
Citation: Liu, H.; Zhang, Z.; Wu, C.;

Su, K.; Kan, X. Biomimetic

Superhydrophobic Materials through

3D Printing: Progress and Challenges.

Micromachines 2023, 14, 1216.

https://doi.org/10.3390/mi14061216

Academic Editors: Pingan Zhu and

Ye Tian

Received: 16 May 2023

Revised: 2 June 2023

Accepted: 2 June 2023

Published: 8 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

micromachines

Review

Biomimetic Superhydrophobic Materials through 3D Printing:
Progress and Challenges
Haishuo Liu 1, Zipeng Zhang 2, Chenyu Wu 3, Kang Su 1,* and Xiaonan Kan 2,*

1 School of Mechanical Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China;
lhs3707@163.com

2 College of Polymer Science and Engineering, Qingdao University of Science and Technology,
Qingdao 266042, China; zzp13165436954@163.com

3 Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary
Science, Shandong University, Qingdao 266237, China; w@sdu.edu.cn

* Correspondence: sukang@stdu.edu.cn (K.S.); kanxn2011@iccas.ac.cn (X.K.)

Abstract: Superhydrophobicity, a unique natural phenomenon observed in organisms such as lotus
leaves and desert beetles, has inspired extensive research on biomimetic materials. Two main
superhydrophobic effects have been identified: the “lotus leaf effect” and the “rose petal effect”, both
showing water contact angles larger than 150◦, but with differing contact angle hysteresis values.
In recent years, numerous strategies have been developed to fabricate superhydrophobic materials,
among which 3D printing has garnered significant attention due to its rapid, low-cost, and precise
construction of complex materials in a facile way. In this minireview, we provide a comprehensive
overview of biomimetic superhydrophobic materials fabricated through 3D printing, focusing on
wetting regimes, fabrication techniques, including printing of diverse micro/nanostructures, post-
modification, and bulk material printing, and applications ranging from liquid manipulation and
oil/water separation to drag reduction. Additionally, we discuss the challenges and future research
directions in this burgeoning field.
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1. Introduction

Being a unique phenomenon, superhydrophobicity has assisted organisms to survive
under harsh natural conditions for billions of years [1–5]. Superhydrophobicity refers
to objects with high water contact angles (CAs) (>150◦). For instance, a lotus leaf can
repel water and keep clean in sludge, cactus spines and desert beetles can collect water
in dry environments, water striders can walk freely on water surfaces, and the wings of
many butterflies also have anisotropic superhydrophobic properties [6–9]. In nature, two
main superhydrophobic effect can be found. One is the “lotus leaf effect”, referring to
surfaces with water CAs larger than 150◦ and contact angle hysteresis (CAH) of less than
10◦ [10]. These surfaces show superhydrophobic property with low adhesion, which can be
attributed to a combination of hierarchical micro/nanostructures and wax with low surface
energy. The other is the “rose petal effect”, referring to surfaces with water CAs larger than
150◦ and contact angle hysteresis (CAH) of more than 10◦ [11]. These kinds of surfaces
show superhydrophobic property with high adhesion and, although possessing unique
fractal micro/nanostructures, no low surface energy coatings can be found, leading to high
adhesion of water droplets.

Learning from nature, extensive studies have been carried out on fabricating biometric
superhydrophobic materials during recent decades, covering from theoretical wetting
models and different fabrication strategies to diverse kinds of applications [12–14]. To
further reveal the wetting regimes, several famous models were proposed, including Wenzel
models for complete wetting [15], Cassie–Baxter models considering surface roughness and
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heterogeneity [16], and intermediate models between these two states [17,18]. In addition, to
mimic natural analogues, numerous kinds of strategies have been developed for fabrication
of superhydrophobic materials, such as chemical etching, spray coating, electrochemical
deposition, lithography pattering, sol–gel processing, etc. [19–21]. The main construction
guideline is a combination of surface roughness with low-energy materials. The fabricated
multifunctional materials have shown great potential in various applications fields, such as
anti-icing, water/oil separation, directional liquid transportation, drag reduction, etc. [22].

Among all these fabrication techniques, 3D printing, also known as additive manu-
facturing (AM) or free-form fabrication, has attracted extensive attention due to its special
role in construction of artificial superhydrophobic materials [23,24]. The main advantages
of 3D printing over others are the fast construction of complex materials without the use
of a template with low cost and high precision. During the recent years, several kinds of
3D printing techniques, such as stereolithography (SLA), digital light processing (DLP),
fused deposition modeling (FDM), and direct ink writing (DIW), have been reported for the
successful preparation of superhydrophobic materials [25–28]. Based on these strategies,
different biomimetic micro/nanostructures such as re-entrant structures [29–31] and egg-
beater analogues [32,33] can be printed, and the printed objects can be further modified to
improve water repellency [34–36]. More recently, bulk superhydrophobic objects have been
fabricated directly through 3D printing [37,38]. Although great progress has been made
in these areas, urgent challenges still remain. One of the biggest is the lack of structure–
function relationships as clear guidelines. In consequence, challenges and opportunities
coexist in 3D printed superhydrophobic materials, calling for further advancements in this
field.

In this minireview, we will summarize the recent progress in biomimetic superhy-
drophobic materials fabricated through 3D printing, mainly focusing on wetting regimes,
different fabrication techniques, and various applications of the printed objects (Scheme 1).
Finally, conclusions and outlooks are presented for a comprehensive discussion of the
challenges and future research directions in this field.

2. Natural Superhydrophobic Surfaces and Wetting Regimes

In nature, many kinds of plants and animals have superhydrophobic surfaces, attract-
ing extensive attention due to their unique properties, such as self-cleaning, water-proofing,
uniaxial water transport, etc. Although the apparent CAs of these surfaces are similar, the
CAHs may be different considering the chemical compositions of these surfaces. Addi-
tionally, the important “lotus leaf effect” and “rose petal effect” are proposed according to
the water repellency/adhesion. The exploring of wetting regimes can provide important
guidance for the fabrication of artificial superhydrophobic materials and much effort has
been made in this field. Moreover, to further reveal the wettability mechanism, several
models have been developed, originating from Young’s equation, including the Wenzel
model, Cassie–Baxter model, and some new models. Still, debates exist on whether these
models have explained wettability explicitly.

2.1. Natural Superhydrophobic Surfaces—“Lotus Leaf Effect” and “Rose Petal Effect”

As is well known, a lotus leaf can withstand muddy environments due to its self-
cleaning property. The apparent CAs of a lotus leaf can be more than 150◦ and CAHs can be
less than 5◦ [39]. As a result, water can roll down the leaf easily. During the rolling process,
the dirt on the leaf can be absorbed into the water drop, so-called liquid marbles are thus
formed, and the surface energy can be minimized after adsorption. Numerous efforts have
been made in revealing this mechanism [40]. At first, this phenomenon was ascribed to
the wax coating and microstructures by Barthlott and Neinhuis [41]. In 2002, Feng et al.
revealed that the surface of a lotus leaf is composed of large amounts of micropapillae
and nanostructures on top of them [10]. These hierarchical micro/nanostructures play a
vital role in superhydrophobic and self-cleaning functions (Figure 1a,b). In addition to
the lotus leaf, some other plant leaves were reported to have similar properties, such as
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Colocasi esculenta leaves [42], Salvinia leaves [43], and so on. Furthermore, these water-
repellent structures can motivate design of surfaces which can be applied in anti-icing and
anti-fogging [44].

Similar to the lotus leaf, the rose petal also exhibits superhydrophobic property. How-
ever, different from the former, water droplets can adhere on top of the petal firmly [45,46].
The CAH is large in these structures where the pinned water will not roll away until
complete evaporation. This can help animals or plants to survive in dry environments. As
can be seen from closer observation through SEM, periodic microarrays with an average
diameter of about 20 µm and height of 10 µm can be found on the surface, covered with
nanosized wrinkles [47] (Figure 2a,b). Jiang et al. revealed that the superhydrophobicity
can be ascribed to the microstructures while the existence of the wrinkled nanostructures
makes the contact area larger, leading to high adhesion of water [11]. Apart from rose
petals, sunflower petals and Chinese Kaffir lilies also exhibit similar properties, showing
superhydrophobicity with high adhesion [48]. In addition, the “rose petal effect” could
prompt development of biometric superhydrophobic surfaces with high adhesion to retain
liquids.
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Reproduced from [47], copyright 2008, American Chemical Society.
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2.2. Wetting Regimes

The surface wettability is mainly measured by CAs, and to further reveal the mecha-
nism behind it, different models and equations have been proposed. The earliest and most
famous equation is Young’s equation (Figure 2a), where the CA (θ) on a smooth surface
is defined depending on the solid–vapor (SV), solid–liquid (SL), and liquid–vapor (LV)
surface tensions (γ). When reaching equilibrium, the equation can be expressed as [49]:

γSV = γSL + γLVcos θ (1)

As can be seen from the above equation, the CA is determined by interfacial energies,
which are derived from thermodynamic equilibrium of the three phases’ (solid–liquid–
vapor) interface free energy. However, Young’s equation is appropriate for ideal smooth
surfaces and not suitable to describe realistic surfaces with roughness. Therefore, an-
other two famous models, the Wenzel model and Cassie–Baxter model, were proposed
accordingly.

2.2.1. Wenzel Model

Compared with Young’s equation, the Wenzel model describes a complete wetting
state considering surface roughness and it was proposed in 1936 [15]. In this model, a
factor describing the surface roughness is introduced. The model assumes that water can
completely contact a chemically homogenous surface (Figure 2b). The equation for the
Wenzel model is expressed as follows:

cos θw = rcos θ (2)

where θw and θ represent the Wenzel contact angle and Young’s contact angle, respectively,
r is the surface roughness factor, equaling the fraction of true surface area to apparent
surface area. The value of r is 1 for an ideal planar surface and more than 1 for a surface
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in reality. In consequence, as can be seen from the Wenzel equation, the introduction of
roughness will increase both surface hydrophilicity and hydrophobicity to some extent.
However, in the Wenzel model, it is supposed that the surface is homogenous and flat and
the wetting is complete, which is not adequate for real surfaces. As a result, another model,
the Cassie–Baxter model, was proposed to solve the above problems.

2.2.2. Cassie–Baxter Model

In 1944, the Cassie–Baxter model was proposed to further investigate wetting regimes
of heterogenous surfaces with roughness [16]. In fact, when water contacts a surface with
certain roughness, it cannot fully enter the grooves due to existence of air pockets trapped
in the grooves (Figure 2c). Therefore, the contact state is composite on such a surface. The
equation for the Cassie–Baxter model is described as follows:

cos θCB = f1cos θ1 + f2cos θ2 (3)

f1 + f2 = 1 (4)

where θCB stands for the Cassie–Baxter contact angle, f1 and f2 represent the apparent
area ratio of surface 1 and surface 2. Commonly, surface 1 refers to the liquid/solid
interface while surface 2 refers to the air pocket interface. As the air can only be trapped
in the grooves along a solid surface, θ2 is 180◦ due to the non-wetting status. Therefore,
Equation (3) can be simplified as follows:

cos θCB = f (cos θ + 1)− 1 (5)

where θCB still means the apparent contact angle, f refers to the fractional area of the
liquid/solid interface. According to the equation, air pockets can be found in the “lotus leaf
effect”, where the surface exhibits superhydrophobic property and low adhesion, verifying
the importance of the Cassie–Baxter model in explaining actual wetting situations.

2.2.3. Intermediate Models

Although the proposal of the above two models can fill the gap in wetting regimes to
a great extent, they still cannot explain all wetting situations, especially those with a nano-
sized porous structure or hierarchical nano/microsized structure. As a consequence, several
kinds of intermediate models have been developed during recent decades [17,18,50–54].
For instance, Miwa et al. discussed a mixed-wetting state at first. Luo et al. discovered
the existence of a stable intermediate wetting state on patterned surfaces with microstruc-
tures [51]. Liu et al. systematically studied a combined Cassie–Baxter/Wenzel state on
lotus leaves [52].

Here, an intermediate wetting state on surfaces with nano- or microstructures pro-
posed by Nagayama et al. is specified as an example [18]. The results originated from
molecular dynamic simulations. For a concavoconvex surface with micro- or nanostructures
(Figure 2d), the CAs can be derived as:

cos θCB = f1cos θ − f2 (6)

where θCB is the constant contact angle, f1 and f2 are the fraction of the solid/liquid and
liquid/vapor interface to the flat surface, respectively. If f1 is 0, Equation (6) turns into the
Wenzel model; if f1 and f2 fulfill Equation (4), the sum of the two equals 1, then Equation (6)
is the Cassie–Baxter model. In other words, for partial wetting of an intermediate state,
f < f1 < r, while 0 < f2 < 1 − f .

Meanwhile, apart from the above status, the contact angle of a surface with hierarchical
nano/microstructures is also discussed in this report (Figure 2e), and the CAs can be
described as:

cos θCB = f 2
1 cos θ − f2( f1 + 1) (7)
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In this hierarchical structure, the wetting state of the primary structures is similar to
that of the secondary structures, f 2

1 represents the area ratio of the solid/liquid interface
to the apparent contact interface, f2 f1 + f2 represents the area ratio of the liquid/vapor
interface to the apparent contact interface.

2.2.4. Debates

Nevertheless, despite all this progress made in wetting regimes, debates still exist in
the exploration of ideal models to fully explain wettability in reality. For instance, Gao
and McCarthy proposed that the wetting behavior of liquid on a structured surface is
determined solely by interactions along the three-phase contact line (TCL) instead of the
interfacial area within the contact perimeter [55]. The proposal was later proved by Liu
et al. [52]. Erbil et al. tested the application range of the Wenzel model and Cassie–Baxter
model by a simple method [56]. The results showed that the Wenzel equation was wrong
for superhydrophobic samples other than a few exceptions. In addition, the Cassie–Baxter
model can only be applied for superhydrophobic surfaces under certain conditions. Vogler
et al. suggested the cutoff for hydrophilic/hydrophobic should be θ ≈ 65◦ rather than
90◦ when considering long-range hydrophobic interactions [57]. Later, Jiang et al. proved
the intrinsic wetting threshold for water should be 65◦, which resulted from different
hydrogen-bonded (hydrophilic)/non-bonded (hydrophobic) molecular water structures
at the interface [58,59]. Thanks to the complicated situations of liquid motion on different
kinds of surfaces, the debates will last for a long time and exploration of new models is still
urgently needed.

3. Three-Dimensionally Printed Superhydrophobic Materials

Numerous strategies have been proposed in fabrication of superhydrophobic materials
during recent decades, among which 3D printing techniques show unique advantages over
others for replication of complex structures in a facile and accurate way. In the following
section, we discuss the micro/nanofabrication of superhydrophobic objects through 3D
printing. Different printing techniques, the pros and cons of them, and the specific methods
are summarized.

3.1. Three-Dimensional Printing Technologies

Three-dimensional printing, also denoted as additive manufacturing (AM) technology,
is a mature technology transforming 3D models into objects. The common steps for 3D
printing are (1) design a 3D model through computer-aided design (CAD); (2) cut the model
into slices with suitable thickness; (3) print the model layer by layer. The powerful technique
has unparalleled advantages in the reproduction of objects with complex structures with
high precision. Moreover, the printed products have wide applications ranging from the
motor industry, dental science, and the construction sector to jewelry, aircraft, etc. [60].
Depending on different printing principles, 3D printing can be mainly divided into three
categories, that is, photocuring printing techniques, including stereolithography (SLA) [61],
digital light processing (DLP) [62], continuous liquid interface production (CLIP) [63], two-
photon printing (TPP) [64] etc., jetting methods, such as inkjet printing (IJP) [65], direct ink
writing (DIW) [66], and extruding strategies, such as fused deposition modeling (FDM) [67],
and laser melting methods, such as selective laser sintering (SLS) [68], elective laser melting
(SLM) [69], and many other newly developed techniques [70].

Although 3D printing has been successfully applied in fabricated superhydrophobic
materials during the past few years, not all types of 3D printing can be used in this field due
to the great challenge in construction of micro- and nanosized structures in high resolution
with limited raw materials. The dominant 3D printing technologies that can be applied
in biomimetic superhydrophobic materials are summarized in Figure 3 and Table 1. The
advantages and disadvantages, typical raw materials, printing resolution, and printing
speed are compared here. A brief introduction of commonly used 3D printing strategies is
given as follows [71].
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Table 1. Comparison of advantages, disadvantages, typical materials, and printing resolution of
commonly employed 3D printing techniques in fabrication of superhydrophobic materials.

Technique Pros Cons Typical Materials Printing
Resolution

SLA 3 Facile set-up
3 Large scale

8 Slow printing speed
8 Volume shrinkage Photoresins 100 nm

DLP 3 Fast printing
3 High precision

8 Volume shrinkage
8 Limited size Photoresins 100 nm

CLIP 3 Fast printing
3 High mechanical strength

8 Limited resolution
8 High cost

Low-viscosity
Photoresins 75 µm

TPP 3 High resolution
3 In vivo print

8 Slow printing speed
8 Only print transparent materials

Transparent
photoresins <100 nm

IJP 3 High resolution
3 Selectivity of multiple materials

8 Nozzle clogging
8 Low yielding rate

Polymers, pigments,
nanoparticles 50 µm

DIW 3 High resolution
3 Fast printing in one step

8 Low mechanical stability
8 Low scalability

Ceramics, metals,
zeolites

5 µm
(1–100 µm)

FDM 3 Good repeatability
3 Low cost

8 Limited resolution
8 Possible dimensional error Polymers, metals 100 µm

SLS/M 3 Large scale
3 High-temperature printing

8 Limited particle size
8 Uneven temperature distribution

Metals, ceramics,
polymers 50 µm

Stereolithography (SLA), also known as vat polymerization, is one of the earliest
developed techniques in 3D printing [72–75]. Under ultraviolet (UV) light irradiation,
light-induced polymerization occurs in a liquid photoresin container. The wavelength
of UV light usually ranges from 365 to 405 nm. Following photopolymerization of the
first layer, the remaining unreacted monomers continue to react with the irradiated liquid
photoresins in the second layer. Thus, a solid 3D object can be fabricated through layer-
by-layer curing of the resin. A post-curing process is commonly employed to promote
conversion of unreactive monomers to improve the mechanical properties of printed objects.
The resolution of SLA mainly depends on the size of the laser beam and, consequently, a
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high resolution of 100 nm can be realized in this system. SLA has great potential in printing
objects with a large size and complex structures with sufficient precision.

The fabrication principle of digital light processing (DLP) is similar to SLA, but differ-
ently, a UV projector is used to project the image of the cross-section of an object into the
liquid resin [62,76,77]. The core technology of DLP is determined by the optical semiconduc-
tor or digital microscope device (DMD) or DLP chip. Meanwhile, since the polymerization
of the photoresins always takes place at the bottom of the vat, as a result, air is blocked
and DLP is less sensitive to oxygen compared with SLA. More importantly, DLP can print
objects with high precision yet limited size. Derived from common stereolithography,
continuous microprinting strategies, such as continuous liquid interface production (CLIP),
have been developed and applied for the fabrication of different objects [78–80]. In CLIP, an
oxygen-permeable membrane is introduced to prevent radical polymerization. Similar to
DLP, UV projection is located at the bottom, while a stable liquid area or “dead zone” can
be maintained thanks to the oxygen, and continuous printing can be realized in this way.
In consequence, the printing speed of CLIP is fast, up to 100 times faster than DLP. Further-
more, these microprinting strategies based on stereolithography have been successfully
applied in construction of superhydrophobic materials during recent years.

Being one of the 3D printing techniques with the highest resolution (less than 100 nm),
TPP employs a near-infrared femtosecond laser as a light source to initiate the photopoly-
merization process within a tight focal volume [81–84]. The focused laser spot can move
freely within the resin, providing freedom in the fabrication of 3D objects. In addition,
two-photon adsorption is linear only within the focused spot, and the intensity of two-
photon adsorption is proportional to the square of the incident laser density. As a result,
the precision of TPP can be very high. However, due to the deep permeation ability of
the femtosecond laser source into transparent resin and difficulty of focusing inside metal
supports, TPP is not suitable for such resin.

Inkjet 3D printing reproduces 3D objects on substrates via jetting and solidification of
inkjet droplets [85–88]. The ink materials are ejected from head/nozzle either under certain
pressure or through an actuator pulse generated from a thermal or piezoelectric head.
The above process is repeated until completion of the desired objects. IJP is a powerful
technique for the customized deposition of polymeric materials in an efficient and facile
way, showing great potential in fabricating various kinds of structures. However, the
printing resolution (50 µm) is low compared with other 3D printing methods due to the
limitation of droplets, which may impede further application. The fabrication process of
DIW is similar to IJP, where the ink droplets are extruded through the nozzle under external
force and solidified along a specified path. The precision of this strategy mainly depends
on the size of the nozzle, which is still small (fluctuating from 1–100 µm) compared with
other 3D printing techniques.

In FDM, materials can be fed into and forced out through one or more heated noz-
zles/orifices, forming continuous filaments, following by solidification and adhesion to
the preceding layer [89–92]. Typically, extruded materials are deposited onto a molding
platform assisted by motors to move in 3D directions to create the desired shapes. Ther-
mal plastic materials are used during FDM, which go through solid–liquid–solid phase
transition. Numerous kinds of materials can be used in FDM, such as acrylonitrile butadi-
ene styrene (ABS), polylactic acid (PLA), high-impact polystyrene (HIPS), thermoplastic
polyurethane (TPU), etc. The printing resolution is dependent on the nozzle, reaching
the highest resolution of about 100 µm. FDM is one of the most widely used prototyping
methods in 3D printing due to a rich choice in designs and materials, low cost, and fast
printing speed.

SLS/M is a kind of 3D printing method which is mainly applied to process solid
powders. The main working mechanism is utilization of a high-power laser to sinter
or melt powder and, after powder solidification, the desired 3D objects can be obtained
by moving the molding platform. Throughout SLS, the processing temperature is kept
high but less than the melting point of the powder [93–95]. Therefore, the particles are
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not completely melted, and the powder maintains its porosity. Particles can be reused
during SLS, placed on the fabrication platform as support for the next step by a roller.
In comparison, during SLM, particles are heated above the melting point, more particles
are softened and melted to fill space, and the porosity is reduced [96–98]. The printing
resolution of SLS/M can reach 50 µm, however, the particle size is commonly limited to
10 µm to prevent assembly and the majority of the materials employed in SLS/M show
poor biocompatibility.

3.2. Three-Dimensional Printing of Biometric Superhydrophobic Materials

During recent years, large amounts of work have been reported on 3D printed biomet-
ric superhydrophobic materials thanks to their fast printing speed and high precision in the
fabrication of complex structures. In general, these strategies can be categorized into the
following groups: (i) 3D printing of special micro/nanostructures; (ii) post-modification
of 3D printed objects; and (iii) 3D printing of bulk materials in one step, which will be
illustrated in detail. For the micro/nanofabrication method, complex structures can be
replicated directly to mimic the natural analogues, though these delicate objects may be
fragile when it comes to friction or corrosion. While post-modification can be used as a
powerful tool to further improve the anti-wetting properties of the printed objects, they
may still suffer from destruction of the layers and loss of superhydrophobicity. In com-
parison, bulk materials can be fabricated directly and are resistant to possible wear and
tear. However, they may be limited by the choice of suitable reaction systems and limited
mechanical properties.

3.2.1. Three-Dimensional Printing of Special Micro/Nanostructures

To start with, inspired by the lotus leaf, pillared micro/nanostructures have been
printed by 3D printing [99]. Magdassi et al. fabricated superhydrophobic surfaces by
DLP [100]. A novel ink was developed, mainly consisting of non-fluorinated acrylic
monomers and dispersed hydrophobic fumed silica (HFS) (Figure 4a). The introduction of
HFS brought about a certain surface roughness and lowered the surface energy. A cube with
a micropillar array with pillar spacing of 300 µm and side length ranging from 70 to 130 µm
on its faces could be fabricated. The best superhydrophobic property can be achieved with
a pillar length of 70 µm and spacing of 300 µm, with CAs reaching 155◦ and sliding angle
of 5◦. In addition, thanks to the superhydrophobicity, the fabricated object could flow on
the water surface freely, similar to that of legs of water striders. Credi et al. employed SLA
to construct perfluoropolyether (PFPE) microstructures on flat substrates [101]. The surface
tension of PFPEs was low enough. By further optimizing printing conditions, i.e., laser
energy, cylindrical pillar arrays with diameter of 85 µm, height of 400 µm, and different
spacings could be printed quickly (Figure 4b). For surfaces with pillar arrays (spacing of
200 µm) printed based on PFPE-tetracrylate oligomers, the CA was more than 150◦ and
sliding angle ranged from 2◦–5◦.

Among all special 3D printed micro/nanostructures, re-entrant geometry has attracted
extensive attention due to its efficiency in water repellency. In nature, springtails pos-
sess unique overhang structures, similar to mushrooms, which have been proven to be
superhydrophobic [102–104]. The re-entrant structures were evaluated to be effective in
supporting water droplets and keeping them away from the bottom by entrapping air [105]
(Figure 5a). Several works have been reported based on 3D printed overhanging struc-
tures [29–31,106–109]. For instance, Sitti et al. fabricated mushroom-like double re-entrant
poly (dimethylsiloxane) (PDMS) arrays based on a 3D printed template [106]. The arrays
showed superb repellency to various kinds of liquid, even those with low surface tension.
Gu’s group prepared both doubly and triply re-entrant structures through TPP, which were
flexible enough to be printed on arbitrary substrates [31]. The triply re-entrant arrays have
superrepellence to both water and organic liquids (Figure 5b). In another report of theirs,
through further regulation of parameters such as diameter, distance, etc., three different
adhesion states could be achieved [30]. Still, liquid repellence can be further improved
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by combining re-entrant mushroom structures with spring-like flexible arms [29]. Kinetic
repellence to liquid can be realized by preventing liquid impalement, moreover, the contact
time was reduced in this way (Figure 5c). To mimic cuticles of Dicyrtomina ornate, Mishra
et al. innovatively built a wall of double re-entrant structures with one or two lateral caps
on the sides, with centrally located normal double re-entrant arrays [109]. The addition of
a secondary microstructure was proven to be effective for air entrapment and prevention
of liquid movement laterally, showing superomniphobicity both in air and on submersion
(Figure 5d).

Inspired by the ability of the Salvinia molesta leaf to form robust air cushions when
immersed in water, several works have been reported on 3D fabrication of similar struc-
tures [32,33]. Salvinia possesses unique micro/nanostructures, microcellular arms can be
found on top of the leaves, and groups of four arms are connected at the end, forming
heterogeneous eggbeater structures [110–112]. The air retention ability, also known as the
“Salvinia effect”, results from multiple factors thanks to the unique eggbeater structures,
including structural support, maximized penetration energy, and pinning effect (Figure 6a).
In 2015, Mattoli et al. fabricated Salvinia-like patterns by scaling down the original param-
eters from hydrophilic materials [32] (Figure 6b). However, a hydrophobic state can be
achieved only with CAs around 120◦. To further enhance the hydrophobicity, Chen’s group
printed superhydrophobic eggbeater surfaces with a high-adhesion immersed surface
through accumulation-based 3D (ISA-3D) printing [33] (Figure 6c). In ISA-3D, printed
materials are accumulated along the light movement direction and multiscale objects can
be printed in this way. In this work, to increase the surface roughness and mechanical
strength of printed objects, multiwalled carbon nanotubes were added to liquid resins. The
size of eggbeater arrays was similar to that of natural ones, showing superhydrophobicity
(CAs~152◦) and high adhesion, which can be regulated by changing the distance and
number of connected arms.
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Figure 5. Three-dimensionally printed re-entrant structures. (a) Cassie state of water in contact
with re-entrant structures. Reproduced from [105], copyright 2007, American Chemical Society.
(b) SEM pictures of re-entrant structures fabricated by TPP, which show high repellence to n-
perfluorooctane. Reproduced from [31], copyright 2018, WILEY-VCH Verlag GmbH & Co. KGaA.
(c) Bioinspired mushroom–spring and mushroom–pillar structures with different arrangements.
Reproduced from [29], copyright 2020, Springer Nature. (d) Doubly re-entrant micropillars with
secondary structures (DO-DRPs) surrounding DRPs showing excellent superomniphobicity in air
and on submersion. Reproduced from [108], copyright 2020, Springer Nature.

Furthermore, in addition to the above structures, many other types of micro/nanos-
tructures have been printed through various kinds of 3D printing techniques [113–119].
For instance, Wu et al. proposed a multiscale SLA technique, which can print objects with
a large scale and high resolution [117]. The laser spot size can be adjusted flexibly with
the assistance of a resonance grating filter. The layer thickness was also adjustable. As a
proof of concept, samples with riblets and denticles were printed to mimic shark skin, and
artificial lotus leaf can be fabricated accordingly (Figure 7a). Combining extrusion-based 3D
printing with a robotic dispenser, PDMS arrays showing ratchet-like slip angle anisotropy
were prepared [118] (Figure 7b). TCL could increase or decrease depending on whether the
surface was tilted parallel to the slopes or not. Moreover, the larger TCL indicated stronger
liquid–solid interactions, leading to an increase in slip angle to overcome the barrier. Tang
et al. printed porous membranes with high water repellency and mechanical strength
by DIW [119]. Nanosilica was added into the PDMS ink to improve mechanical strength
(Figure 7c).
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Weinheim. (b) Three-dimensionally printed PDMS arrays with straight posts showing superhy-
drophobicity. Reproduced from [118], copyright 2019, American Chemical Society. (c) Porous
membrane printed from PDMS filled with nanosized silica. Reproduced from [119], copyright 2017,
Royal Society of Chemistry.
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3.2.2. Post-Modification of 3D Printed Objects

Under some circumstances, the 3D printed objects alone cannot realize superhydropho-
bicity due to the high surface energy and, in consequence, post-modification of these objects
is of vital importance. One common modification method is coating hydrophobic mate-
rials onto the surfaces [34–36,120–125]. Motivated by hierarchical structures of rice leaf,
Palza et al. firstly printed microchannels with intrinsic roughness by the SLA method,
then the surface was modified by TiO2 nanoparticles [34] (Figure 8a). The wettability of
these nanoparticles was functionalized by covalently connected hexadeciltrimethylsiloxane
(HTMS) bonds. The original flat uncoated surface exhibited only hydrophobic behavior
(CAs > 95◦) with anisotropy of 35◦ and the average hysteresis was about 10◦. For un-
coated microchannels, the anisotropy increased. In comparison, for coated microchannels,
a maximum of advancing contact angle of 165◦ with anisotropy of 5◦ and hysteresis less
than 5◦ could be realized. A classic Cassie–Baxter state with air pockets trapped in these
microchannel surfaces was verified both by direct experimental observation and numerical
simulation results. Meanwhile, the coated surfaces exhibited self-cleaning property and
UV irradiation-tuned wettability due to the existence of TiO2 nanoparticles.
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microchannels coated with nanoparticles showing high CAs. Reproduced from [34], copyright 2022,
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Reproduced from [34], copyright 2019, Royal Society of Chemistry. (c) Superhydrophobic microlattices
and microballs prepared by SI-ATRP and i3DP. Reproduced from [36], copyright 2013, Royal Society
of Chemistry.

In the Bruggen group’s work, the growth of two kinds of zeolitic imidazolate frame-
works (ZIFs) with distinct morphology onto SLS printed polyamide (PA) porous membrane
was reported [125] (Figure 8b). After coating PDMS, the composite surface presented a
superhydrophobic state with static CAs reaching 158.6◦ and a sliding angle less than 2◦.
The morphology of the first ZIF layer was leaf-crossed structures, while the second layer of
the ZIF was composed of flat rod-shaped and needle-like nanostructures. The unique hier-
archical micro/nanostructures, combined with intrinsic rough PA membranes, contributed
to the anti-wetting property of the objects, which can be further applied for highly efficient
oil/water separation. Apart from the above hydrophobic coating, Yang et al. reported
initiator-integrated 3D printing (i3DP) for surface post-modification [36]. In this method,
a vinyl-terminated initiator is added into the photocurable resin, enabling further post-
surface printing by the advantage of surface-initiated atom transfer radical polymerization
(SI-ATRP) (Figure 8c). In this case, a cross-linked network was formed under UV irradiation,
and the Br-containing initiator can induce ATRP for surface modification with any kind
of polymers. Moreover, as a proof-of-concept, 1H,1H,2H,2H-perfluorodecyl methacrylate
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(PFMA) with low surface energy was chosen for further ATRP. Interestingly, after poly
(PFMA) modification, the printed microlattices became superhydrohobic. In a similar way,
microballs which can hold water perfectly without leakage can be printed and modified
with poly (PFMA).

3.2.3. Three-Dimensional Printing of Bulk Materials

In addition to the delicate design of complex structures and multistep post-modification
strategies, during the past few years, several works focusing 3D printing of materials with
bulk superhydrophobicity have been described [37,38,126,127]. Compared with other tech-
niques, the main advantage of this method lies in the facile fabrication of bulk materials in
fewer steps, while, when the surface structure is destroyed, the newly produced surface can
show the same property. As a result, the printed objects are robust with increased resistance
to external damage. A few typical cases will be illustrated in the following section.

Zhang et al. reported 3D printed microtextured polytetrafluoroethylene (PTFE) gener-
ated from a microprinting (µ-printing) method. First, PTFE nanoparticles were mixed with
poly (ethylene glycol)diacrylate (PEGDA) in liquid resin and printed layer by layer [126].
This was followed by evaporation of water and sintering to decompose PEGDA, and pure
and densely packed PTFE microstructures with nanostructured surfaces were obtained.
The structures can be tuned by mixing ratio, water content, sintering temperature, etc.
The optimized CAs can be as high as 167.3◦ with sliding angle less than 6◦. Due to these
properties, the printed structure can be applied in whispering-gallery-mode (WGM) res-
onators and electrostatic-driven biomimetic waterstriders. In the Helmer group’s work,
superhydrophobic membranes with micro/nanoporosity were printed based on SLA in
one step. Notably, the superhydrophobic property can be ascribed to several factors, em-
ployment of photocurable fluorinated resin, polymerization-induced phase separation
(PIPS) resulting from the porogen mixture, variable size of nanopores by controlling the
porogen ratio, etc. In addition, the objects were printed in a special “staircase” way, and
a thin layer membrane showing superhydrophobicity (CAs~164◦) could be easily peeled
off. Mechanical stability tests of these superhydrophobic films showed that the membranes
were robust and maintained water repellence even under multiple stretching or bending
cycles.

Another successful example employing PIPS was reported by Levkin et al. [37].
In this case, superhydrophobic macroscopic objects with inherent nanoporosity were
printed through DLP (Figure 9a). The liquid resin mainly consisted of hydrophobic
(meth)acrylate monomers and porogen solvents and, during the photoinduced polymer-
ization, bi-continuous 3D structures with two phases—more or fewer polymers—could
be obtained after phase separation. The good/bad solvent ratio of porogen had a great
influence on porosity, polymer globular size, as well as mechanical strength. Moreover,
supercritical drying of the objects was a prerequisite to maintain nanoporosity. Objects
with different complex structures can be prepared in this way (Figure 9b). Meanwhile, the
scanning droplet adhesion microscopy (SDAM) method was used to measure the wetting
property of these objects, through which the interactions between liquids and samples
can be tested and recorded by a vertically mounted force sensor. A maximum advancing
angle around 165◦ and receding angle of about 155◦ can be obtained after optimization.
Additionally, thanks to the bulk nanostructures, the 3D objects were superhydrophobic
even after 40 abrasion cycles. Both gas-permeable microfluidic devices and hierarchical
porous oil-absorbent ones can be fabricated based on these 3D bulk materials, showing
great potential for a variety of applications.
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Figure 9. Three-dimensional printing of superhydrophobic objects with bulk nanostructure.
(a) Schematic illustration of DLP 3D printing process based on photopolymerization-induced phase
separation (PIPS). The as-prepared objects with inherent nanoporous structures exhibit bulk super-
hydrophobicity. (b) Various complex-shaped superhydrophobic objects printed using this strategy.
Reproduced from [37], copyright 2021, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Recently, Su et al. fabricated large-scale superhydrophobic (half-a-meter sized) objects
with abrasion resistance through an SLS strategy in one step [38]. Composite powders
composed of hydrophobic fumed silica (HFS) and polymer (polypropylene (PP)) were
printed. After sintering, a PP skeleton was formed, contributing to considerable roughness
and mechanical strength (Figure 10a). With the further introduction of hydrophobic HFS,
intrinsic superhydrophobicity was supposed to be achieved. In addition, the as-prepared
thin film showed excellent abrasion-resistant stability under various kinds of wear damage
tests. Moreover, beyond PP, the method can be applied for printing of superhydrophobic
objects from diverse kinds of polymers, such as polyether block amide (PEBA), polyethylene
(PE), polystyrene (PS), polymethyl methacrylate (PMMA), etc. Moreover, thanks to the
ability of SLS in printing macrostructures (meter-sized), water-repellent aerial vehicles
and abrasion-resistant shoes were printed accordingly (Figure 10b), proving the practical
application potentials of this strategy in daily life.
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Figure 10. Three-dimensionally printed large-scale, abrasion-resistant structures through SLS.
(a) Under irradiation of high-energy laser, PP micrograins will fill the gap between particles, in-
creasing roughness and mechanical strength, while HFS nanograins will enhance the anti-wetting
properties. (b) Three-dimensionally printed superhydrophobic objects with large size (half a meter),
which can be further applied in superhydrophobic unmanned aerial vehicles and shoes. Reproduced
from [38], copyright 2023, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

4. Applications of 3D Printed Superhydrophobic Materials

On one hand, due to their excellent water-repellent properties, the 3D printed su-
perhydrophobic objects can be applied in diverse fields, including photovoltaic [128–130],
magnetic [131–133], and optoelectronic devices [128–130], detection platforms [134,135],
cell culture [136,137], etc. [138]. However, due to the limited size, only a few typical
application fields are introduced here, such as liquid manipulation [139–142], oil/water
separation [123,127,143], drag reduction [140], anti-icing [144], etc. On the other hand, these
objects show great potential in industrial applications thanks to the advantages of mature
3D printing techniques at a large scale and facile fabrication of complex objects with high
precision.

4.1. Liquid Manipulation

A cactus can efficiently collect water from fogflow by using its conical spine clusters
and belt-structured trichomes on the stem (Figure 11a), allowing it to survive in extremely
dry environments [145,146]. Mimicking the cactus structures, Chen et al. prepared spine
arrays with different branched shapes [147]. Benefiting from the ability of facile fabrication
of complex structures of ISA-3D printing, natural branched clusters were successfully
replicated (Figure 11b). In addition, the possible mechanism for highly efficient water
collection was influenced by multiple factors. The hexagonally arranged clusters around
3D printed spines induced more turbulent moisture airflow, facilitating deposition of tiny
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water droplets. Meanwhile, the tilt angle and length of the spine can be easily optimized,
generating Laplace pressure differences on it, which can further promote transportation of
water droplets from the tip to the stem. Lastly, to further improve the collection of water,
it was coated with a nanoscale superhydrophobic layer. In this case, the comprehensive
effects of all the above factors contributed to efficient water collection. Shi and Zheng
et al. fabricated cone arrays and the water-collecting performances were systematically
studied [141]. The combination of a UV-induced controllable diffusion strategy and 3D
printing was the key in successful fabrication of superhydrophobic cactus-like structures.

As an interesting model of inspiration, water can condense and transport along the
peristome of Nepenthes alata in a unidirectional way with high speed [148–150]. Dong et al.
mimicked this phenomenon by employing 3D printed flexible surfaces through an SLA and
replication strategy [151]. Unidirectional rapid liquid transport can be realized in different
paths under another immiscible liquid at a long range (Figure 11c). For an as-prepared 1D
channel, liquid can spread directionally along the trajectory. Meanwhile, by bending and
connecting straight lines, a 2D heart-shaped curved surface can be built. As can be seen,
liquid can be transported in the curvilinear path unidirectionally. In order to investigate
the influence of the curvature of the curved strip, 3D Möbius strip surface was fabricated
by twisting and connecting the 1D strip. When placed under water, oil droplets can travel
along both the 3D curved surface and surface of the 3D Möbius strip at an uneven rate
in a single direction. In addition, liquid transported unidirectionally can be realized on a
resin surface through a direct 3D printing method. The interesting unidirectional liquid
transport on different kinds of surfaces will definitely inspire applications in fields such as
microfluidics, soft robots, liquid electronics, etc.
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(a) Cactus covered with spines can be used for water collection. (b) Three-dimensionally printed 
artificial cactus-like arrays for highly efficient water collection based on ISA. Reproduced from [147], 
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Figure 11. Three-dimensionally printed superhydrophobic objects applied in liquid manipulation.
(a) Cactus covered with spines can be used for water collection. (b) Three-dimensionally printed
artificial cactus-like arrays for highly efficient water collection based on ISA. Reproduced from [147],
copyright 2019, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (c) Three-dimensionally printed
surfaces mimicking Nepenthes alata with different morphologies. Unidirectional transport of liquid
on these surfaces can have a linear trajectory in a one-dimensional channel, a two-dimensional
curve along a heart-shaped pathway, and even occur along the three-dimensional infinite space.
Reproduced from [151], copyright 2019, Royal Society of Chemistry.

4.2. Oil/Water Separation

Mei et al. reported fabrication of superhydrophobic/superoleophilic ceramic objects
with gradient pore structures which can be effectively used for oil/water separation even
under high temperatures (~200 ◦C) [152]. The objects can be prepared through a multistep
process (Figure 12a). Firstly, a gradient pore ceramic structure (GPCS) was printed by
DLP from ceramic slurry (Al6Si2O13). Then, the porous structure was sintered at about
1450 ◦C. After that, the GPCS was modified by SiO2 obtained from a sol–gel method and
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superhydrophobic/superoleophilic SiO2/GPCS with CAs reaching 162.1◦ was built in
this way. The as-prepared SiO2/GPCS can be successfully applied in a series of oil/water
separations, including kerosene, dichloromethane, hexadecane, soybean oil, diesel oil,
etc. For all the test oils, SiO2/GPCS showed high separation efficiencies, all above 96.5%.
Moreover, the separation efficiency and permeation flux can be further tuned by pore size
and taper angles. In addition, the SiO2/GPCS showed excellent mechanical and chemical
stability under ultrasonic treatment and in different solutions. Meanwhile, the oil/water
separation ability of the SiO2/GPCS remained after several separation cycles, indicating
high durability. Furthermore, as mentioned above, the SiO2/GPCS can efficiently separate
oil from water in high-temperature environments.
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Figure 12. Three-dimensionally printed superhydrophobic objects applied in oil/water separation.
(a) Superhydrophobic GPCS fabricated from 3D printing and dip coating, which can be used for
efficient oil/water separation even under high temperature. Reproduced from [152], copyright 2021,
Elsevier. (b) All-3D printed self-floating superhydrophobic/oleophilic oil recycling device, consisting
of composite superhydrophobic membrane, reservoir tube, and thermoplastic floating part. The
oil recycling process of the device works due to superhydrophobicity and gravity. Reproduced
from [153], copyright 2019, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

A novel concept was proposed by Chan et al. using an all-3D printed superhydropho-
bic/oleophilic membrane for oil collection and recycling with confined surface tension and
gravity [153]. The device can be divided into several parts, which can all be printed with dif-
ferent 3D printing techniques. For the central collection part, functional superhydrophobic
graphene was printed onto porous nickel foam with laser-induced photochemical conver-
sion of polyamide (Figure 12b). The composite membrane exhibited superhydrophobic
(CAs~150◦) and oleophilic (CAs~50◦) properties. Then, the membrane was bent into a tube
and a reservoir tube with suitable size was placed into it. A floating holder was printed
through FDM from thermoplastic. The central part was integrated with the holder, and
after assembly of six plastic foam pads, the self-floating oil recycling device was fabricated
accordingly. The underlying mechanism of oil recycling of this device was that, due to the
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superhydrophobic/oleophilic property, only oil can permeate and drift into the recycling
part by gravity. As time goes on, all surrounding oil can be collected. The above proposal
was proved by relevant experiments. The novel concept for oil collection has advantages of
high reusability in an environmentally friendly way. Still, it is challenging for such a device
to be used in real wastewater as the conditions are much harsher.

4.3. Drag Reduction

In nature, the surface of shark skin is covered with numerous dermal denticles, and
the shape and size of these denticles vary with location [154]. This unique structure is
found to be effective in reducing formation of vortices, leading to facile water movement
around the skin (Figure 13a). Inspired by this, extensive works have been carried out
on fabrication of objects with drag reduction ability (Figure 13b). Meanwhile, superhy-
drophobic surfaces with certain roughness and low adhesion have been proven to be useful
in drag reduction [155,156]. Still, there is controversy on the role of superhydrophobic
surfaces regarding whether they reduce or increase drag. Two typical models are proposed
for possible drag reduction of superhydrophobic structures. One is the concept of a slip
boundary condition proposed by Navier [157]. According to this model, the vortex cushion
effect can be generated when water flows past hydrophobic smooth surfaces, leading to
wall slip. The wall slip will lead to a decrease in interfacial velocity and the sheer force,
which contributes to the drag reduction. Another model is the plastron effect proposed by
McHale et al. [156], in which air layer can be formed and stabilized when water contacts
superhydrophobic surfaces, which can effectively reduce the drag.
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Figure 13. Three-dimensionally printed superhydrophobic structures for drag reduction. (a) Shark
skin covered with diverse denticle architectures. (b) Bioinspired shark skin structures fabricated
from 3D printing. Reproduced from [154], copyright 2014, the Company of Biologists. (c) Three-
dimensionally printed superhydrophobic surface with microsized petal-like arrays and surrounding
walls. (d) The as-prepared structures show “petal effect” and can be applied for effective drag
reduction (e). Reproduced from [140], copyright 2022, Elsevier.

Zhang et al. fabricated superhydrophobic (CAs~160◦) petal-like objects with mi-
crostructures printed by the projection µ-SLA method [140] (Figure 13c). Moreover, the
arch-shaped arrays mimicked the Nepenthes peristome, possessing similar excellent liquid
pinning ability, and the tested water droplet could stay firmly on top even when the surface
was upside down. The underlying mechanism of this phenomenon can be ascribed to a
combination of the arch-shaped curve effect and sharp-edged effect of the printed struc-
tures, which play vital role in generating energy barriers and constraint forces to restrict
the spread of water droplets. Moreover, the petal-like structures surrounded by walls can
be applied in bubble capture and drag reduction. When placed under water, stable bubbles
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can be captured inside the microstructures (Figure 13d). According to the results, drag
force can be reduced greatly with the as-prepared objects, especially for flow with high
velocity (Figure 13e). The main reason for drag reduction in this case was related to the
captured bubbles, which can separate water from the solid surface, leading to a boundary
slip effect to reduce fluid drag.

4.4. Potential Application in Anti-Icing

Ice accretion on surfaces can be hazardous to aircrafts, power and communications
systems, and energy transport, causing risks to human life and production. In conse-
quence, numerous kinds of strategies have been proposed over recent years for the de-
velopment of anti-icing and de-icing systems [144]. Among these, biomimetic superhy-
drophobic surfaces (SHSs) inspired by the “lotus leaf effect” and slippery liquid-infused
porous surfaces (SLIPSs) inspired by Nepenthes have shown great potential in anti-icing
applications [158,159] (Figure 14a). The mechanism of anti-icing SHSs and SLIPSs can
be summarized as follows: (1) before icing, water can be removed directly due to the
superhydrophobicity of the surfaces. Moreover, the condensed water droplets can jump
from the surface in a self-propelled way, resulting from both micro/nanostructures and
the self-cleaning ability of the surfaces [160]. In addition, water droplets can slip easily on
SLIPSs compared with SHSs due to reduced interfacial tension. (2) During the icing process,
these surfaces were proven to be effective in prolonging the icing delay time (DT) and
delaying crystallization nucleation effectively [161]. For SHSs, the captured air can provide
thermal resistance to decrease heat transfer, reducing the contact area and preventing
nucleation. For SLIPSs, the ice point can be reduced due to the polymers released from the
surface, inhibiting ice nucleation and phase transition.
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Figure 14. Potential applications of 3D printed superhydrophobic materials in anti-icing. (a) SHS
and SLIPs can be used in anti-icing due to their ability in water removal before icing and delay of
freezing during icing. (b) SHS with triple-scale micro/nanostructures through multisteps fabrication.
The SHS display excellent anti-icing properties, with rapid rolling-off of droplets, superb resistance
to humidity, and delay of the heterogeneous nucleation under freezing conditions. Reproduced
from [162], copyright 2021, American Chemical Society.

For instance, Pan et al. built tri-scale micro/nano-SHSs with excellent anti-icing
performances and icephobic properties [162] (Figure 14b). In this case, ultrafast laser
ablation assisted with chemical oxidation was utilized. The hierarchical structures were
composed of microcone arrays covered with grass-like nanostructures and flower-like
microstructures. The surface showed superhydrophobic property (CAs~161◦) with low SA
(~0.5◦) and critical Laplace pressure as high as 1450 Pa. Impacting droplets can rapidly
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roll off the SHS. In addition, due to the multiple effects of self-propelled jumping of the
condensed droplets, hierarchical condensation, the SHS can be applied in high humidity.
Finally, thanks to the presence of stable air pockets, the heterogeneous nucleation at the
solid–liquid interface was delayed. Although, to date, little work has been reported on
using superhydrophobic 3D printed objects for anti-icing, the as-prepared objects have
shown great potential in this field. Most importantly, the 3D printing technique can produce
SHSs and SLIPSs with tunable properties in a facile way. As mentioned above, different
kinds of SHS and SLIPS can be fabricated through diverse 3D printing methods with high
precision. As a result, there are good reasons to believe that, in the near future, robust ice-
resistant superhydrophobic and slippery liquid-infused porous surfaces will be successfully
fabricated from 3D printing.

5. Conclusions and Outlook
5.1. Current Progress

In this review, we briefly introduced current works based on 3D printed superhy-
drophobic materials. The wetting regimes, inspired by two famous phenomena, the “lotus
leaf effect” and “rose petal effect”, were introduced by describing several basic models.
Through relevant description, the definition of superhydrophobicity and the determin-
ing factors were discussed. In the followed section, the basic mechanism of 3D printing
and commonly employed techniques were illustrated. The principle, advantages, and
limitations of various printing methods, including SLA, DLP, TPP, IJP, DIW, FDM, and
SLS/M, were introduced. The above-mentioned techniques can be successfully applied in
fabrication of superhydrophobic objects in diverse ways, ranging from printing of unique
micro/nanostructures and post-modification to printing of bulk materials. Several typical
structures, including pillar structures, re-entrant structures, and eggbeater structures can be
fabricated by different printing techniques. In addition, by modifying the printed objects
with superhydrophobic coating, anti-wetting can be achieved with different materials. In
addition, printing bulk materials with inherent superhydrophobicity have attracted exten-
sive attention due to their stability and resistance. Thanks to the excellent water repellency,
the as-prepared objects can be used for liquid manipulation, oil/water separation, as well
as drag reduction. Furthermore, thanks to the merits of facile operation of 3D printing in
construction of SHSs and SLIPSs, the printed surfaces show great potential in anti-icing
applications, which have not been reported yet.

5.2. Challenges and Perspectives

Despite all the great progress made in this area, urgent challenges still remain.

(1) For one thing, the “structure–performance” relationship is absent in the current
field. As a result, to solve this problem, computer-assisted design of structures with
superhydrophobicity should be taken into consideration. Various computational
methods, such as density function theory (DFT), molecular dynamics (MD), ab initio
molecular dynamics (AIMD), and finite element analysis, should be used together for
construction of “structure–performance” relationships. With the aid of these methods,
machine learning, which can improve screening efficiency for suitable structures,
should be applied in future 3D printing of superhydrophobic objects.

(2) In addition, printing of bulk materials in one step may be one of the main re-
search hot spots due to the inherent superhydrophobicity that is not limited to
the surfaces. To realize facile fabrication of such structures, currently developed
photopolymerization-induced microphase separation (PIMS) systems based on re-
versible addition–fragmentation chain transfer (RAFT) polymerization with tunable
micro/nanoscale structures with improved mechanical stability show great potential
in 3D printing of superhydrophobic objects. In PIMS, the chain of a macromolecular
chain transfer agent (macro-CTA) is extended via RAFT polymerization, generating
block copolymers with thermodynamically incompatible block segments. The PIMS
method has advantages for the facile fabrication of objects with rapid speed, excellent
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robustness, and precise control of morphologies, which can be applied in future fabri-
cation of superhydrophobic materials through photo-induced 3D printing strategies,
i.e., DLP and SLA.

(3) Moreover, in addition to traditional 3D printing, four-dimensional (4D) printing
of “smart” materials has attracted attention since 2013. Dynamic structures with
tunable shape, property, or functionality responding to stimuli can be printed by 4D
printing. The external stimuli can be light, temperature, pH, etc. Shape-memory
materials, which can be applied directly, multimaterial integration, and mathematical
modeling-guided design of deformation energy based on stress mismatch between
two layers are the three main strategies in 4D printing. The application of 4D printing
in fabrication of superhydrophobic materials will definitely provide new ideas in
generating smart devices with multifunctional structures to meet increasing demands
in wider applications.

(4) In addition, due to the capability of 3D printing in facile customizable design of
meter-sized objects through, e.g., SLS/M, the printed superhydrophobic materials
could be used in practical applications in industry and daily life in the near future.

(5) Last, but most important, more bioinspired surfaces beyond superhydrophobicity can
be built from 3D printing, leading to further understanding of natural phenomena
and construction of “structure–performance” relationships depending on different
surfaces, inspiring the design of brand-new devices for wider applications.
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