
Citation: Cui, R.; Ma, T.; Zhang, W.;

Zhang, M.; Chang, L.; Wang, Z.; Xu,

J.; Wei, W.; Cao, H. A New Dual-Mass

MEMS Gyroscope Fault Diagnosis

Platform. Micromachines 2023, 14,

1177. https://doi.org/

10.3390/mi14061177

Academic Editor: Nam-Trung

Nguyen

Received: 6 May 2023

Revised: 28 May 2023

Accepted: 29 May 2023

Published: 31 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

micromachines

Article

A New Dual-Mass MEMS Gyroscope Fault Diagnosis Platform
Rang Cui 1,†, Tiancheng Ma 2,†, Wenjie Zhang 2,†, Min Zhang 3,*, Longkang Chang 4, Ziyuan Wang 5 ,
Jingzehua Xu 2, Wei Wei 2 and Huiliang Cao 1,*

1 Key Laboratory of Instrumentation Science & Dynamic Measurement, Ministry of Education,
North University of China, Taiyuan 030051, China; cuirang@outlook.com

2 Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China;
mtc21@mails.tsinghua.edu.cn (T.M.); zhang-wj21@mails.tsinghua.edu.cn (W.Z.); 19955778426@163.com (J.X.);
weiw20@mails.tsinghua.edu.cn (W.W.)

3 School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science & Technology
University, Beijing 100192, China

4 College of Intelligence Science and Technology, National University of Defense Technology,
Changsha 410073, China; changlongkang1999@126.com

5 Department of Electronic Engineering, Tsinghua University, Beijing 100084, China;
wangziyu21@mails.tsinghua.edu.cn

* Correspondence: zhangmin_19990301@163.com (M.Z.); caohuiliang@nuc.edu.cn (H.C.)
† These authors contributed equally to this work.

Abstract: MEMS gyroscopes are one of the core components of inertial navigation systems. The main-
tenance of high reliability is critical for ensuring the stable operation of the gyroscope. Considering
the production cost of gyroscopes and the inconvenience of obtaining a fault dataset, in this study,
a self-feedback development framework is proposed, in which a dualmass MEMS gyroscope fault
diagnosis platform is designed based on MATLAB/Simulink simulation, data feature extraction, and
classification prediction algorithm and real data feedback verification. The platform integrates the
dualmass MEMS gyroscope Simulink structure model and the measurement and control system,
and reserves various algorithm interfaces for users to independently program, which can effectively
identify and classify seven kinds of signals of the gyroscope: normal, bias, blocking, drift, multiplicity,
cycle and internal fault. After feature extraction, six algorithms, ELM, SVM, KNN, NB, NN, and DTA,
were respectively used for classification prediction. The ELM and SVM algorithms had the best effect,
and the accuracy of the test set was up to 92.86%. Finally, the ELM algorithm is used to verify the
actual drift fault dataset, and all of them are successfully identified.

Keywords: MEMS gyroscope; fault diagnosis platform; feature extraction

1. Introduction

As an important device in navigation systems, gyroscopes can provide accurate navi-
gation positioning and attitude parameters for carriers, and their accuracy and reliability
play a rather important role in navigation systems, and are used in various aspects of
spaceflight, aviation, and navigation [1]. With the development of modern technology,
measurement and control systems are becoming more and more complex, resulting in
difficulties regarding troubleshooting and increased possibility of failure. To improve the
accuracy and reliability of the gyroscope, promptly providing navigation and positioning
parameters for the carrier, detecting, identifying, and predicting navigation system faults,
and guaranteeing the positioning accuracy and reliability of the navigation system are
important tasks [2].

A fault diagnosis system needs to be able to perform three tasks: fault detection, to
determine whether a fault has occurred in the system; fault isolation, to locate the fault and
determine which sensor or actuator in the system has failed; and fault identification, to
estimate the size, type or characteristics of the fault [3].
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There are presently three primary categories of fault diagnosis technique: mathemati-
cal model-based diagnosis, input/output signal analysis and processing-based diagnosis,
and artificial intelligence-based diagnosis.

Mathematical model-based fault diagnosis was first proposed by Dr. Beard of MIT in
his thesis in 1971, and requires the establishment of a more accurate mathematical model of
the research object in order to study the dynamic characteristics of the object and reproduce
the control process at the theoretical level through mathematical means, thus achieving a
reproduction and diagnosis of faults [4]. However, sometimes the mathematical model
of the system is difficult to establish precisely, leading to a certain instability of the final
diagnosis. The latter two types of fault diagnosis method do not require an accurate
mathematical model to be provided, and also overcome redundant dependencies, leading
them to be a hot topic at present for research in the field of gyroscope fault detection
and diagnosis.

Signal processing-based methods are used to obtain monitoring signals by monitoring
the process of the system, and to find the intrinsic relationship between the signals by
extracting certain eigenvalues in the monitoring signals for fault detection [5]. Common
methods include Fourier transform, wavelet transforms [6], empirical modal decompo-
sition [7], and other methods. In [8], wavelet packet transform was used to extract the
features of the satellite control moment gyroscope. Pu et al. [9] studied the application
of Local Mean Decomposition (LMD) in depth for the diagnosis of mechanical faults in
high-voltage circuit breakers.

Artificial intelligence-based fault diagnosis is an emerging research direction at present.
It mainly relies on research results from current hot topics in the field of artificial intelligence,
including support vector machines (SVM), fault trees, fuzzy logic, rough sets, neural
networks, etc. Zhang et al. [10] proposed a new fusion fault diagnosis method based on
FFT-based SAE and WPD-based NN for the fault diagnosis of gyroscopes; Zhao et al. [11]
put forward a new CNN network scheme based on attention-enhanced convolutional
blocks (AECB) for a data-driven CMG fault diagnosis scheme.

At present, it is quite difficult to perform diagnosis of complex faults due to the cost of
gyroscope fabrication and the inconvenience of fault dataset acquisition, so in this study,
a self-feedback development framework is proposed to design a novel dualmass MEMS
gyroscope fault diagnosis platform. The platform has the following advantages:

(1) The platform is a complete self-feedback system, integrating a dualmass MEMS
gyroscope Simulink structure model and measurement and control system, gyroscope
fault signal simulation model, data feature extraction and identification classification
algorithm, and real data feedback verification.

(2) The platform can generate seven types of signal: normal, bias, blocking, drift, multi-
plicity, period, and internal fault, and those signals are identified and classified using
six algorithms—ELM, SVM, KNN, NB, NN, and DTA—after feature extraction, all of
which have good diagnosis and recognition rates.

(3) Although the neural network model can generally achieve good diagnosis and recogni-
tion rate when applied to fault diagnosis, there are also some problems, so the platform
also reserves various algorithm interfaces for users’ independent programming, so
that users can optimize the algorithm by themselves and connect the algorithm to this
platform to verify the effectiveness of the algorithm.

2. Dualmass MEMS Gyroscope Fault Diagnosis Platform
Overall Approach

Figure 1 depicts a novel dualmass MEMS gyroscope fault diagnosis platform that is
based on the self-feedback development framework proposed in this paper. As illustrated
in the figure, the platform consists of three key components: the gyroscope model, the
theoretical model, and the platform model. The first component involves the analysis
and modeling of the dualmass MEMS gyroscope’s structure, while the second compo-
nent focuses on the analysis and modeling of the gyroscope’s measurement and control
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system [12–14]. The third component, the platform model, is primarily responsible for
generating, extracting features from, identifying, and classifying various types of gyroscope
fault. Subsequently, feedback verification of the experimental data is conducted, and this
section provides a detailed explanation of the theoretical foundations of each of these
three components.

Figure 1. A new dualmass MEMS gyroscope fault diagnosis platform.

3. The Principle of Dualmass MEMS Gyroscopes
3.1. Structural Model of Dual Mass Silicon Micromechanical Gyroscope

Dualmass MEMS gyroscopes are mainly composed of mechanically sensitive struc-
tures of silicon materials and driving and detection circuits [15,16]. Of these, the silicon
structure possess a driving mode and a detection mode, and can convert the angular rate
input signal into the displacement signal of the detection mode through the Coriolis effect.
The driving circuit provides the necessary vibration conditions for the driving mode, and
the detection circuit extracts the Coriolis signal. The gyroscope structure used is fully
decoupled, as shown in Figure 2. In the absence of external impact and vibration, the
kinetic equation of the gyroscope is described as:[

mx 0
0 my

][ ..
x
..
y

]
+

[
cxx cxy
cyx cyy

][ .
x
.
y

]
+

[
kxx kxy
kyx kyy

][
x
y

]
=

[
Fdx + 2mpΩz

.
y

Fdy − 2mpΩz
.
x

]
(1)

In the equation, mx and my denote the equivalent quality of the drive mode and
detection mode; cxx, cyy, kxx, and kyy are the effective damping and stiffness for the driving
and detection modes, respectively; cxy and kxy are the damping and stiffness of the detection
mode coupled to the driving mode; cyx and kyx are effective damping and stiffness for
coupling the driving mode to the detection mode; Fdx is the driving force; Fdy is the
feedback force of the detection mode; Mp denotes the Coriolis mass; Ωz represents the
angular rate around the z-axis; x and y represent the displacement in the driving and
detection directions [17,18].

When the gyroscope structure is working, the driving frame will vibrate with constant
frequency (resonant frequency of the driving mode) and amplitude along the x-direction.
With an Ωz input, the Coriolis mass will drive the detection frame to move along the y-axis
under the Coriolis force (which is related to Ωz). The mechanical thermal noise present in
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the gyroscope structure can be equivalent to a random, zero average Gaussian force, and
its effect on the gyroscope can be equated to adding forces next to the dampers:

Fn =
√

4KBTCB (2)

where Fn is the equivalent interference force of mechanical thermal noise; KB = 1.38× 10−23 J/K
is the Boltzmann constant; T is the absolute temperature; C and B is damping coefficient and
working bandwidth of the gyroscope structure respectively. Due to the significant proportion of
Coriolis mass in detecting equivalent mass, by substituting Equation (2) into Equation (1) with
my = mp, we can obtain:[

mx 0
0 my

][ ..
x
..
y

]
+

[
cxx cxy
cyx cyy

][ .
x
.
y

]
+

[
kxx kxy
kyx kyy

][
x
y

]
=

[
Fdx + Fnx + 2mpΩz

.
y

Fdy + Fny − 2mpΩz
.
x

]
(3)

From Equation (3), it can be analyzed that the driving mode is a second-order dif-
ferential equation for forced vibration, and for the convenience of analysis, the driving
displacement is set as:

x(t) = Ax sin(ωdt) (4)

where Ax is the vibration amplitude of the driving mode; ωd is driving force frequency
equal to ωx.

Figure 2. Schematic of fully decoupled structure.

3.2. Dualmass MEMS Gyroscope Monitoring System

To realize a series of measures to improve gyroscope performance, such as quadrature
correction and the detection of a closed loop, in this paper, modules for achieving these
functions are added to the gyroscope model, and the simulation model diagram is displayed
in Figure 3. The model contains the drive mode, the detection mode, a mutual coupling
module between the drive and detection modes, a mechanical thermal noise module (this
paper adopts the value of room temperature, 20 ◦C), a quadrature correction module, and
a Ghosh homogeneous correction force module.
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Figure 3. Equivalent model of gyroscope structure.

The model input signals are drive voltage Vd, angular velocity input Ωz, detection
feedback voltage Vyb, and quadrature correction voltage Vfs. The output signals include
drive displacement signal x, detection displacement signal y, and detection modal force
signal Fq.

If the resonant frequencies fx = 1
2π ωx = 1

2π

√
kxx
mx

and fy = 1
2π ωy = 1

2π

√
kyy
my

of the

driving mode and the detection mode are set at 4050 Hz and 4060 Hz, respectively, in the
model, the operating bandwidth B is approximately 5.4 Hz. Simultaneously, the quality

factors Qx =
√

mxkxx
cxx

and Qy =

√
mykyy
cyy

of both modes are set to 2000, and it is assumed
that the equivalent input angular velocities caused by coupling stiffness and damping are
200 (◦)/s and 5 (◦)/s, respectively. The calculation method for equivalent input angular
velocity can be obtained from the following two equations:{

−2Ωkmp
.
x = xkyx

−2Ωcmp
.
x = xcyx

(5)

where Ωk and ΩC are the equivalent input angular rates caused by coupling stiffness and
coupling damping, respectively. Since the gyroscope structure often adopts a symmetrical
structure, this article assumes that kyx = kxy, cyx = cxy.

The conversion of voltage and force in the model is achieved through comb capacitors
and satisfies the equation: {

Fstatic =
1
2∇C(x, y, z)V2

static
C(x, y, z) = n εhl

d
(6)

where Fstatic is the electrostatic force; C(x,y,z) is the comb capacitance; Vstatic is the voltage
generated by electrostatic force; n is the number of comb teeth; ε is the dielectric constant;
h is the structural thickness; l is the superimposed length of the comb capacitor; d is the
spacing between comb capacitors [19,20].

3.3. Platform Model

A Simulink simulation model platform based on the gyroscope model and theoretical
model is built, as shown in Figure 4. In this platform, the gyroscope measurement and
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control system and the gyroscope fault simulation model are designed, and then feature
extraction and processing algorithms are designed by MATLAB/Simulink. The established
model for the entire system was used for fault signal recognition and classification. The
gyroscope fault simulation model was used to generate bias, blocking, drift, multiplicity,
period, and internal fault signals, combined with normal signals for feature extraction, and
classification was performed using six algorithms: ELM, SVM, KNN, NB, NN, and DTA.
At the same time, the platform also reserves algorithm recognition interfaces for users to
independently program various algorithms into the platform to prove the effectiveness
of algorithms.

Figure 4. Simulink-based platform model.

4. Algorithms
4.1. Variational Mode Decomposition (VMD)

The original signal f (t) was decomposed into K intrinsic mode components (IMF) via
a constrained variational model, as shown in Equation (7):

min
(uk)(wk)

{
∑
k

∥∥∥∂t[σ(t) +
j
t ut(t)]e−jwkt

∥∥∥2

2

}
s.t∑

k
uk = f (t)

(7)

In this context, {uk} = {u1, u2, . . . , uk} are the k IMFs, {wk} = {w1, w2, . . . , wk} denotes a
series of center frequencies that were utilized in the decomposition process. Additionally,
σt represents the impulse function that was employed in the analysis.
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The Lagrange operator λ(t) and the quadratic penalty factor α are introduced to
transform the inequality constraint into an equation constraint, and the corresponding
extended Lagrange expressions can be written as:

L({uk}, {wk}, λ) = α
k

∑
k=1

∥∥∥∥∂t

[(
δ(t) +

j
πt

)
× uk(t)

]
eiwkt

∥∥∥∥2

2

+

∥∥∥∥∥ f (t)−
k

∑
k=1

uk(t)

∥∥∥∥∥
2

2

+

〈
λ(t), f (t)−

k

∑
k=1

uk(t)

〉
(8)

The optimal solution to Equation (7) is obtained through the use of an alternate
multiplier method to locate the saddle point of Equation (8). The iterative updating process
for uk and ωk is shown in Equations (9) and (10), respectively. The analysis involved
refining the intrinsic mode components (IMFs) and center frequencies uk and ωk through
an iterative process. By utilizing the alternate multiplier method, the optimal solution to
Equation (7) was obtained.

ûn+1
k (ω) =

f̂ (ω)− ∑
i<k

∧
u
i

n+1
(ω)− ∑

i<k

∧
u

i<k

n+1
(ω) +

∧
λ

n
(ω)
2

1 + 2α(ω−ωn
k )

2 (9)

ωn+1
k =

∞∫
0

ω

∣∣∣∣∧uk n+1
(ω)

∣∣∣∣2dω

∞∫
0

∣∣∣∣∧uk n+1
(ω)

∣∣∣∣2dω

(10)

The value of λ(ω) was updated using the following equation:

λn+1(ω) = λn(ω) + τ( f (ω)−
n+1

∑
k

uk(w)) (11)

The above steps were repeated until the iteration stop condition was reached [21]:

∑
k

∥∥∥un+1
k − un

k

∥∥∥2

2
/‖un

k ‖
2

2

< γ (12)

4.2. Sample Entropy (SE)

The size of sample entropy (SE) can be used to measure the self-similarity and com-
plexity of the data sequence, and the calculation of SE does not depend on the data length
of the signal, so it has better statistical stability and adaptability when quantifying the
characteristics of the gyroscope fault signal [22]. The calculation steps of SE are as follows:

Step 1: Given the original time series x = {x1, x2, . . . , xN}, m is chosen as a suitable
embedding dimension to construct a new state vector, which is x = {xi, xi+1, . . . , xi+m−1},
i = 1, 2, . . . , N − m.

Step 2: The maximum difference distance between two state vectors is calculated
as follows:

d(xi, xj) = max
k

(
∣∣∣xi+k − xj+k

∣∣∣) , k = 0, 1, . . . , m− 1 (13)

Step 3: Given the similarity tolerance parameter r, Bi is calculated, whose distance
between xi and xj is less than or equal to r, and defined as follows:

Bm
i (r) =

Bi
N −m− 1

, 1 ≤ i ≤ N −m (14)

Step 4: Calculate the mean and define Bm(r):

Bm(r) =
1

N −m + 1

N−m+1

∑
i=1

Bm
i (r) (15)
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Step 5: Increase the embedding dimension m + 1, and repeat the above four steps to
calculate Bm+1(r):

Bm+1(r) =
1

N −m

N−m

∑
i=1

Bm+1
i (r) (16)

When the length of the time series is finite, SE can be calculated as follows:

SE(m, r, N) = − ln
(

Bm+1(r)
Bm(r)

)
(17)

4.3. Extreme Learning Machine (ELM)

The Extreme Learning Machine (ELM) represents a novel single-hidden-layer feedfor-
ward neural network architecture. One of its key features is the ability to set the parameters
of hidden layer nodes either randomly or manually without the need for complex adjust-
ments. Additionally, the learning process only involves a calculation of the output weight,
significantly reducing computational complexity compared to other neural network models.
By introducing a nonlinear activation function in the hidden layer, the ELM is capable of
handling complex, nonlinear phenomena in an efficient and effective manner. Therefore,
the convergence rate of the ELM algorithm is much faster than that of the traditional
algorithm, because it does not require iteration. At the same time, random hidden nodes
guarantee the global approximation ability [23]. Therefore, this paper proposes using ELM
as a network model to predict the fault signal of the gyroscope. The network model of ELM
is shown in Figure 5.

Figure 5. The network model of ELM.

For the ELM network model training phase, N different input/output (xi, ti) are
needed, which the xi = [xi1, xi2, . . . , xin]T ∈ Rn, ti = [ti1, ti2, . . . , tim]T ∈ Rm. The ELM
network model, which comprises L hidden layer nodes, can be represented as follows:

L

∑
i=1

βih
(
ωi·xj + bi

)
= Oj, (j = 1 · · ·N) (18)

where h(x) is the hidden layer activation function; in ELM, the activation function provides
nonlinear mapping for the system; ωi = [ωi1, ωi2, . . . , ωin]T is the input weight matrix; βi
is the output weight matrix; bi is the i-th hidden layer bias; ωi·xj is the inner product of ωi
and xj; Oj represents the output of the model.

The goal of ELM network model training is to reduce the discrepancy between the
target and the ELM output. This can be expressed mathematically as:

N

∑
j=1
‖ Oj − tj ‖ = 0 (19)
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There are βi, ωi, and bi, which make:

L

∑
i=1

βih
(
ωi·xj + bi

)
= tj, (j = 1 · · ·N) (20)

The matrix can be expressed as:

Hβ = T (21)

where the output of the hidden layer node is denoted by:

H =

 h(ω1 · x1 + b1) · · · h(ωL · xL + bL)
... · · ·

...
h(ω1 · xN + b1) · · · h(ωL · xN + bL)


N×L

and the output weight matrix is represented by β and T is the target matrix.
Finally, the expression of its solution is as follows:

β̂ =
(

HT H
)−1

HTT (22)

4.4. SVM (Support Vector Machine)

Support vector machine (SVM) is a supervised machine learning algorithm based on
the principle of minimum structural risk [24]. SVM can classify problems into linear and
nonlinear types, to solve nonlinear problems, SVM introduces a kernel function k(x,z), in
which radial basis function can map original data into high-dimensional space, and the
expression is:

k(x, z) = exp

(
−||x− z||2

2σ2

)
(23)

After introducing the kernel function, the SVM classification decision function is

g(x) = sign

(
n

∑
i=1

aiyik(xi, x) + b

)
(24)

To solve the problem whereby some sample points are still inseparable after projection
into high-dimensional space, the relaxation variable ξi is introduced into the classification
model for optimization adjustment, and penalty factor C is introduced to the loss part. The
new model is obtained by introducing the relaxation variable ξi and penalty factor C: min

w,b
1
2‖ w ‖2 + C

n
∑

i=1
ξi

yi
(
wTxi + b

)
≥ 1− ξi, ξi ≥ 0, i = 1, 2, · · · , n.

(25)

Convert it to a dual problem:
wmax =

n
∑

i=1
ai − 1

2

n
∑

i=1,j=1
aiajyiyjk

(
xi, xj

)
s.t.

n
∑

i=1
aiyi = 0, 0 ≤ ai ≤ C, i = 1, 2, · · · , n

(26)

where ai and aj represent Lagrange multipliers; yi and yj represent the training sample
category, where yi and yj ∈ {−1, 1}. Penalty factor C is used to measure the complexity of
the learning machine: if the value of C is too large, overfitting is likely to occur, and the
SVM model will tend to be complex, with longer running time and reduced operational
efficiency; if the value of C is too small, the fitting degree of the data sample will be reduced,
and the SVM model will be prone to underfitting [25].
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5. Simulation and Verification of the Platform Model

Firstly, the signal of the gyroscope is obtained, and after obtaining the signal, the
output is first decomposed using the VMD algorithm; after that, the signal is decomposed
by sample entropy, sample energy, energy entropy, and envelope algorithm for different
frequencies bands to obtain the signal features, which constitute the feature dataset; sec-
ondly, the training set and test set of feature samples are divided, and the training set is
used for training, and the test evaluation is completed using the test set for training.

5.1. Simulation

Different types of faults may occur in the gyroscope during long-term operation due
to different fault-inducing factors. According to different types, gyroscope faults can be
divided into the following types:

Bias fault: this refers to the constant difference between the output signal and the
actual value after a certain moment. Its mathematical description form is:

ys =

{
y(t) t < ts
y(t) + d t ≥ ts

(27)

Block fault: this refers to a moment when the output of the gyroscope is stuck at a
constant bias, keeping its output value unchanged. Its mathematical model is:

ys =

{
y(t) t < ts
y(ts) t ≥ ts

(28)

Drift fault: due to changes in the surrounding environment or internal parameters,
such as temperature changes or calibration issues, the output of the gyroscope has an
increased constant term. The output value often accumulates additional errors over time.
Its mathematical expression is:

ys =

{
y(t) t < ts
y(t) + kt t ≥ ts

(29)

where k is the drift rate.
Multiplicative fault: this means that the output signal of the gyro is multiplied with a

multiplication factor from a certain point in time, mainly due to scaling errors in the output.
Its mathematical expression is:

ys =

{
y(t) t < ts
ky(t) t ≥ ts

(30)

Periodic fault: this means that the output signal of the gyroscope is attached to a signal
of periodic change from a certain time. Its mathematical expression is:

ys =

{
y(t) t < ts
y(t) + square(t) t ≥ ts

(31)

where square(t) is the square wave signal, which is expressed as:

square(t) = square(t + T0) (32)

square(t) =

{
d 0 ≤ t < T0

2
−d T0

2 < t < T0
(33)

Internal structure fault: the equivalent mass, stiffness, and damping of the gyroscope
have changed.
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To verify the effectiveness of the proposed dualmass MEMS gyroscope fault diagnosis
platform, we conducted simulations to verify it. The Simulink simulation platform was
used to generate seven types of signal: normal signals and six fault types of signals, as
shown in Figures 6 and 7, where Figure 6 indicates the output form of normal signals
and Figure 7 indicates the output form of fault signals. Sixty-seven sets of signals were
generated, of which forty sets were used to train the model and twenty-seven sets were
used to test the accuracy of the model.

Figure 6. Normal signal of MEMS gyroscope.

Figure 7. Fault class of the dualmass MEMS gyroscope.

Feature extraction was performed for seven different signals, and classification was
performed using six algorithms—ELM [26], SVM [27], KNN [28], NB [29], NN [30], and
DTA [31]—and the recognition rate of the classification results is shown in Figure 8, from
which we can see that the accuracy of classification recognition using the ELM algorithm
was 92.86%, which was able to identify 100% of bias, blocking, drift, period, and internal
fault signals, respectively. The accuracy of classification recognition using the SVM algo-
rithm was the same as that of ELM algorithm; the accuracy of classification recognition
using the KNN algorithm was 89.29%, whereby it was able to identify 100% of bias, block-
ing, drift, period and internal fault signals, 50% of normal signals and 75% of multiplicative
signals. The accuracy of classification recognition using the NB algorithm was 89.29%,
whereby bias, blocking, drift and period signals were identified with 100% probability, and
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normal, multiplicative and internal fault signals were identified with 75% probability. The
accuracy of classification recognition using the NN algorithm was 85.71%, in which bias,
blocking, drift and period signals were identified with 100% probability, while 50% of the
normal signals were recognized, 75% of the multiplicative signals and 75% of the internal
fault signals. Classification recognition using the DTA algorithm was 82.14%, whereby
100% of the bias, blocking, drift and periodic signals, 25% of the normal signals, 75% of the
multiplicative signals and 75% of the internal fault signals were recognized. To show the
accuracy of identification more visually, histograms were obtained, as shown in Figure 9.
From Figure 9, it can be seen that both ELM and SVM have high classification accuracy
compared to other fault diagnosis algorithms. The combined analysis shows that the best
results were obtained using ELM with the SVM algorithm, and the diagnosis results show
the effectiveness and accuracy of the method.

Figure 8. The recognition results of different algorithms: (a) ELM; (b) SVM; (c) KNN; (d) NB; (e) NN;
(f) DTA.
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Figure 9. Bar chart of accuracy with seven groups for cross-validation.

For the trained model, to verify the effectiveness of the training, twenty-eight groups
of signals were used for verification in this paper, and the seven types of signals, namely,
normal, bias, blocking, drift, multiplicative, periodic, and internal fault, are labeled as
the corresponding numbers [1–7]. Finally, the prediction diagram of the fault diagnosis
platform obtained is shown in Figure 10, where the blue dots indicate the actual signal
type, and the black lines indicate the recognized signal type. From the figure, it can be seen
that only the 16th and 23rd sample point fault types were not accurately identified, while
the rest were accurately identified, and the recognition rate of the fault diagnosis platform
proposed in this paper is as high as 92.9%, which can effectively and accurately identify the
type of signal. Therefore, it can be said that both the training classification accuracy and
the test classification accuracy of the fault diagnosis model can reach an equal or higher
classification level.

Figure 10. Test results.

5.2. Experiment Verification

To assess the validity and efficacy of the MEMS gyroscope fault diagnosis platform, we
conducted a temperature experiment to obtain drift signal data from an actual gyroscope.
Figure 11 displays both the gyroscope and the experimental equipment employed in
this study. Specifically, we utilized the dual mass-07# gyroscope for our experiment, with
detection circuits arranged across three separate PCB boards and connected through the use
of metal pins to transmit electronic signals and maintain structural integrity. To minimize
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electromagnetic interference, the metal case was grounded to the “GND” signal. The first of
the three PCB boards served as an interface for processing weak signals, with the structural
chip connected to it. The remaining two PCB boards were utilized for the sensing loop and
the drive closed loop, respectively [32–34].
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Figure 11. MEMS gyroscope porotype and temperature experiment platform.

In our experiment, we utilized a range of equipment to test the feasibility and efficacy
of the MEMS gyroscope fault diagnosis platform. This equipment included an Agilent
33220A signal generator, which was capable of generating the test voltage, VTes. Addition-
ally, we employed an Agilent 34401A multimeter and an Agilent DSO7104B oscilloscope to
measure and observe signal amplitude and phase. For the power supply, we utilized an
Agilent E3631A unit, which provided ±10 V DC voltage and GND. Finally, to create a full
range of temperature conditions for measuring the actual bandwidth of the gyroscope, we
utilized both a temperature box and a turntable.

The experimental process proceeded as follows: The gyroscope was first turned on
and allowed to run for one hour at room temperature. Subsequently, the oven temperature
was gradually increased until it reached 60 ◦C. Then, to ensure a continuous and stable
internal temperature in the gyroscope, the temperature should be maintained for one
hour for every 10◦ drop from 60 ◦C to −40 ◦C and finally stand for one hour, the test
was finished [35–37]. The above steps were repeated three times to obtain three groups of
experimental results, as shown in Figure 12. For the three groups of drift signals, VMD−SE
is used for feature extraction, and the ELM method is used for fault identification. The
results of our identification process are presented in Figure 12. It is evident from the figure
that the recognition rate based on real data is exceptionally high, reaching 100%. All of the
data were successfully recognized, thus providing strong evidence for the reliability and
accuracy of the proposed dualmass MEMS gyroscope fault diagnosis platform.
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Figure 12. Identification results of real data.

6. Conclusions

Due to the inconvenience of gyroscope fabrication costs and fault dataset acquisition,
in this study, a new Dualmass MEMS gyroscope fault diagnosis platform was designed.
The platform integrates a dualmass MEMS gyroscope structural model and measurement
control system, data feature extraction and classification prediction algorithm, and real data
feedback verification. The accuracy rate reached up to 92.86% upon simulation training
and test set verification, and all the effects of the platform were correctly identified through
temperature experiments to obtain real data, indicating that the proposed fault diagnosis
platform can accurately and effectively identify fault types.
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