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Abstract: In this paper, a 12-port MIMO antenna system for 5G/WLAN applications is proposed. The
proposed antenna system consists of two types of antenna modules: an L-shaped antenna module
covering the C-band (3.4–3.6 GHz) for 5G mobile applications and a folded monopole module for the
5G/WLAN mobile application band (4.5–5.9 GHz). Each two antennas form a pair, six pairs in total,
forming a 12 × 12 MIMO antenna array, and the elements between the antenna pairs can achieve an
isolation of 11 dB or more without additional decoupling structures. Experimental results show that
the antenna can cover the 3.3–3.6 GHz and 4.5–5.9 GHz bands with an overall efficiency greater than
75% and an envelope correlation coefficient less than 0.04. Finally, the one-hand holding mode and
two-hand holding mode are discussed to demonstrate their stability in practical applications, and
the results show that they still exhibit good radiation and MIMO performance when operating in
both modes.

Keywords: 5G; slot antenna; MIMO antenna; WLAN; mobile communication

1. Introduction

The fifth generation of mobile communication (5G) has been officially put into com-
mercial use, and one of its main features is the high-capacity and high-rate transmission
of information [1]. Multiple-input multiple-output (MIMO) technology can effectively
increase channel capacity and spectral efficiency and is a promising approach to meeting
the demand for large data rates.

Currently, different countries and operators use different frequency bands for 5G
communication. For example, LTE band 42 (3.4–3.6 GHz) and LTE band 43 (3.6–3.8 GHz)
have been certified and adopted by the European Union [2]; Japan has licensed 5G bands
from 3.6 to 4.2 GHz and 4.2 to 4.9 GHz [3]; and the 5170 to 5835 MHz band is classified as a
5G WLAN (wireless local area network) operating band [4].

However, for MIMO array antennas applied to cell phones, mutual coupling between
MIMO units will be unavoidable due to the limited space of cell phones. Severe mutual
coupling will lead to the degradation of isolation and seriously affect the channel capacity of
MIMO systems [5]. Since the 3.5 GHz band (3.4–3.6 GHz) and the 5 GHz band (4.8–5 GHz)
have been identified for 5G mobile communications, it is necessary to develop a MIMO
antenna system that is suitable for 5G communication bands with high isolation at the
same time.

To meet the needs of mobile communications, there is a large body of literature on
designing MIMO antennas for 5G smartphone applications [6–27]. These systems have
shown advantages in terms of isolation, envelope correlation coefficient (ECC) and antenna
efficiency, while different techniques and decoupling structures have been proposed and
investigated to improve the isolation, such as orthogonal mode isolation in [6], parasitic
structure and polarization diversity in [7] and the neutralization line technique in [8–14].
The literature [15] proposes an integrated MIMO antenna with a coupled-loop structure
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based on the pattern cancellation method, which achieves self-decoupling. In [16–19],
high isolation is achieved by loading antenna pairs decoupled by aggregate elements.
Moreover, recently, a new dual-antenna MIMO structure based on spatial multiplexing,
called an antenna pair [20–23], has been investigated. To decouple the antenna pairs,
the vast majority of the antennas exploit resonant mode current cancellation in a shared
radiator [24–26], while some of the antennas exploit the polarization orthogonality of the
two antennas [7,27].

Based on the above status, this paper proposes a 12-port highly isolated broadband
MIMO antenna system for 5G/WLAN applications. In order to support multiple communica-
tion modes and improve channel capacity, the proposed antenna system is made up of two
different types of antenna modules. One is an L-shaped antenna, consisting of an L-shaped
metal patch and a T-shaped slot, which covers the C-band (3.4–3.6 GHz) for 5G mobile appli-
cations. The second module is a folded monopole consisting of a meandering metal patch and
a rectangular slot, and each antenna unit of this module covers 4.5–5.9 GHz used for 5G and
WLAN mobile applications. Simulations (obtained by HFSS) and observations corroborate
the performance of the proposed 12-port MIMO system.

2. Design of Proposed MIMO Antenna

The proposed 12-port antenna structure is shown in Figure 1. The antenna system
consists of two types of antenna modules: an L-shaped antenna module consisting of
a T-shaped slot and an L-shaped metal patch for 5G mobile applications in the C-band
(3.4–3.6 GHz), and a folded monopole module consisting of a rectangular slot and a folded
monopole patch for 5G/WLAN mobile applications in the frequency band (4.5–5.9 GHz).
As shown in Figure 1a, there are six pairs of antenna units symmetrically distributed
along the long side of the FR4 dielectric substrate (with a relative tolerance of 4.4 and a
loss tangent of 0.02), and each antenna pair includes an L-shaped antenna and a folded
monopole antenna, both of which are 8mm apart, forming a 12 × 12 MIMO antenna array.
The standard system substrate size is 150 × 70 × 0.8 mm3, which is suitable for 5.5-inch
smartphones. The metal ground (140 × 70 mm2) is printed on the back side of the FR4
substrate. The precise construction of the antenna components (Ant1 and Ant2 as examples)
is depicted in Figure 1b. Table 1 shows the dimensions of the antenna elements.
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Figure 1. Geometry of the proposed MIMO antenna system: (a) Perspective view. (b) Detailed
structure of the slot antenna element (taking Ant1 and Ant2 as an example).

Table 1. Dimensions of the single element.

Parameter L1 L2 L3 L4 L5 L6 L7 L8 L9 L10
Value (mm) 2 3 8 3 2 7.5 5 10 5 4
Parameter L11 L12 L13 W1 W2 W3 W4 W5 W6 W7

Value (mm) 5 6 17 0.5 1.5 2 1.5 1 0.6 6

2.1. L-Shaped Antenna Module

Each antenna element in the L-shaped antenna module is supplied via a 50-ohm
L-shaped microstrip feed line linked to the ground plane via an SMA connection. On
the bottom of the substrate, a T-shaped slot radiator is etched where the printed metal
floor corresponds to the L-shaped antenna. This antenna, unlike traditional closed-slit
antennas, employs an etched T-shaped slit radiator with open branches. T-slits boost
antenna capacitance by inserting I-shaped opening branches into the center of the U-slit.
The overall size of each element of the L-shaped antenna is 3 × 8 mm2, as shown in
Figure 1b, and each antenna element covers the C-band of 5G mobile applications, i.e.,
3.3–3.6 GHz.

2.2. Folded Monopole Module

In the folded monopole module, each antenna element consists of a rectangular
ground-plane slot and a meandering metal strip. The folded monopole is printed on the
FR4 substrate’s top layer. Each folded monopole has six 50 vertical feed strips and six
horizontal feed strips for tuning. The antenna element may be set to the required frequency
range by altering the width and length of the feed strips. The entire size of the folded
monopole element encompassing the high-frequency range for 5G mobile applications and
the WLAN band (4.5–5.9 GHz), as shown in Figure 1b, is 10 × 13.5 mm2.

2.3. Current Distribution

In order to study the working mechanism of the proposed antenna model, a parametric
study of the individual antenna elements of the two modules was carried out using the
electromagnetic simulator HFSS. Since the six antenna elements in each module have the
same geometry, the parameters of Ant1 and Ant2 are used to analyze the excitation of the
proposed antenna system in the low- and high-frequency bands. Figure 2 shows the current
distribution in the ground plane of the antenna, which is convenient for a visual analysis
of the mutual coupling effect between antennas in different resonant modes. As shown in
Figure 2a, Ant1 shows a half-wave distribution in the resonant mode at the low-frequency
band of 3.5 GHz, and its strong current with a length of 4 mm is mainly concentrated in
the half of the T-slot, which indicates that the antenna works in the resonant mode of 0.38λ
at 3.5 GHz (λ corresponds to the wavelength of 3.5 GHz). Similarly, Figure 2b shows the
current distribution of Ant2 at 5 GHz excitation in the high-frequency band, where the
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surface current at 5 GHz is concentrated on one side of the rectangular slot with a length
of about 7 mm, which is about 1.12λ of the corresponding wavelength at 5 GHz. Because
the isolation between separate antennas is strong in Figure 2c,d, open decoupling is a
significant strategy for reducing the coupling between antenna parts.
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Figure 2. Surface currents on the antenna ground plane: (a) Local current distribution at 3.5 GHz.
(b) Local current distribution at 5 GHz. (c) Overall current distribution at 3.5 GHz. (d) Overall current
distribution at 5 GHz.

3. Results and Discussion

To verify the feasibility of the proposed antenna system, we fabricated and tested the
proposed antenna model. Figure 3 depicts a 12-port MIMO antenna system. Figure 4 shows
the antenna measurement environment anechoic chamber.
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3.1. S-Parameter

Figure 5a shows the simulated reflection coefficient of each antenna unit versus an-
tenna frequency, and it can be seen that the reflection coefficient in the operating band of
the L-shaped antenna unit is −10 dB, while the reflection coefficient in the operating band
required for the folded monopole unit is greater than −6 dB. Figure 5b shows the corre-
sponding measured reflection coefficient values. Because the antenna units are distributed
symmetrically on the left and right sides of the substrate, the reflection and transmission
characteristics are the same, so Figures 4 and 5 only show the results for the left side of the
array (Ant1 to Ant6). The simulated and measured values for each element combination
are shown in Figure 6a,b, respectively, and it can be seen that the isolation amplitude of
each cell is greater than 11 dB in the desired 5G mobile application band and WLAN band.
The small error between simulation and measurement may be influenced by the soldering
and testing environment of the physical object.
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3.2. Parametric Studies

The proposed array antenna design was investigated in depth by the simulation
software HFSS version 20. To understand how the two-antenna module tuning mechanisms
affect the impedance matching and operating bandwidth of individual antenna array
elements, a parametric study was conducted with Ant1 and Ant2 as examples. It is
worth noting that when one of the parameters is adjusted, the other parameters will
remain unchanged.

In the L-shaped antenna module, unlike the conventional L-shaped metal patch, the
proposed patch structure in this paper adds a small metal patch of 0.5 × 0.5 mm2 at the
front of the horizontal microstrip line. Figure 7a compares the conventional L-shaped metal
patch with the proposed metal patch, and Figure 7b shows the reflection coefficients of both.
From Figure 7b, it can be seen that Ant1 operates in the frequency band of 4.2–4.6 GHz
when using the conventional L-shaped metal patch, and by adding a small metal patch to
the conventional L-shaped metal patch, the center frequency of Ant1d shifts to 3.5 GHz
and shows superior impedance-matching characteristics.
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Figure 7. Design evolution of the antenna element structure: (a) The structure of the reference
and proposed antenna. (b) The comparison of the reflection coefficient between the reference and
proposed antenna elements.

A parametric study was performed in the folded monopole module to investigate
and analyze the effect of different lengths and widths, including W7 and L12. Figure 8a
depicts the influence of W7 on the reflection coefficient by expanding the slot width from
2 mm to 8 mm, resulting in a resonant mode at 5.0 GHz. The slot width was lowered for
higher frequency bands by reducing the width of W7, which narrowed the slot width and
shortened the current flow. In summary, W7 may be used to adjust the antenna element’s
center frequency in the appropriate frequency band. Figure 8b demonstrates that L12,
another parameter that influences the resonance frequency, is altered from 3 mm to 9 mm.
The resonant frequency is tuned to a higher band and the operating frequency is shifted to
a higher frequency. Based on the above results, the W7 width is set to 6 mm and the L12
length is set to 12 mm, and the frequency band can be adjusted to the desired value.
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Figure 8. The simulated reflection coefficients of the folded monopole module as a function of
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3.3. Envelope Correlation Coefficient (ECC)

ECC is one of the main indexes to evaluate the performance of the MIMO antenna array.
The concept of ECC is mainly used to quantitatively describe the mutual independence of
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the transmitted signals between different antenna units in the MIMO antenna array: the
smaller the value of ECC, the greater the mutual independence of the transmitted signals
between different antenna units in the MIMO antenna array. In MIMO antenna design, the
value of ECC is required to be less than 0.5 [28]. The most common method to calculate ECC
is to use the S-parameter of the MIMO antenna array, and the formula is as follows [29]:

ECC =

∣∣∣∣∣s4π

[E1(θ, f ) ∗ E2(θ, f )]dΩ

∣∣∣∣∣
2

s

4π

|E1(θ, f )|2dΩ
s

4π

|E2(θ, f )|2dΩ
(1)

As can be seen in Figure 9, the ECC value calculated for the proposed design is
less than 0.04 over the entire operating frequency range, thus indicating a good diversity
performance.
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3.4. Radiation Efficiency and Antenna Peak Gain

In this section, a preliminary analysis of the proposed twelve-cell antenna’s peak
gain and overall efficiency findings is performed. The radiation efficiencies of the L-
shaped antenna module and the folded monopole module (Ant1 and Ant2 as examples)
are depicted in Figure 10. It is evident that the radiation efficiency of this antenna model is
above 75% for both modules. Figure 11a,b depict the computed and observed peak gains
of the L-shaped antenna element and the folded monopole element. The radiation gain
of each antenna module is above 3.2 dBi in the covered frequency band. The increase in
gain with increasing frequency is due to the increase in the effective size of the antenna at
higher frequencies [30].
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hand (Ant3, Ant6, Ant7, Ant10 and Ant11) is slightly shifted to a higher frequency band, 

but still covers the desired band. However, as shown in Figure 14c, their isolation is not 

affected too much, and all antennas still have isolation greater than 10 dB in the desired 
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3.5. Radiation Patterns

In this subsection, the directional maps (E-plane and H-plane) of the proposed 12-port
antenna array with L-shaped and folded monopole elements measured at two representa-
tive frequencies (3.5 GHz for the low-frequency band and 5.5 GHz for the high-frequency
band) are discussed and analyzed separately, considering the similarity of the measured
radiation, with the results of Ant1 and Ant2 as representative ones. Figure 12a shows
that Ant1 radiates more efficiently between 210◦ and 330◦ in the YOZ plane at 3.5 GHz,
and achieves essentially omnidirectional radiation in the XOZ plane. Similarly, at high
frequencies, as shown in Figure 12b, Ant2 can achieve directional radiation from 180◦

to 360◦ at 5 GHz with a constant gain value, indicating that Ant2 has strong directional
radiation performance.
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3.6. User’s Hands Effects

In this section, the effect of the user’s hand on the performance of the proposed
antenna is investigated. There are two common usage modes of embedded smartphones,
namely, talk mode (SHM) and data mode (DHM). The hand configurations of the proposed
antenna design in two different modes of SHM and DHM are shown in Figure 13.
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Figure 13. Different usage postures of SHM and DHM: (a) Front view of SHM. (b) Back view of SHM.
(c) Front view of DHM. (d) Back view of DHM.

In the talk mode (SHM), the reflection coefficients of the L-shaped antenna and the
folded monopole module are not significantly affected by the user’s hand, as shown in
Figure 14a,b. However, the impedance matching of some antenna elements closer to the
hand (Ant3, Ant6, Ant7, Ant10 and Ant11) is slightly shifted to a higher frequency band, but
still covers the desired band. However, as shown in Figure 14c, their isolation is not affected
too much, and all antennas still have isolation greater than 10 dB in the desired operating
band. In addition, as shown in Figure 15a,b, due to the absorption of electromagnetic waves
by the hand tissue, some elements of the radiation efficiency of the L-antenna module
(Ant3, Ant6, Ant7 and Ant10) and some modules of the serpentine antenna (Ant5, Ant8,
Ant10 and Ant12) drop to less than 60%, while other antennas still show greater than 75%
efficiency due to being located far from the hand.
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Figure 14. Simulated S-parameter results for SHM operation: (a) Reflection coefficient of L-shaped
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Figure 15. Antenna efficiency in SHM mode: (a) Efficiency of L-shaped antenna module. (b) Efficiency
of the folded monopole module.

The functioning of the data mode (DHM) is depicted in the figure; as shown in
Figure 16, the reflection coefficient and isolation are less impacted by the user’s hand, while
the antenna efficiency is more affected as can be seen in Figure 17.
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Figure 16. Simulated S-parameter results for DHM operation: (a) Reflection coefficient of L-shaped
antenna module. (b) Reflection coefficient of the folded monopole module. (c) Transmission coefficient.
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3.7. Performance Comparison

To highlight the advantages of the proposed antenna array, the comparison results
of the same type of antennas are given in Table 2. It can be concluded from Table 2 that
the proposed MIMO antenna has high isolation and a wider bandwidth to cover more
communication bands compared to [31–33]; it has a lower ECC compared to [34,35]; and
it has higher efficiency compared to [36,37]. After comparing with previous work, it can
be seen that the MIMO antenna designed in this paper has higher antenna efficiency. The
bandwidth, ECC and isolation have some advantages compared to previous work and can
meet the communication requirements of 5G cell phones.

Table 2. Performance comparison of various state-of-the-art 5G antennas.

References Bandwidth (GHz) Isolation (dB) ECC Total Efficiency (%)

[31] 3.4–3.6/4.8–5.1 (−6 dB) >11.5 <0.08 >40
[32] 3.3–3.6/4.8–5.0 (−6 dB) >10 <0.15 >60
[33] 3.3–5 (−6 dB) >10 <0.3 >40.5
[34] 3.4–3.6 (−10 dB) >12 <0.1 >50
[35] 3.4–3.6/5.15–5.93 (−6 dB) >11.2 <0.08 >51
[36] 3.4–3.6 (−10 dB) >10 <0.2 >62
[37] 2.496–2.69, 3.4–3.8 (−6 dB) >10.5 <0.2 >44

Proposed 3.4–3.6 (−10 dB)/4.5–5.9 (−6 dB) >11 <0.04 >75

4. Conclusions

In this paper, a 12-port highly isolated broadband MIMO antenna system for 5G/WLAN
applications is presented. The proposed MIMO antenna consists of an L-shaped an-
tenna module covering the C-band (3.4–3.6 GHz) for 5G mobile applications and a folded
monopole module covering the high band for 5G mobile applications as well as the WLAN
band (4.5–5.9 GHz), where each antenna module consists of six identical antenna elements.
In addition, the antenna pair composed of two antennas can achieve isolation higher than
11dB without adding additional decoupling facilities, obtains wideband characteristics,
high isolation and low ECC, and also has good diversity performance, and therefore can be
used in modern mobile terminals.
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