on the ridge beyond the critical angle reaches the imaging device. Figure 3c
employs the dispersion method inside the finger [87], wherein the light source penetrates
inside the finger, scatters, and passes through the fingerprint layer to reach the transparent
plate of the sensor and must have a refractive index near that of the human tissue. Figure 3d
depicts a multispectral light source for detecting fingerprint pictures on the surface and
within the fingerprint [88]. Because the transmission qualities of biological tissue depend
on wavelength, various wavelengths penetrate to different depths, necessitating multiple
light sources and two polarizers for this sensor [89]. In 2016, Baek created a fingerprint
sensor based on the modification of the optical path [90] that enables the detection of
wet fingerprints. Due to the sensor’s utilization of numerous optical components, its
size is considerable. The necessity for minimal size has led to the development of linear
scanning sensors [91], which suit both the need for mobile device integration and the
demand for big fingerprint pictures. Most linear scanning sensors are sliding sensors,
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which introduce degrees of freedom as a result of changes in sliding speed and direction.
Existing fingerprint sliding sensors can be categorized as capacitive or optical [92]. The
optical type has a smaller size(4 × 0.9 mm2) and a greater resolution (1000(H) 625(V)), is
made up of an optical binder with the same refractive index as the overlay glass, and has a
single sliding direction [93].
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3.2. Identification Method through TFT Technology

Thin-film transistors (TFTs) have been developed for over 40 years, replacing tradi-
tional semiconductor sensors with light-sensitive TFT panels. In 1961, Weimer created
the first thin-film transistor (TFT) [94]. Using amorphous silicon (a-Si:H) as the active
layer, Street created a TFT device in 1979, and it was discovered that amorphous thin-film
transistors (a-Si TFT) might be employed as switching devices for active array liquid crys-
tal displays (AMLCD) [95]. TFTs are produced by sputtering and chemical deposition
methods on non-monocrystalline substrates such as glass or plastic wafers, and large-scale
semiconductor integrated circuits (LSICs) are produced by treating the films. A standard
TFT optical sensing device is comprised of a grid of pixels on glass and an operational
amplifier (OPAMP) in an external readout integrated circuit (IC) [96]. This technique may
be utilized to create large-area sensing arrays using optical fingerprint sensors. Table 2 lists
the particular pairings for the four primary types of TFT technology: no crystalline silicon
TFT, polycrystalline silicon TFT, organic TFT, and amorphous oxide TFT.

Table 2. Different types of TFT.

Semiconductor
Materials

Process
Temperature/◦C

Migration
Rate/cm2·V−1·s−1

Number of
Lithography Capacity

Amorphous Silicon <350 0.1–1 4–6 high
Poly silicon <700 10–400 5–11 low

Organics <150 <2 - low
Amorphous Oxide <350 1–100 4–7 high

3.2.1. Based on Amorphous Silicon TFT Technology

Hydrogenated amorphous silicon (a-Si:H) thin-film transistors (TFTs) are the predom-
inant thin-film transistor technology used in flat panel displays today [97]. A-Si:H TFTs
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offer the benefits of low process temperature (<350 ◦C), good large-area uniformity, cheap
cost, and low leakage current; they are the predominant technology for commercial LCD
flat panel displays now. However, the electron field-effect mobility of a-Si:H TFTs is only
0.4–1.5 cm2/(Vs), and the hole field-effect mobility is considerably lower, which prevents
their use in high-definition and current-driven displays. In addition, low mobility a-Si:H
TFTs must be accomplished by extending the channel width to obtain adequate drive
current. However, big-size a-Si:H TFT devices lower the display openness, resolution, and
display brightness [98].

The absorption spectra and quantum efficiencies of a-Si:H and Si have been compared.
In the range of 0.4–0.75 µm, the material absorbs lighter than the Si layer, but the Si layer
absorbs more light at longer wavelengths (>0.75 m) than the a-Si:H film. In visible light, the
a-Si:H-based diode generates a greater photocurrent than the Si-based diode, and a-Si:H
pin diodes have a greater QE output than Si p+/n diodes over the majority of the visible
spectrum [99].

Based on amorphous silicon TFT technology, optical fingerprint sensors may achieve
slimness, compactness, and wide areas [100]. The PPS structure enables the creation of A-Si:H
field-effect devices [101]. Thin optical touch (TOT), hidden optical touch (HOT), and hidden
display (HUD) fingerprint sensors based on hydrogenated amorphous silicon are already
available for mass production [99]. The sensor sizes range from tiny (4.0 mm × 8.0 mm)
for smartphone user identification to the size of four fingers (3.2” × 3.0”) for public safety
inspection. Table 3 and Figure 4 provide a comparison of the three fingerprint sensors.

3.2.2. Based on Polycrystalline Silicon TFT Technology

Low-temperature poly-Si technology refers to the process method for producing high-
quality poly-Si films and thin-film transistors (TFTs) at temperatures below 600 ◦C [102].
On the same glass substrate, the pixel array and the driver circuit of a poly-Si TFT-LCD may
be merged to accomplish the integration of the peripheral driver and display. Compared to
a-Si:H TFT, LTPS TFT offers the benefits of high mobility (often two orders of magnitude
greater) and big drive current, as well as reduced power consumption and a smaller device
area; it also addresses the problem of high density to increase yield and decrease manufac-
turing costs [103]. Moreover, p-Si is resistant to light interference, and the leakage current
does not rise under light circumstances, allowing the light-shielding layer to be omitted. It
is possible to produce a high-definition display system on a panel (system on panel, SOP)
that merges a display matrix and peripheral drivers, considerably enhancing the system’s
dependability. LTPS TFTs have already replaced OLEDs in tiny commercial displays.

When amorphous silicon thin-film transistors shift to high capacity, high brightness,
and high resolution, LTPS technology compensates for the smaller pixel size and shorter
unit pixel charging time and also solves the problems of difficult high-density leads and
integration of the display area with the surrounding driver circuit [104]. There are two ways
to obtain poly-Si films: direct methods and indirect approaches. The direct methods are low-
pressure chemical vapor deposition (LPCVD) [105] and catalytic chemical vapor deposition
(cat-CVD) [106], and the indirect methods use amorphous silicon film recrystallization,
whose crystallization methods primarily consist of solid-phase crystallization (SPC) [107],
rapidly cooked annealing (RTA) [108], metal-induced lateral crystallization (MILC) [109],
microwave crystallization [110], and laser crystallization (LC).

As the sensing material, a new photosensitive material is employed. The sensor’s
metal/sensing material/ITO structure is incorporated into the LTPS TFT process [111–113].
Using an active pixel sensor circuit (APS), optical intracellular fingerprint sensor (iFP)
technology that integrates display, touch, and FPS capabilities is created [114]. Meanwhile,
amorphous silicon can be placed above polysilicon in a manner similar to Figure 5 to
generate a vertical hybrid PIN photodiode (HPAS-PIN) [115]. The fingerprints that may be
effectively acquired by this optical image sensor array are depicted in Figure 6a. However,
this array cannot capture the fingerprint picture when a color filter is present. An LTPS
image sensor (LIS) can be operated using an LTPS backplane-based active pixel sensor
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(APS) circuit [116] shown in Figure 6c. A 400PPI LTPS-TFT LCD with in-cell touch and
in-cell screen fingerprint scanning capabilities has been designed, capable of fingerprint
image capture even when the finger is at the height of 1.0 mm on the LIS array, with a
fingerprint scanning area resolution of 256 × 256 and a sensor with enhanced sensitivity
and interference resistance.

Table 3. The structure of TOT, HOT, and HUD.

Sensor Type TOT HOT HUD

Light source 460 nm LED Wavelength invisible LED OLED
Light source position Back of the TFT sensor Under the TFT glass substrate -

Sensing area FAP10(0.5” × 0.65”)~FAP60(3.2” × 3.0”) 10 mm × 14 mm
12 mm × 20 mm
12 mm × 40 mm
40 mm × 51 mm

Bonding method Optical adhesives
Optically Clear Resin (OCR)

Optically Clear Adhesive
(OCA)

-

Fiber optic board
√

- -
Collimator - -

√

Sensor Top Fiber optical plate A glass plate OLED
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When the LCD is used as a light source, the LCD and its opaque backlight unit obstruct
visible light, and there is an unavoidable air gap between the LCD and the backlight unit.
An optical image sensor array can be built directly into the LCD with the backlight unit or
an extra LED as the light source and the LIS array on a TFT substrate that eliminates the
backlight as the light source. It is also feasible to position the IR CIS and IR light source
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under the backlight, with the IR light emitted by the IR light source passing through the
LCD module and being received by the IR CIS upon fingerprint reflection.

Ye [117] proposed a collimating optical route based on a microlens array with an IR
light source of 940 nm wavelength inserted beneath the cover’s lower plate. By regulating
the exit angle and luminescence angle of the light source, the entire reflection of all oblique
incident light on the top and lower surfaces of the CG can be achieved. As shown in
Figure 6f,g,h the beam conveying the fingerprint information passes successively through
each film layer before being caught by the sensor array beneath the display. Due to the size
of the sensor, this lens unit must be constrained to a tiny region.

LCD in-finger detection versus OLED under-screen detection: OLED uses self-lumi-
nescence as its light source and employs micro-collimators to prevent the overlapping of
light signals. Due to the under-screen design and self-luminous property, the depth-to-
width ratio of the micro-collimation aperture can be chosen freely to achieve adequate
collimation without allowing an excessive amount of stray light to enter the CIS.

Additionally, the researchers created optical fingerprint recognition [118] that can be
integrated into LTPS image display technology beneath the OLED display and can cover
the entire display’s dimensions. OLED uses its own self-illuminating light as its light
source and employs micro-collimators to prevent overlapping light signals. The signal
variation rate is improved by 50 percent by refining the process and circuit architecture. By
improving the collimation technology, the signal-to-noise ratio is virtually doubled.
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Figure 5. (a) Structure of optical image sensor array and fingerprint image captured by it. (b) Deposit
a 300 nm oxide silicon buffer layer and a 50 nm intrinsic a-Si layer sequentially, then transform a-Si
to p-Si by using Excimer-Laser Annealing. After that, phosphorus ions are doped into the p-Si to
form an N+ p-Si layer. (c) Deposit a 230 nm insulating layer and form a 20 × 10 µm first via hole
pattern by photolithography and dry etching. (d) A 600 nm intrinsic a-Si and 50 nm oxide silicon
is deposited to cover the first via hole and insulating layer, followed by boron ions implanted to
the surface of the intrinsic a-Si layer, turning part of the upper intrinsic a-Si layer into P+ a-Si layer.
As ion concentration distribution is Gaussian distribution, no clear boundary between P+ a-Si and
intrinsic a-Si exists. In this step, intrinsic a-Si in the first via contacts the N+ p-Si, together with the
upper P+ a-Si layer, to form a hybrid p-Si and a-Si PIN photo-diode. After that, define the a-Si to
a 25 × 15µm island by photolithography and dry etching. (e) Form a second via hole of insulating
layer next to the first via hole using the same photolithography and dry etching. (f) Deposit a metal
layer on the second via hole to serve as the cathode contactor of the photo-diode. (g) Coat an organic
flat layer and form a third via a hole above the first hole. In this step, the oxide silicon is removed to
expose the surface of P+ a-Si at the same time. (h) Deposit a transparent conductor layer ITO to serve
as anode contactor of the photo-diode [115].
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Figure 6. (a) Structure of optical image sensor array and (b) fingerprint image captured by it [115];
(c) cross-structure of in-cell FPS. (d) Structure of LCD with in-cell FPS; (e) the fingerprint image [116].
(f) Field of view diagram of the micro-lens array, (g) a collimating optical path based on microlens
array, (h) the fingerprint image captured by it [117], (i) Stack structure of the fingerprint under OLED,
and (j) diagram of a collimating system on the photo sensor. (k) Influence of collimating system
on SNR [118], and (l) fingerprint on display (FoD Module). Assembly stack of the FoD module,
(m) construction of organic image sensor, (n) the fingerprint capture by it [119], (o) structure of
fingerprint sensor, and (p) the fingerprint capture by it [120].
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As depicted in the illustration, the collimation system consists of a collimation hole
and a microlens. One approach involves installing the collimation system above the
photo sensor, as depicted in Figure 6f,g, while another technique involves preparing the
collimation system directly above the photo sensor, as depicted in Figure 6i,j,k, showing
the SNR result of the collimation system. A collimation hole and a microlens are included
in the collimation system. The light-receiving capabilities of the sensor can be enhanced by
exposing and then immediately aligning the sensor’s collimation mechanism.

3.2.3. Oxide TFT-Based Technology

Thin film transistors (MOS TFTS): Due to the benefits of good uniformity, high mobility,
and strong process compatibility with a-Si TFT, the metal oxide TFT line drive circuit is often
concerned with the following performance aspects, speed [121], power consumption [122],
and reliability [123,124].

Traditional amorphous silicon (a-Si:H) TFT and low-temperature poly-Si (low-tempe-
rature poly-Si, LTPS) TFT have been proved challenging to employ to fulfill the need for
flat panel displays with huge sizes and high resolutions. The semiconductor industry has
reached an epoch in which material limitations restrict device size. Since 2003, transparent
TFTs fabricated from amorphous oxide semiconductors have been a focus of worldwide
research [125]. Compared to silicon materials, oxide semiconductor films exemplified by
a-IGZO have superior low process temperature, long service life, high transmittance, large
forbidden bandwidth (transparency), and high carrier mobility [126–130], and are widely
applicable in liquid crystal displays, memory [131,132], and the Internet of Things [133].
Therefore, AOS TFTs are anticipated to replace a-Si:H TFTs as the primary devices for the
subsequent generation of flat panel displays (flexible displays, transparent displays, etc.).

Qin [134] presented a near-infrared optical fingerprint sensor based on an array of
passive pixel sensors (PPS) and oxide (IGZO) TFT technology. This optical sensor has an
organic photodiode as its sensing element (OPD). This organic–inorganic hybrid thin-film
photodetector is able to capture a crisp picture of a fingerprint. Additionally accomplished
was a flexible fingerprint sensor based on a PI substrate. Due to the strong penetrability
of near-infrared light, some of it can travel through the finger and land on the sensing
element when the finger hits the sensor surface. In addition, the fingerprint’s ridges
and troughs represent distinct optical routes. In the region of the ridge, a portion of
the NIR light is reflected at the surface, while the remaining light falls on the detecting
pixel. In the valley region, only a portion of the NIR light is transmitted into the air and
subsequently reaches the detecting pixel. Through the ridge and valley sections of the
fingerprint, different quantities of light are permitted to reach the surface of the sensor
pixel accordingly. Therefore, fingerprint recognition is accomplished. Each pixel has a size
of 50.8µm, equivalent to a resolution of 500 PPI.

3.2.4. Organic TFT

The transition from TFT to OTFT is not easy. It is commonly accepted that Heilmeier [135]
discovered the OTFT field effect phenomena on copper phthalocyanine thin film. In 1986,
the first organic thin-film transistor was invented by Tsumura, who electrochemically
synthesized polythiophene and employed it as the primary OTFT material; however, the
final mobility was only 10−5 cm2/(Vs) [136]. On the other hand, because OTFT has good
pliability, low-cost advantages, and the characteristics of organic materials themselves,
different institutions at different times conduct in-depth research on thin film morphology
and preparation techniques, and the application in the field of display devices will become
increasingly widespread and significant.

Optical fingerprint biometrics based on organic photodiode (OPD) technology [119]
may be embedded under the smartphone display to obtain complete coverage and capture
up to four fingerprints [120]. As Figure 6o shows, the full-screen optical fingerprint module
is readily integrated into mobile devices (attached to an OLED panel or with an air gap). It
effectively prevents spoofing when applied to visible light (540 nm) and near-infrared light



Micromachines 2023, 14, 1253 13 of 34

(850 nm and 940 nm). Figure 6l demonstrates that an Android application has been built
for this purpose, allowing the user to register and validate the fingerprint with a matching
time kept below 500 ms and a contrast-rich picture resolution of 5 Cy/mm.

Faced with the difficulty of full-screen TFT technology, Tai [137] opted for a gap-type
TFT as the optical array system in Figure 6n. For fingerprint recognition applications, the
high photocurrent of gap-type TFTs results in a big signal and rapid readout, which is
a major benefit. Between the OLED screen and the gap-type TFT sensor array lies the
collimator. Algorithms are used to the fingerprint picture for background removal and
image enhancement. The fingerprint’s ridges and troughs are plainly apparent.

3.3. Identification Method by Optical Coherent Layer Scanning Technology

Modern civilization is becoming great interested in the development of fingerprint
recognition systems with high security and resilience in the fingerprint identification pro-
cess. The capacity of optical coherence tomography (OCT) to capture the depth information
of the skin layers [16] has created a new study field for fingerprint recognition [138,139].
OCT was initially introduced to the field of fingerprint recognition for anti-spoofing [140],
including automatic spoofing and live detection [141–146], internal fingerprint (i.e., sub-
cutaneous fingerprint corresponding to live epidermis) reconstruction [147–152], and fin-
gerprint identification/recognition [153–156]. Currently, confocal scanning OCT offers the
greatest image depth and is much costly due to the inclusion of additional components
such as lasers. Using a low-cost light source, such as a light-emitting diode (LED) or a
heat source, it is feasible to perform OCT variant-full-field optical coherence tomography
(FF-OCT). FF-OCT utilizes a camera with virtually instantaneous access to fingerprints and
point-by-point image scanning to produce axial pictures, as opposed to typical confocal
scanning OCT. The absence of pinholes in the detection path of confocal OCT and the
shallow image depth are drawbacks of FF-OCT. However, FF-OCT has been shown to be
effective in a variety of biological applications, including imaging of skin, brain tissue, the
gastrointestinal wall, and the cornea.

Imaging methods based on optical coherence layers account for the effects of wet-
ness, folds, and lack of contact. Using the varying transmittance of ridges and valleys,
a red LED illuminates the nail side of the finger to form a picture of the fingerprint [87].
FF-OCT may also make use of an imaging Michelson interferometer and a silicon cam-
era [157]. It comprises a small, lightweight LINOS opt mechanical system covered by a
30 cm × 30 cm × 1 cm Plexiglas panel. The sensor produces 1.7 cm × 1.7 cm pictures with
a spatial sampling rate of 2116 dots per inch (dpi). The fingerprint is an exterior picture
captured at 15 m. The picture displayed between 33–103 µm is the cuticle, and the sweat
duct has white dots. The presented photos between 121–210 µm match the live epidermis.
The 121–156 µm images are the ridges of the internal fingerprints, whilst the 191–210 µm
depth images are the valleys, allowing fingerprint pictures to be produced [158]. Figure 7
shows a scanning picture of common fingerprints, moist fingerprints, and fingerprints
based on an optical coherence layer.

Liu [159] suggested the optical coherence tomography (OCT)-based fingerprint iden-
tification system shown in Figure 7e–g. This device’s SD-OCT approach utilizes a light
source centered at 840 nm; the light source light is generated by a super light emitting
diode (SLED), and two identical telephoto lenses serve as a focusing lens and a scanning
lens, respectively [160]. The gadget is designed for capturing by touch. During fingerprint
capture, it is necessary to place the finger on a fixed cover glass. In contactless OCT, the
use of a fixed cover glass eliminates the depth-dependent roll-off issue. The SD-OCT
device’s axial and lateral resolutions are 8 µm and 12 µm, respectively. The apparatus
records a 15 mm × 15 mm picture with an average scatter size of 24 µm. Each acquisi-
tion records a fingertip region of 1.8 mm × 15 mm × 15 mm with a spatial dimension of
500 × 1500 × 400 pixels.
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Figure 7. (a) Construction of a novel fingerprint sensor using scattered transmission light. (b) Normal
fingerprint and the OCT images. (c) Fingerprint images of a wrinkled finger and the OCT image.
(d) Almost flat finger image and the optical coherence tomography (OTC) image [89]. (e) Construction
of equipment, (f) structure of subsurface fingerprints, (g) different layers of subsurface fingerprint,
and (g–k) different fingerprint images. The images from left to right correspond to the cornea, internal,
papillary, fusion, and traditional 2D fingerprints [159].

4. Capacitive Fingerprint Recognition

As semiconductor [161] technology progresses and authentication devices in mobile
devices such as smartphones and integrated circuit cards demand compact, low-cost
packaging, capacitive fingerprint sensors are appearing. In principle, capacitive and
inductive fingerprint sensors share a “flat” plate with hundreds of integrated semiconductor
devices and a surface layer that is generally a few microns thick. The unevenness of the
fingertip’s fingerprint, the actual distance between the bump and the bump touching the
plate varies when the finger is placed on the capacitive sensor’s surface, results in different
capacitance values [162,163]. The capacitance values are converted into current or voltage
values, which are then converted into clerk data by an ADC. The greater the contrast of the
fingerprint impression, the closer the fingertip is to the surface. The device completes the
fingerprint-gathering process by averaging the gathered results.

The optical under-display fingerprint sensor exploits the difference in light reflected
from finger ridges and valley areas to recognize fingerprints, but it has difficulty distinguish-
ing dry fingers, which do not create regular and consistent contact with the sensor cover
layer [86,164]. In terms of identification time, recognition of dry fingers, and manufacturing
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yields, ultrasonic under-display fingerprint sensors have the potential for development. In
contrast, optical and ultrasonic screen sensors are exclusively compatible with OLED panels.
On the screen, a reciprocal capacitive can function. Authenticity can be determined by
detecting the impedance of fingerprints, which has different impedance frequencies [165]
and different amounts of eddy currents due to the impedance turbo effect [166], as well as
by a temperature sensor [167]. Capacitive fingerprint sensors still need great improvement
in fingerprint detection.

The breadth of the ridge is between 100 m and 400 m, the depth of the valley is between
60 µm and 220 µm, and the width of the valley is between 75 µm and 200 µm [157,168].
When the ridge and valley are neighboring electrodes, the mutual capacitance differential
can exceed 400 aF [169]. Through cost-sharing [92], charge transfer, feedback capaci-
tive [170], and sample-and-hold schemes, capacitive sensors [171] may detect weak signals.

4.1. Fingerprint Sensor Based on Self-Capacitance

The capacitance between the measuring pin and the power source is monitored in
the self-capacitance fingerprint sensor. When a finger is put on the sensor, its capacitance
increases and the measured voltage increases and changes, enabling the detection of finger
contact. In self-capacitive sensing, the unit cell typically consists of a sensor circuit based on
Si technology [92,165,172], and the sensor’s capacitance may be directly and independently
sensed and detected. Si-based fingerprint sensors can only be manufactured on opaque,
brittle, and inflexible silicon wafers and thus can only be implemented in rigid devices, such
as smartphone buttons. Self-capacitance is not compatible with multitouch functionality.

In the self-capacitance sensing approach, the cell typically comprises a Si-based sens-
ing plate and a readout circuit [165,173]. High sensitivity may be achieved because the
controller can be individually addressed, and the sensing electrodes can be directly and
independently recognized. However, Si technology sensors can only be manufactured on
opaque, brittle, and inflexible Si wafers, limiting their use to rigid devices.

Self-capacitance is not favorable to multi-touch and is also susceptible to ghosting
issues. Oxide TFT is an advantageous option due to its medium mobility, high on/off ratio,
cheap process cost, and suitability for transparent and/or flexible substrates [174–178]. To
increase the safety level of self-capacitance frames per second (FPS), even at tiny scales,
great resolution is necessary while keeping high sensitivity [179]. To guarantee the high
resolution and sensitivity of FPS, oxide TFTs are therefore indispensable.

Oxide TFTs predominantly employ amorphous indium gallium zinc oxide (aIGZO)
thin-film transistors (TFTs), which have an optical band gap of 3.05 eV compared to typical
a-Si semiconductors (1.6 eV) and ensure up to 75 percent transparency. By eliminating
the opaque fingerprint sensor array and accompanying control electronics, the display
bezel’s size is drastically decreased. The results of the measurements reveal a distinct
fingerprint picture, including the aperture. Depicted in Figure 8a, using only one a-IGZO
TFT, a capacitive touch fingerprint sensor may be incorporated into a display, achieving a
tiny sensor size, removing two bus lines, decreasing noise, and enhancing sensitivity while
keeping the same amplification performance [180]. Based on a touch sensor, the capacitive
fingerprint sensor (CFS) uses an amorphous indium gallium zinc oxide (aIGZO) thin film
transistor (TFT) passive matrix [181]. Due to their high sensitivity, visual clarity, durability,
and exceptional performance, such capacitive touch sensor (CTS) sensing systems (TSSs)
are utilized in a variety of applications, including mobile devices, automotive, military,
and industrial equipment [182–187]. This sensor minimizes the number of sensing lines in
an active matrix, decreasing expenses. This sensor’s construction is depicted in Figure 8f:
2.8 mm cover glass, 0.1 mm top optically clear adhesive (OCA), 0.005 mm RX electrode,
0.21 mm top film, 0.05 mm bottom optically clear adhesive (OCA), 0.005 mm TX electrode,
and 0.21 mm bottom film pixel; 500 PPI resolution and 50.8 µm × 50.8 µm unit pixel size.
AFE IC compensates for CSTRAY in sensing mode, boosting the dynamic range to 40.78 dB
with an SNR of 47.8 dB and 25.0 dB for CTS and CFS, respectively. Figure 8h demonstrates
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that readout integrated circuits (ROICs) with a pixel size of less than 44 µm × 44 µm per
pixel and a resolution path of more than 500 DPI may be employed.
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Figure 8. (a) Principle of capacitive touch-fingerprint sensor. (b) Simulation results for the capacitive
sensor for touch-fingerprint circuits [180]. (c) Simulation results for the capacitive sensor for the
proposed circuit, (d) top view of the proposed sensor pixel, (e) the circuit of the sensor, (f) cross-
sectional view of the proposed sensor pixel, (g) the assembled module of the transparent fingerprint
sensing system, and (h) the image of the fingerprint [188].

4.2. Fingerprint Sensor Based on Mutual Capacitance

In the smartphone market, all-screen devices with thin bezels and no physical buttons
have become the norm. On smartphones, fingerprint unlocking positioned on the back
or side of the device is significantly less successful than front-mounted unlocking. In
the mutual capacitance fingerprint sensor, two electrodes are utilized: the transmitting
electrode and the receiving electrode. The TX pin provides the digital voltage and measures
the charge received on the RX pin; the charge received on the RX electrode is proportional to
the mutual capacitance between the two electrodes, and when a finger is placed between the
TX and RX electrodes, the mutual capacitance decreases, and the charge received on the RX
electrode also decreases. By detecting the charge on the RX electrode, the touch/non-touch
condition may be determined.

Mutual capacitance is easily applicable to fingerprint sensors with two electrodes and
an insulator structure, one for driving and the other for sensing. Mutual capacitance makes
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multi-touch functionality possible [189–191]. Mutual capacitance sensors can operate
on OLED (organic light emitting diode) and LCD (liquid crystal display) displays with
detecting distances typically ≤ 300 µm [192,193]. On glass substrates or by adhering
polymer films on window glass, these sensors can be manufactured [194]. Transparent
capacitive on-screen fingerprint sensors created utilizing mass-producible materials and
techniques are ideally suited for smartphones and other mobile devices and can also
be utilized to create large-area fingerprint touch combination sensors and sensors for
flexible/stretchable electronics.

Five varieties (thickness of these layers: 100 m) of transparent sensor films are avail-
able: PET, cellulose nanofiber (CNF) films, and CNF films embedded with BaTiO3. Three
nanoparticles (Chinese fibers + BaTiO3, banknote iron content two nanoparticles: 1 wt%,
average size: 25 nm) and CNF films are embedded with AgNF (CNF+AgNF, silver
fluorine content: 1.2 wt%, average length of AgNF: 200 ± 20 µm, average diameter:
380 ± 35 nm) [195–197]. CNF films have advantages due to their high transparency and
good mechanical flexibility and durability; however, the low dielectric constant of the
original CNF films (k = 1.4–3.0) restricts their usage as overlays for fingerprint sensor
arrays [198–201]. CNF films, including AgNF (CNF+AgNF), have a k value of 9.2 and a
transmittance of at least 90%.

Transparent electrodes with high conductivity and optical transmittance (T) are re-
quired for the operation of capacitive fingerprint sensors in the high-frequency region in the
transparent form. Thin layers of resistance (Rs) of standard transparent electrode materials
prevent high-frequency signals from driving capacitive fingerprint sensors when mobile
devices emit interference. To achieve great transparency with metals as electrodes, the
width of the electrode lines must be restricted due to their opacity, according to the data in
Table 4.

Table 4. Fingerprint sensor based on mutual capacitance.

Area/mm2 10 × 10 10 × 10 6 × 6 - 6.4 × 6.4

Channel 200 × 200 64 × 128 72 × 72 192 × 256 80 × 80
Light Transmittance (%) 94 94 - 79.90 89.05

Electrode Material Indium tin oxide Indium tin oxide Metal Mesh Indium tin oxide Hybrid
nanostructures

Electrode Shape Diamond Diamond Half Diamond - -

Capacitance/Voltage
Difference

50 fF
(Ridge and Valley)

210 fF
(Contact and
non-contact)

- 4.2 ± 0.07 fF
(Ridge and Valley) -

Resolution 500 DPI 300–363 DPI 322 DPI - 318 CPI

Characteristics - 0.3–1 mm Cover glass - Acquisition of dual
fingerprints

Pressure and
temperature sensors

Ref. [202] [203] [204] [205] [167]

When the finger hits the contact surface, capacitive fingerprint sensors can also gener-
ate a potential difference through the piezoelectric capabilities of the material, in which
the sensor is bent by stress. It is reported that zinc oxide nanoarrays, which gather the
charge caused by the piezoelectric potential generated by each nano, can reconstitute
the fingerprint’s three-dimensional deformation field [206]. For the sensor surface to be
encased with a chemically inert UV-cross-linkable polymer [207], the encapsulation layer
must have a thickness between 1.5 µm and 10 µm and possess excellent hydrophobicity
and oleophobicity [208], as shown in Figure 9. Hsiung [209] proposed an 8 × 32 pressure
sensor array, with a cell size of 65 µm × 65 µm, a sensitivity of 0.39 fF/MPa, a maximum
capacitance variation of 16%, and a resolution of 390 DPI, with no further film processing
needed. Sugiyama [210] presented a 32 × 32 silicon pressure sensor array with a sensor
chip size of 10 mm× 10 mm and an array element spacing of 250 µm, capable of displaying
stable 2D or 3D images.
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5. Ultrasonic Fingerprint Recognition

The ultrasonic fingerprint sensor [211] is the most precise and accurate instrument
for acquiring fingerprint images. There are two primary imaging techniques: pulse-echo
imaging and impedance imaging. Ultrasonic fingerprint imaging is based on the reflection
effect of ultrasound as it propagates across various impedance mediums [212]. When a
finger is placed on a mobile phone’s touch panel, the pressure sensor detects the pressure
and transmits an electrical pulse to activate the ultrasonic fingerprint sensor, which emits
an electrical pulse wave. Due to the difference in acoustic impedance between human
tissue and air, the echo amplitude of human tissue is larger than that of air; hence, the
woven pattern can be determined by determining the echo amplitude at each point. The
intensity of the sensor’s ultrasonic waves is comparable to medical diagnosis, which is safe
for the human body [213]. Due to the fact that ultrasonic waves have a high penetrating
power [214], they can be identified even when there is a small amount of dirt or moisture
on the finger, and they can penetrate materials such as glass, aluminum, stainless steel,
sapphire, and plastic, which increases the device’s applicability and success rate. It is also
feasible to place the sensor into the gadget in order to increase its durability.

Ultrasound imaging relies on the detection of ultrasound pulse echoes, with hills and
valleys providing distinct echo signals. It is also possible to study acoustic impedance
approaches by measuring the ring drop of the pulse, which measures the damping of the
contact region (i.e., the fingertip) [215]. Acoustic impedance-based fingerprint recognition
relies on the direct touch method with air-filled valleys of 430 Rayl and ridges of about
1.5 MRayl of human tissue, and the difference in amplitude and phase of the impedance
helps to differentiate between ridges and valleys, thereby generating a fingerprint image.

The primary component of the ultrasonic fingerprint sensor is the ultrasonic trans-
ducer, which captures the ultrasonic signal impulse response and completes the graphic
reconstruction using the reflection and diffraction properties of ultrasonic waves. Ultra-
sonic fingerprint recognition technology is unaffected by surface clutter and can penetrate
the dead skin layer to reflect the fingerprint pattern architecture in the dermis, capturing
not only the fingerprints visible on the surface but also obtaining credible information from
within the tissue.

The earliest ultrasonic fingerprint sensor is a type of ultrasonic probe detection
(US5224174A) jointly proposed by Ultrasonic Scan and Niagara and is a probe ultrasonic
detection system [216]. The probe emits ultrasonic energy and scans twice from two direc-
tions at right angles; after the finger reflects, the pulse receiver absorbs the reflected signal
and translates it into frequency data, and a processing circuit creates the fingerprint image.
With the introduction of micro electromechanical system (MEMS) technology, the MEMS
ultrasonic transducer stage into CMOS has made ultrasonic fingerprint recognition applica-
ble to smartphones [217]. Capacitive micromechanical ultrasonic transducers (CMUT) and
piezoelectric micromechanical ultrasonic transducers are typical transducers (PMUT).
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5.1. Fingerprint Sensor Based on Capacitive Ultrasonic Transducer

A capacitive micromechanical ultrasonic transducer (CMUT) has a simple design, a
compact size, low noise, high sensitivity, high resolution, and excellent matching between
silicon material and dielectric impedance [218–220]. CMUT can be used to manufacture con-
ventional semiconductor processes due to its simpler structure and developed technology,
and it entered the market before PMUT. Metal uppers are a standard component of CMUT’s
fundamental structure. Metal upper electrode, vibrating film, edge support, vacuum cavity,
insulating layer, bottom electrode, and base constitute the standard CMUT construction
(North Central University thesis) [221]. The lower electrode is attached to the base, whereas
the upper electrode is capable of vibrating with the membrane. In the transmitting mode,
the alternating electric field between the upper and lower electrodes causes the vibrating
membrane to bend and vibrate, thereby generating sound waves; in the receiving mode,
the vibrating membrane vibrates under the action of external sound pressure, causing the
electric capacity between the upper and lower electrodes to change, and the electric signal
corresponding to the magnitude of the sound pressure can be obtained through it.

Figure 10a depicts a CMUT composed of several tiny vibration cells (cells) connected
in parallel, and multiple microelements are connected in parallel in a certain configu-
ration to form a CMUT in order to obtain a greater output sound pressure. It can be
designed in a variety of shapes, including circular, square, hexagonal, etc., depending on
the specific requirements.
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Figure 10. (a) The structure of CMUT; (b) the structure of PMUT. (c) Optical images of the
24 × 8 PMUT array after de-bonding to remove the CMOS wafer, (d) cross-sectional SEM images of a
single PMUT after partial de-bonding to remove the MEMS wafer, and (e,f) 2D pulse-echo ultrasonic
image of the PDMS fingerprint phantom [222].

The first capacitive micromachined ultrasonic transducers (CMUTs)-based fingerprint
sensor could only collect 2D fingerprint images via mechanical scanning. Savoia [223]
avoided the requirement for mechanical scanning and provided a linear array of probes for
a fingerprint sensor. The transducer is comprised of 192 rectangular elements with 112 µm
element spacing and a total aperture of 21.5 mm, which corresponds to the average width
of a human fingertip. This aluminum-encased, probe-type fingerprint sensor is utilized in
medical therapy. Grayscale intensity representation of obtained 3D objects and 2D display
of flat sections are also viable. However, the resolution of the photographs it captures
must be enhanced. Pulse-echo measurements are not possible due to the array’s restricted
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bandwidth. The interface between this huge sensor array and the signal processing circuits
is too complicated to meet the size requirements. Kwak [224] utilized waveguide obstacle
mapping techniques for fingerprint imaging. It is possible to obtain fingerprint images
from hard materials such as glass, which can also be used for fingerprint imaging under
glass. Adjusting the waveguide’s height and width, as well as the medium’s composition,
can enhance the resolution of a fingerprint image.

The waveguide method provides a higher resolution than the direct contact approach
for detecting phase shifts of 0.6 degrees at ridges and valleys at 2.4 MHz. The enhanced
fingerprint protrusion resolution safeguards and stabilizes the CMUT impedance signal.

5.2. Manufacture of Capacitive Ultrasonic Transducer

CMUT fabrication usually uses a silicon wafer as the base, aluminum material as the
metal electrode, SiO2 as the edge support, and the vibrating film can be made of silicon,
SiN, etc. On the silicon wafer substrate, a thin layer of metal is precipitated as the lower
electrode pole plate of the vibrating unit. The insulation layer plays a protective role during
etching and fabrication and also ensures the insulation of electrical characteristics between
the upper and lower electrodes to prevent short circuits due to accidental joining of the
upper and lower electrodes during operation. On the upper surface of the vibration film, a
thin layer of metal is deposited, which is the upper electrode pole plate of the sensor. The
edge support acts as a support for the vibration film [225].

The leads of the array are connected to the flexible part of the PCB, and a preformed
feeler is cast onto the custom acoustic and mechanical backing of the CMUT chip to fix the
rigid part of the PCB to the die. The silicon substrate of the chip is removed using the HNA
wet etching process. CMUT is based on the localized oxide of silicon (LOCOS) direct wafer
bonding. It consists of a silicon top plate, a vacuum gap for silicon nitride, and silicon oxide
at the bottom. The vibrating top plate consists of a single crystal of silicon with a radius of
24 µm and a thickness of 1.5 µm below the flat plate with a vacuum gap of 200 nm. Fixed
with epoxy resin to solder the 64-channel CMUT to the chip carrier, and the lead bonding
end is also fixed with epoxy resin to prevent dislodgement.

5.3. Fingerprint Sensor Based on Piezoelectric Ultrasonic Transducer

CMUT is based on a capacitive electrode separated by a submicron vacuum gap,
whereas PMUT is composed of a solid piezoelectric capacitor [226], which simplifies the
production process and enhances mechanical stability. As depicted in Figure 10b, the PMUT
consists of a piezoelectric membrane, upper and lower electrodes, and a membrane that
vibrates. In the emission mode, a certain voltage is supplied between the upper and lower
electrodes of the piezoelectric membrane, and the pressure generated by the membrane’s
inverse piezoelectric effect forces the membrane structure to bend, causing the vibrating
membrane to deform. When the alternating voltage is applied, the membrane vibrates
and emits sound pressure, thereby converting electrical energy into sound energy. In the
receiving mode, the vibrating membrane deforms due to the external acoustic pressure and
causes the piezoelectric membrane to deform, thereby generating a corresponding charge
due to the piezoelectric effect and enabling the conversion of acoustic energy to electrical
energy and the reception of acoustic signals via the receiving circuit [227].

As illustrated in Figure 10c, the early arrays of AlN-based PMUTs for ultrasonic
fingerprint sensors were only 24 × 8 [222]. Each PMUT is directly connected to a dedicated
CMOS receiver amplifier, avoiding electrical parasitic and eliminating the need to pass
via silicon vias. Fluoride FC-70 is utilized as the coupling layer between the PMUT and
the finger, and a 100 µm PVC cover seals the fluoride and preserves the sensor [228].
To preserve the scratch resistance of the surface and reduce the impact of scratches and
deformation on the sensor surface on the image, a protective layer can be added to the
material surface [229]. Typically, a 1µm thick coating of Al2O3, a material with known
hardness and scratch resistance [230], can be selected. It can be placed on plastic and
glass, among other substrates. Thin enough layers of this material have little effect on
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the transmission of sound. In 2016, Horsley [231] proposed a monolithic 110 × 56-cell
ultrasonic pulse-echo fingerprint sensor based on piezoelectric micromachined ultrasonic
transducers (PMUTs) that were directly linked to a CMOS readout ASIC [232]. The array’s
fill factor is 51.7%, which is three times greater than the 24 × 8 array. The ultrasonic
fingerprint sensor captures not just surface-visible fingerprints but also information from
within the tissue, demonstrating three-dimensional information with significant security
enhancement [233]. Compared to the 110 × 56 array, the 65 × 42 array has a larger pitch
to decrease crosstalk. The sensor is capable of multi-channel TX beamforming, which
increases the signal-to-noise ratio by 7 dB and permits a little improvement in lateral
picture resolution. With a five-column TX beam, peak pressure, RX voltage, and image
contrast are all improved by a factor of 1.5. In the unsupported zone, the array’s amplitude
is −17 dB, compared to −2.7 dB for 110 × 56. The sensor surface is initially covered with a
215µm-thick polydimethylsiloxane layer (PDMS). It is possible to create a 4.6 mm × 3.2 mm
fingerprint image [234].

Typically, the piezoelectric coefficient of lead zirconate titanate (PZT) is two orders of
magnitude greater than that of aluminum nitride (AlN). The PZT-based fingerprint sensor
(50× 50 PMUT array) employs a single pixel and a mechanical scanning mode of operation,
resulting in a large size, poor frame rate, and high cost [235]. In Table 5, the various arrays
are compared.

Table 5. Structure of ultrasonic fingerprint.

Arrays 24 × 8 110 × 56 65 × 42 50 × 50

Top Electrode 200 nm Mo Al 24 µm Al 200 nmPt
Piezoelectric Layer 800 nm AlN 1 µm AlN 1 µm AlN 1 µm PZT
Bottom Electrode 200 nm Al Mo Mo 200 nm Pt

Elastic Layer 6 µm Si 2 µm Si 1.7 µm Si 10 µm Si
Substrate SiO2 SOI SiO2 600 nm Al

Protective Coating Al2O3 PDMS PDMS -
Filling Factor 17% 51.70% - -

Pixel - 591 × 438 DPI 376 × 318 DPI -
Readout Time (Individual\Array) -/24 µs 24 µs/2.64 ms 24 µs/1.56 ms -

Imaging Area 2.3 × 0.7 mm2 4.6 × 3.2 mm2 4.6 × 3.2 mm2 -
Resonance Frequency 22 MHz 14 MHZ 20 MHz 25.02 MHz

Array Spacing 100 µm 43 × 58 µm 100 µm 50 × 100 µm
Pulse Excitation 28 V 24 V 24 V -

Number of Cycles 2 3 - -

5.4. Fingerprint Sensors Based on Other Sensors

Typically, ultrasonic waves are produced by a transducer that converts electrical
or other sources of energy into acoustic energy. Employing the inverse piezoelectric ef-
fect, the majority of ultrasonic transducers generate sound waves from an alternating
electric field using piezoelectric materials. The same transducer can also receive ultra-
sonic waves through the direct piezoelectric effect. For the conversion of acoustic energy
to electrical energy, piezoelectric nanomaterials are composed of lead zirconate titanate
(PZT) and polyvinylidene fluoride (PVDF) nanofibers. The g33 value of PZT nanofibers
(0.079 Vm/N) is significantly greater than that of bulk PZT (0.025 Vm/N) and PZT mi-
crofibers (0.059 Vm/N), resulting in an increased sensitivity for acoustic detection. Due
to their high electrical coefficients and energy conversion efficiency, nanostructures based
on PVDF are also commonly used as piezoelectric active materials. The combination of
nanotechnology and ultrasonic technologies can alter standard ultrasound procedures.
PZT-5 piezoelectric active material and P(VDF-TrFE) film were used to create ultrasonic
fingerprint sensors by the Peng team [236,237]. The PZT-5H-based sensor effectively cap-
tured electronic images of the surface fingerprint pattern and the inner vascular simulation
channel by simulating skin with two layers of polydimethylsiloxane (PDMS) and sim-
ulating blood vessels with bovine blood in the inner vascular simulation channel. The
performance of the various sensors is compared in Table 6, where it can be seen that the
PZT-based sensor structure has an order of magnitude higher emission sensitivity than the
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110 × 56 PMUT-based sensor and is two orders of magnitude higher than the CMUT-based
sensor and that the PZT-5 based sensor has the highest loop sensitivity of all designs.
P(VDF-TrFE) films, unlike piezoelectric ceramics (e.g., PZT), are CMOS-compatible and
can be directly integrated with supporting electronics [238]. Schmitt [239] suggested a
new fingerprint sensor comprised of 1–3 piezoelectric ceramics that transfer the acoustic
impedance of fingerprint patterns to the electrical impedance of the sensor element. The
cost-effective sensor substrate delivers a resolution of up to 50 µm over a 25 × 25 mm2

area. It offers better electromechanical coupling, broader bandwidth, and lower acoustic
impedance than piezoelectric ceramics, the traditional principal material (PZT).

Table 6. Performance comparison of different piezoelectric materials.

Active Layer PZT-5H PZT-5 PVDF-TrFE 1–3 Piezoelectric Ceramics 110 × 56PMUT

Resolution/DPI 500 500 × 500 500 × 500 500 591 × 438

Imaging range Fingerprints and
finger vessels Fingerprints Fingerprints Fingerprints Fingerprints

Bandwidth/% 73.40 72.40 52.88 125 37
Loop sensitivity/dB −52.84 −52.69 −60 −52.79 −78.06
Sensor aperture size 500 × 500 µm2 1 × 1 mm2 5 × 5 mm2 - -

Center Frequency/MHz 21.2 20.7 39.85 16.1 14
Conversion

Sensitivity/kPa·V−1 25.6 25.8 - 25.7 -

Reception sensitiv-
ity/µmV(kPa)−1 89.1 89.9 - 89.2 -

Impedance 106 98.8 - 105 99.8
Ref. [236] [237] [238] [239] [222]

Qualcomm released the ultrasonic fingerprint sensor that is currently prevalent in
cell phones; the sensor is laminated directly on the OLED display to allow quick single-
touch authentication with high speed, superior security, and low battery consumption.
It occupies little space between the battery and the display, as its thickness is less than
150 µm. Strohmann [240] proposed the notion of contact gestures utilizing the Qualcomm
fingerprint sensor system, and in addition to its authentication function, the same sensor can
be used to recognize finger contact gestures and movement directions, such as light/heavy
touch and finger navigation. Xu [241] presents a large-area (20 × 30 mm2), multifunctional,
highly integrated ultrasonic sensor beneath a thick (>1 mm) mobile display made of organic
light-emitting diodes (OLEDs) and protective cover glass (CG). Dual fingerprint verification
enhances the sensor’s dependability and security by enabling simultaneous and rapid finger
scanning to identify finger contact pressure levels and non-electromagnetic hard stylus
position and tracking [242].

5.5. Manufactur of Piezoelectric Ultrasonic Transducer

Common PMUT diaphragm shapes include round, square, rectangular, shell, cylinder,
and dome; piezoelectric membrane materials are shown in Table 7, including PZT [243],
ZnO [244,245], AlN [246], PMN-PT [247–250], and PVDF [251], among others. The follow-
ing table illustrates a comparison of various piezoelectric materials. Vibrating membrane
materials are frequently silicon, silicon dioxide [252,253], silicon nitride, polysilicon, etc.;
boundary conditions are approximate solid support, approximate simple support, approx-
imate free vibration, etc.; vibration modes are double stacked bending vibration modes,
multi-layer stacked bending vibration modes, thickness vibration modes, etc.; operating
frequencies can range from tens of kHz to gigahertz, from the development of a single
PMUT to the development of an array of PMUTs.
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Table 7. Piezoelectric membrane materials.

Material Properties AlN ZnO PZT PVDF

Electromechanical coupling coefficient/K2 3.1–8 1.5–1.7 2–3.5 10–14
Dielectric constant 8.5–10 9.2 80–400 9–13

Density/g·cm−3 3.3 5.61 7.8 1.17–1.79
Modulus of elasticity 300–350 110–140 61 840

Hardness/GPa 15 4–5 7–18 -
Coefficient of thermal expansion/× 10−6 k 5.2 4 1.75 -

Piezoelectric constants/pC·N−1 4.5–6.4 12 38–289 18.32

PMUT is generally based on silicon or SOI wafer-bonded piezoelectric materials. AlN
is generally carried out by magnetron sputtering. AlN is often patterned by wet etching,
using TMAH (C4H13NO, tetramethylammonium hydroxide) solution as the wet etchant.
AlN can also be patterned by dry etching, and the etching gas system can be BCl3 (boron
trichloride)/Cl2 (chlorine)/Ar (argon). Compared to wet etching, the steepness of dry
etching is very high, and the surface roughness after etching is better.

In contrast, the PZT films fabricated by the magnetron sputtering method still have
better film density and consistency at 6” and 8” sizes. Magnetron sputter-grown PZT films
have better orientation growth characteristics, and despite their polycrystalline orientation,
their internal domain orientation is highly uniform, such that the film-forming PZT can no
longer be subjected to post-polarization. Of course, the problem with magnetron-sputtered
PZT films is the higher cost, and the control of the growth environment and process
conditions is much more complicated than that of magnetron-sputtered AlN [254].

After generating y piezoelectric material, it is necessary to pattern the piezoelectric
material and the upper electrode. AlN is often patterned by wet etching, using TMAH
(C4H13NO, tetramethylammonium hydroxide) solution as the wet etching agent. AlN
can also be patterned by dry etching, and the etching gas system can be BCl3 (boron
trichloride)/Cl2. Of course, the problem of magnetron sputtering PZT films is the high
cost, and the control of the growth environment and process conditions is much more
complicated than magnetron sputtering AlN. The wet corrosion of PZT is complicated, and
the corrosion environment is mainly various acidic solutions. The dry etching of PZT, ICP
(inductive coupled plasma), and RIE (reactive ion etching) are mainly mixed solutions. Wet
etching can also be carried out. The choice of etching gases is also relatively large. SF6
(sulfur hexafluoride)/Ar, CF4 (carbon tetrafluoride)/Ar, and CHF3 (trifluoromethane)/Ar
can be used for dry etching of PZT [255].

The ultrasonic fingerprint sensor is a current identification method with high accuracy.
The advantages and disadvantages of different fingerprint identification principles are
compared in Table 8. It can be seen from the table that ultrasonic fingerprint identification
technology is a major development trend of fingerprint identification technology in the
future. Wet or unclean fingerprints can be read by ultrasonic fingerprint sensors, and
the ultrasonic type of flexible piezoelectric materials can be used in a variety of wearable
sensors [256].

Table 8. Compare that with the different types of fingerprint sensors.

Method Core Technology DPI Cost Default Application

optical Total reflection low low Affected by the ambient light and the
finger surface debris roll machine, phone

capacitive Intensive capacitance
arrays >500 low Affected by the human body’s charge phone

temperature Micro heating element 300–500 middle The temperature difference feature is
weakened after multiple contacts Carlock electronic key

ultrasonic Ultrasonic imaging
technique >500 high Prolonged exposure is harmful to the

human body phone

radio frequency Radiofrequency imaging
technology high high Low recognition of some finger modes True Print scanner
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6. Conclusions

This work focuses on the current development status of fingerprint sensors, mainly de-
scribes three types of technologies currently available on the market, presents the structure
and evolution of three distinct fingerprint sensor principles, and introduces the production
methods for ultrasonic fingerprints.

Optical fingerprint sensors are mature and use in fingerprint sensors with large sizes,
such as attendance systems, etc. The capacitive fingerprint sensor is further integrated on
the basis of the optical type, which reduces the size to a certain extent and can be applied
in portable devices such as cell phones. Recently, further research has been conducted on
ultrasonic fingerprint recognition technology in order to reduce the error rate of fingerprint
recognition and, at the same time, improve the integration of fingerprint recognition
systems. For ultrasonic fingerprint recognition devices, ultrasonic transducers are mainly
used to send and receive ultrasonic signals, and there are already ultrasonic transducers
made of PZT, PVDF, and AlN. AlN was earlier used in piezoelectric ultrasonic transducers,
PZT has cost advantages, and PVDF is mainly for flexible devices. For various applications
of fingerprint transducers, different materials of piezoelectric materials can be selected.

Fingerprint recognition technology still has several shortcomings and directions
for improvement:

1. The accuracy of the algorithm is not sufficient to prevent recognition errors due to the
proximity of fingerprints between relatives and needs to be improved;

2. The fingerprint information left when touching an object is easily accessible, and the
security is poor. Therefore, the detection of location authenticity must be enhanced to
prevent the harmful effects of fingerprint theft;

3. With the emergence of wearable devices such as mobile fingerprint unlock bracelets
and car fingerprint locks, the integration of fingerprint recognition technology into
flexible wearable devices has become a major challenge, which will drive the develop-
ment of small, ultra-thin fingerprint capture chips;

4. Fingerprint capture is easily affected by posture and angle, and the problem of finger
pressure can be solved using a contactless fingerprint sensor.

Fingerprint recognition is a convenient and widely applicable biometric technology. A
variety of different capture methods are committed to transferring fingerprint recognition
devices from high-end devices to low-cost, miniaturized devices. In particular, fingerprint
recognition technology can also be greatly applied to information security and medical
testing of wearable devices. At present, ultrasonic fingerprint recognition technology is
still a challenge to be widely used in life as one of the fingerprint recognition methods with
better recognition effects. However, there is still lots of work to be carried out to achieve
robust, interoperable, secure, privacy-preserving, and user-friendly systems.
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