
Citation: Dong, Y.; Zhang, M.; Qiu,

L.; Wang, L.; Yu, Y. An Arrhythmia

Classification Model Based on Vision

Transformer with Deformable

Attention. Micromachines 2023, 14,

1155. https://doi.org/10.3390/

mi14061155

Academic Editor: Angeliki Tserepi

Received: 28 April 2023

Revised: 28 May 2023

Accepted: 29 May 2023

Published: 30 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

micromachines

Article

An Arrhythmia Classification Model Based on Vision
Transformer with Deformable Attention
Yanfang Dong 1,2, Miao Zhang 2, Lishen Qiu 1, Lirong Wang 2,3,* and Yong Yu 2,*

1 School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and
Technology of China, Hefei 230026, China

2 Suzhou Institute of Biomedical Engineering and Technology, China Academy of Sciences,
Suzhou 215163, China

3 School of Electronics and Information Technology, Soochow University, Suzhou 215031, China
* Correspondence: wanglirong@suda.edu.cn (L.W.); yuyong@sibet.ac.cn (Y.Y.)

Abstract: The electrocardiogram (ECG) is a highly effective non-invasive tool for monitoring heart
activity and diagnosing cardiovascular diseases (CVDs). Automatic detection of arrhythmia based on
ECG plays a critical role in the early prevention and diagnosis of CVDs. In recent years, numerous
studies have focused on using deep learning methods to address arrhythmia classification problems.
However, the transformer-based neural network in current research still has a limited performance in
detecting arrhythmias for the multi-lead ECG. In this study, we propose an end-to-end multi-label
arrhythmia classification model for the 12-lead ECG with varied-length recordings. Our model, called
CNN-DVIT, is based on a combination of convolutional neural networks (CNNs) with depthwise
separable convolution, and a vision transformer structure with deformable attention. Specifically,
we introduce the spatial pyramid pooling layer to accept varied-length ECG signals. Experimental
results show that our model achieved an F1 score of 82.9% in CPSC-2018. Notably, our CNN-DVIT
outperforms the latest transformer-based ECG classification algorithms. Furthermore, ablation
experiments reveal that the deformable multi-head attention and depthwise separable convolution
are both efficient in extracting features from multi-lead ECG signals for diagnosis. The CNN-DVIT
achieved good performance for the automatic arrhythmia detection of ECG signals. This indicates that
our research can assist doctors in clinical ECG analysis, providing important support for the diagnosis
of arrhythmia and contributing to the development of computer-aided diagnosis technology.

Keywords: arrhythmia; deep learning; ECG signal; deformable attention transformer; depthwise
separable convolution

1. Introduction

Cardiovascular disease (CVD) is the leading cause of death, accounting for over
32% of all deaths worldwide [1]. Cardiac arrhythmia (CA) serves as a warning signal
for cardiovascular disease and enables clinicians to provide timely interventions through
early diagnosis. Electrocardiogram (ECG) is an effective non-invasive tool for monitor-
ing heart activity and diagnosing CA [2]. Precisely detecting arrhythmia has become a
significant focus for biomedical researchers. However, accurately recognizing these com-
plex CA-associated ECG rhythms requires considerable clinical experience and expertise.
Manual detection of arrhythmia consumes considerable time for expert clinicians and
cardiologists and it can be a task prone to errors even for these human experts. In fact,
research shows that cardiologists or diagnosing doctors sometimes misjudge the type of
arrhythmia [3,4]. The introduction of computer-aided diagnosis has aimed to enhance
accurate ECG interpretation and reduce costs. Consequently, it has become increasingly
essential to automatically detect arrhythmia using ECG signals, as this can assist clinical
diagnosis during ECG analysis [5].
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As digital ECG data become more widely available and deep learning algorithms
continue to advance [6], an increasing number of researchers are turning to deep learning
approaches for automated arrhythmia detection. These studies have demonstrated that
automated feature extraction, as opposed to manual ECG morphological feature extraction,
leads to more accurate prediction results when using deep-learning-based methods [7–9].
In the automatic ECG analysis algorithms based on deep learning, convolutional neural
networks (CNNs), which can achieve data feature extraction through local receptive fields,
weight sharing, downsampling, and other methods [10], are usually used as the backbone
to extract features automatically. For instance, Kiranyaz et al. proposed an adaptive 1D
CNN model that integrates feature extraction and classification into a single learning body
for ECG classification. The model was trained using relatively small sets of common
and patient-specific training data and achieved remarkable accuracy [11]. Rajpurkar et al.
proposed a 34-layer CNN for classifying 14 types of cardiac arrhythmias. The model was
trained end-to-end on a single-lead ECG signal and outperformed the average cardiologist
in terms of both recall (sensitivity) and precision (positive predictive value) [12]. Acharya
et al. utilized an 11-layer CNN algorithm for automated detection of normal and myocardial
infarction ECG beats. Their model was able to accurately detect unknown ECG signals even
in the presence of noise [13]. He et al. developed a 2D CNN for detecting atrial fibrillation
(AF) episodes, achieving sensitivity, specificity, positive predictive value, and overall accu-
racy rates of 99.41%, 98.91%, 99.39%, and 99.23%, respectively [14]. Jun et al. proposed an
effective ECG arrhythmia classification model that utilizes two-dimensional convolutional
neural networks with ECG images as an input [15]. Then, in the detection of life-threatening
cardiac arrhythmias, Elola et al. proposed two deep neural network (DNN) architectures to
classify the rhythm into pulseless electrical activity (PEA) or pulse-generating rhythm (PR)
using short ECG segments, and both architectures achieved excellent performance [16].
Dubatovka et al. explored deep neural networks (DNNs) for learning cardiac cycles and
reliably detecting AF from single-lead electrocardiogram (ECG) signals with a superior
performance [17]. Krasteva et al. reported the optimal hyperparameters of an end-to-end
fully convolutional DNN architecture for detecting shockable and nonshockable rhythm
using single-lead raw ECG signals with life-threatening arrhythmias [18]. Jekova et al.
optimized the architecture of a computationally efficient end-to-end CNN models for ECG
rhythm analysis during cardiopulmonary resuscitation [19].

Although the aforementioned methods have achieved great success in the detection of
ECG arrhythmia, it is widely acknowledged that temporal information plays an important
role in tackling even more complex arrhythmia detection problems [20]. As a time series
of data, ECG signals inherently contain temporal dependencies within their waveform.
Recurrent neural networks (RNNs) can capture temporal dependencies in sequential data
more efficiently compared to CNNs [8]. For example, Wang et al. proposed a global and
updatable classification scheme called the global RNN (GRNN) in which RNN was used
for automatic feature learning and classification based on the morphological and temporal
information of ECG [21]. Recognizing the unique characteristics of ECG signals, Chen
et al. achieved excellent performance in arrhythmia classification by fusing the CNN and
RNN models [22].

In recent years, the transformer has become a popular deep learning model along-
side CNNs and RNNs. It utilizes an attention mechanism to capture temporal features
and context vectors and was originally developed for natural language processing (NLP)
tasks [23–26]. However, it has also demonstrated superior performance on various vi-
sion tasks [27,28], including image classification. One representative work is the vision
transformer (ViT) [29], which processes images as sequences of patches using a standard
transformer encoder used in NLP. Compared to CNNs, transformer-based models have
larger receptive fields and excel at modeling long-range dependencies, resulting in bet-
ter performance on many image classification data sets [30,31]. As ECG signals exhibit
temporal dependencies in their waveforms, the ViT’s mechanism can be applied to ar-
rhythmia classification tasks. Yan et al. proposed a heartbeat classification model based
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on a transformer that utilized the encoder part to process segmented single-lead ECG
signals [32]. Natarajan et al. developed a wide and deep transformer neural network that
combined handcrafted ECG features determined by a random forest model with discrimi-
native feature representations automatically learned from a transformer neural network
to classify each 12-lead ECG sequence into 27 cardiac abnormality classes [33]. Che et al.
embedded a transformer network in a CNN to capture the temporal information of ECG
signals for arrhythmia classification while introducing a new link constraint to the loss
function to enhance the classification ability of the embedding vector [34]. These studies
demonstrate the effectiveness of utilizing the transformer network structure for solving
arrhythmia classification problems. However, due to the interference on the ECG waveform
morphology of different diseases and the complex relationship between them, existing
transformer approaches still have several limitations.

In summary, the existing automatic ECG analysis algorithms that solely used CNN
cannot fully exploit the temporal features of ECG signals. Compared to CNN, RNNs can
more efficiently capture temporal dependencies in sequential data, and the models fusing
CNN and RNN have demonstrated excellent performance in arrhythmia classification.
However, these models typically use isolated heartbeat signals as input, which results in a
failure to leverage inter-heartbeat dependencies and requires the explicit segmentation of
heartbeats. The segmentation of heartbeats usually necessitates the use of QRS detection
algorithms such as Wavedet [35] and Pan–Tompkins [36]. For real-world scenarios, this
means that an additional preprocessing step is required. As mentioned in the previous
paragraph, the transformer architecture can capture temporal features through an attention
mechanism and research has demonstrated the effectiveness in solving arrhythmia classifi-
cation problems. However, the attention mechanism in the current approaches based on
the transformer has a wide receptive field that can include irrelevant information outside
the region of interest, affecting the amplitude and local statistical information from ECG
signals. Moreover, the majority of existing methods take equal-length ECG signal segments
as input. To address these issues, we propose the CNN-DVIT model, an end-to-end multi-
label classification model that combines CNN with depthwise separable convolution and a
vision transformer structure with deformable attention.

The major contributions of our model are as follows: Firstly, our approach involves
replacing the multi-head self-attention mechanism in the original vision transformer model
with a more effective deformable self-attention module, which enables the self-attention
module to focus on relevant regions and capture more informative features. Secondly, we
introduce the spatial pyramid pooling layer to accept variable-length 12-lead ECG signals
as input, which eliminates the explicit segmentation of heartbeats beforehand and can make
use of inter-heartbeat dependencies to improve the classification performance. Thirdly,
to further mine the information of every lead for multi-lead ECG signals, the depthwise
separable convolutions replace the conventional convolution in the CNN backbone.

2. Methods

In this section, we will initially provide an overview of the model’s overall structure,
and then proceed to introduce the specific structure of each individual component.

2.1. Model Architecture

Our proposed model, illustrated in Figure 1, is able to take continuous 12-lead ECG
signals as input and output the arrhythmia diagnosis result in an end-to-end manner.
Concretely, the model is composed of three main components: (1) a CNN-based backbone
for feature extraction from each lead; (2) a deformable attention transformer encoder
module to combine the CNN-extracted features and the positional encoding; and (3) the
classification layer to obtain the probability that each patient may have for each type of
heart disease. The first part, the CNN-based backbone, is based on the original Inception
module with residual connections, in which the depthwise separable convolutions replace
the conventional convolutions. We attempt to extract details of waveform variation from
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every lead of ECG by using depthwise separable convolutions that operate independently
on each lead. Following the CNN-based backbone, the extracted features combined with
positional encoding pass through the deformable attention transformer encoder module.
The output from the deformable transformer encoder is then fed into the classification layer,
which generates the predicted probability distribution over the nine classes.
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Figure 1. Overview of the proposed model.

2.2. CNN-Based Backbone

CNNs can extract data features using local receptive fields, weight sharing, down-
sampling, and other methods [10], which are commonly used as the backbone for feature
extraction due to their ability to capture local features and translation invariance [37]. The
depthwise separable convolutions were utilized in the Xception architecture developed by
Google and demonstrated enhanced performance in image classification [38]. A depthwise
separable convolution consists of a depthwise convolution and a pointwise convolution.
The depthwise convolution is a spatial convolution performed independently over each
channel of an input; and then the pointwise convolution is a 1 × 1 convolution projecting
the channel output by the depthwise convolution onto a new channel space. For multi-lead
ECG signals, the spatial convolutions are applied to each lead, and then the feature map
of every channel is projected onto a new space, enabling ECG details to be extracted from
every lead. Actually, our CNN-based backbone is built on the original Inception module
with residual connections, where conventional convolutions are replaced by depthwise sep-
arable convolutions. Specific configuration details are shown in Figure 2. In the early stage
of this part, we use a large convolution kernel with a size of 15, increasing the receptive
field of the convolution network and facilitating the detection of large-scale waveforms.
In the middle, we utilize the residual network structure and Inception structure. To learn
information from different scales, we employ three different scales of convolution kernels.
At the end of the CNN-based backbone, we introduce the spatial pyramid pooling layer to
convert the different dimensions of the final output feature map into a fixed-dimensional
CNN feature without considering the length of input signals [39]. As depicted in Figure 2,
we divide the output feature graph from each lead in the first part into 36 blocks, 9 blocks,
4 blocks, and 1 block, and then compute the maximum pooling for each block individually.
Therefore, the model can accommodate arbitrary-length ECG signals.
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2.3. Deformable Vision Transformer

The deformable vision transformer [40] was developed based on a deformable self-
attention module, where the positions of key and value pairs in self-attention are selected
in a data-dependent way. In the ECG signal classification problem, this flexible scheme
enables the self-attention module to focus on relevant regions and capture more informative
features to accurately identify the distinct characteristic wave types and recognize different
arrhythmia categories. The structure is shown in the deformable vision transformer module
in Figure 1. The deformable vision transformer network in our model contains two identical
layer stacks and each layer has two sub-layers. The first sub-layer is the deformable
attention module; the second is the multi-layer perceptron (MLP) block which adopts two
linear transformations and a GELU activation. In addition, LayerNorm (LN) is applied
before every block, and residual connections after every block [41,42].

Deformable Attention Module

The ability to flexibly model relevant features is a crucial aspect of our proposed model.
This crucial characteristic is implemented by the deformable attention module described in
the Ref. [40], and the structure is shown as Figure 3. Specifically, the deformable attention
can be viewed as a spatial adaptive mechanism to effectively model the relationship
between tokens under the guidance of important regions in the feature maps. These regions
are computed from sets of deformed points which are learned from the queries by an offset
network. After obtaining the regions, a bilinear interpolation method is applied to sample
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features from the feature maps, and then the sampled features are input into the key and
value projections to obtain the deformed keys and values. Finally, standard multi-head
attention is applied to attend queries to the sampled keys and aggregate features from the
deformed values. This can be better understood mathematically using a set of theoretical
notations, as follows.

Micromachines 2023, 14, x FOR PEER REVIEW 6 of 12 
 

 

to sample features from the feature maps, and then the sampled features are input into 
the key and value projections to obtain the deformed keys and values. Finally, standard 
multi-head attention is applied to attend queries to the sampled keys and aggregate fea-
tures from the deformed values. This can be better understood mathematically using a set 
of theoretical notations, as follows. 

We take a feature map 𝑥𝑥 ∈ ℝ𝐻𝐻×𝑊𝑊×𝐶𝐶  as the input, and then generate a uniform grid 
of reference points 𝑝𝑝 ∈ ℝ𝐻𝐻/𝑟𝑟×𝑊𝑊/𝑟𝑟×2 , where 𝑟𝑟  is the factor by which the grid size is 
downsampled from the input feature map size. To obtain the offset for each reference 
point, the feature maps are projected linearly to obtain the query tokens 𝑞𝑞, and then fed 
into a lightweight sub-network offset network to generate the offsets ∆𝑝𝑝 of the reference 
points 𝑝𝑝. Specifically, the sub-network contains two convolution modules with a nonlin-
ear activation. First, the input features pass through a depthwise convolution to capture 
local features. Then, GELU activation and a 1×1 convolution are adopted to calculate the 
offsets. After generating the offsets for the reference points, the features at the locations of 
deformed points are sampled by the bilinear interpolation method and then projected as 
keys 𝑘𝑘�  and values 𝑣𝑣�. Next, we perform standard multi-head attention on 𝑞𝑞, 𝑘𝑘� , and 𝑣𝑣�, 
where a multi-head attention block with M heads is formulated as: 

, ,q k vq xW k xW v xW= = =

    (1) 

( )( ) ( ) ( ) ( ) , 1, ,m m m mz q k d v m Mσ= =




  (2) 

( )(1) ( )Concat , , M
oz z z W=   (3) 

where 𝑊𝑊𝑞𝑞 ,𝑊𝑊𝑘𝑘,𝑊𝑊𝑣𝑣,,𝑊𝑊𝑜𝑜 ∈ ℝ𝐶𝐶×𝐶𝐶 are the projection matrices, 𝑥𝑥�  = 𝜙𝜙(𝑥𝑥;𝑝𝑝 + ∆𝑝𝑝) , ∆𝑝𝑝 =
𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝑞𝑞), and the sampling function 𝜙𝜙(⋅;⋅) is a bilinear interpolation as Equation (4). In 
Equation (2), 𝜎𝜎(∙) denotes the softmax function, and 𝑑𝑑 = 𝐶𝐶/𝑀𝑀 is the dimension of each 
head. 𝑧𝑧(𝑚𝑚)  denotes the output of the m-th attention head, and 𝑞𝑞(𝑚𝑚), 𝑘𝑘� (𝑚𝑚), 𝑣𝑣�(𝑚𝑚) represent 
query, the deformed key, and value embeddings, respectively. 

, , ,
( , )

( ; ( )) ( ) ( ) [ , ,:]
x y

x y x x y y y x
r r

z p p g p r g p r z r rφ = ∑  (4) 

where the  𝑔𝑔(𝑎𝑎, 𝑏𝑏) = max (0,1 − |𝑎𝑎 − 𝑏𝑏|)  and (𝑟𝑟𝑥𝑥 , 𝑟𝑟𝑦𝑦)  indexes all the locations on 𝑧𝑧 ∈
ℝ𝐻𝐻×𝑊𝑊×𝐶𝐶 .Finally, the features of each head are concatenated together and projected 
through 𝑊𝑊𝑜𝑜 to obtain the final output 𝑧𝑧 as Equation (3). To build up a deformable vision 
transformer, the normalization layer and an MLP block with two linear transformations 
and a GELU activation are adopted after the deformable attention module [43]. 

 
Figure 3. This is the structure of deformable attention module. 

2.4. Classification Layer 
The deformable vision transformer network is connected to the classification layer 

for multi-classification. The classification layer consists of a full connection layer and a 

Figure 3. This is the structure of deformable attention module.

We take a feature map x ∈ RH×W×C as the input, and then generate a uniform
grid of reference points p ∈ RH/r×W/r×2, where r is the factor by which the grid size is
downsampled from the input feature map size. To obtain the offset for each reference
point, the feature maps are projected linearly to obtain the query tokens q, and then fed
into a lightweight sub-network offset network to generate the offsets ∆p of the reference
points p. Specifically, the sub-network contains two convolution modules with a nonlinear
activation. First, the input features pass through a depthwise convolution to capture local
features. Then, GELU activation and a 1 × 1 convolution are adopted to calculate the
offsets. After generating the offsets for the reference points, the features at the locations of
deformed points are sampled by the bilinear interpolation method and then projected as
keys k̃ and values ṽ. Next, we perform standard multi-head attention on q, k̃, and ṽ, where
a multi-head attention block with M heads is formulated as:

q = xWq, k̃ = x̃Wk, ṽ = x̃Wv (1)

z(m) = σ
(

q(m) k̃(m)>/
√

d
)

ṽ(m), m = 1, . . . , M (2)

z = Concat
(

z(1), . . . , z(M)
)

Wo (3)

where Wq, Wk, Wv, Wo ∈ RC×C are the projection matrices, x̃ = φ(x; p + ∆p), ∆p =
θo f f set(q), and the sampling function φ(·; ·) is a bilinear interpolation as Equation (4). In
Equation (2), σ(·) denotes the softmax function, and d = C/M is the dimension of each
head. z(m) denotes the output of the m-th attention head, and q(m), k̃(m), ṽ(m) represent
query, the deformed key, and value embeddings, respectively.

φ(z; (px, py)) = ∑
(rx ,ry)

g(px,rx)g(py,ry)z[ry, rx, :] (4)

where the g(a, b) = max(0, 1− |a− b|) and
(
rx, ry

)
indexes all the locations on z ∈

RH×W×C.Finally, the features of each head are concatenated together and projected through
Wo to obtain the final output z as Equation (3). To build up a deformable vision transformer,
the normalization layer and an MLP block with two linear transformations and a GELU
activation are adopted after the deformable attention module [43].
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2.4. Classification Layer

The deformable vision transformer network is connected to the classification layer for
multi-classification. The classification layer consists of a full connection layer and a softmax
layer, which outputs the predicted probability indicating the likelihood that each patient
has each type of cardiac arrhythmia.

3. Experiments and Results

In this section, we will delineate the data sources, expound on the experimental design,
and elaborate on the analysis of experimental results.

3.1. Data Description and Experiment Setup

Our paper utilized data from the 1st China Physiological Signal Challenge (CPSC-
2018), consisting of 6877 12-lead ECG recordings collected from 11 hospitals [44]. The
signals contained normal heart rhythms and eight types of cardiac arrhythmia, namely,
Normal (N), Atrial fibrillation (AF), First-degree atrioventricular block (I-AVB), Left bundle
branch block (LBBB), Right bundle branch block (RBBB), Premature atrial contraction (PAC),
Premature ventricular contraction (PVC), ST-segment depression (STD), and ST-segment
elevated (STE). The recordings had one, two, or three labels, with some designated as
First, Second, and Third. Thus, the ECG arrhythmia detection task in our paper became a
multi-label classification problem.

The model being suggested is evaluated on every data category present in the CPSC-
2018 data set using a train/validation/independent-test strategy. In the ten-fold cross-
validation experiment, the training data set was divided into ten parts, with nine parts used
as training data and one part as validation data. After iterations of training and validation,
the model with the best performance on the validation set was evaluated on unseen test
data for final performance evaluation. The Adam optimizer with default parameters and
a learning rate of 0.0001 was used to train the model, and the Focal Loss function was
adopted as the objective loss function [45].

3.2. Classification Performance
3.2.1. Evaluation Metrics

To measure the classification performance of our method from multiple perspectives,
we introduce three performance indicators: the average precision, recall rate, and F1 score.
The details are as follows:

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

F1 =
2× Precision× Recall

Precision + Recall
(7)

In our multi-label classification task, for a certain class, TP indicates the number of
correctly classified samples in this class. FN indicates the number of samples belonging
to this class that are misclassified as in other classes. FP indicates the number of samples
misclassified as in this class when they belong to other classes. The averages of all nine
categories of the F1 score were used to evaluate the final performance of the model.

3.2.2. Comparison with Existing Methods

To verify the performance of our proposed model, we compared our CNN-DVIT with
recently proposed ECG classification methods as well as basic neural networks. Table 1
presents the results for the class-level F1 score and average F1 score of our model and
six reference models. As shown in Table 1, our proposed CNN-DVIT has an average F1
score of 0.829, which is comparatively better than the other methods. Our model achieved
the highest F1 score in six out of the nine ECG categories. Specifically, our approach
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outperformed the conventional Resnet [30] and LSTM [8] methods in all nine categories,
with an average F1 score that was 0.092 and 0.165 higher than them, respectively. Moreover,
the F1 scores of all categories performed better than the other methods except for PVC,
where VGG-16 [10] obtained a slightly higher score. Notably, compared to the latest
competitor [34], which also introduced the transformer, our CNN-DVIT outperformed in
each category with an average F1 score improvement of 0.112.

Table 1. Classification performance on CPSC-2018 data set.

Type
F1 Score

ResNet [30] LSTM [8] VGG-16 [10] Mostayed et al.,
2018 [46]

Chen et al.,
2020 [22]

Che et al.,
2021 [34] CNN-DVIT

N 0.730 0.730 0.750 0.702 0.795 0.817 0.831
AF 0.882 0.792 0.861 0.815 0.897 0.858 0.924

I-AVB 0.877 0.763 0.874 0.767 0.865 0.878 0.887
LBBB 0.786 0.848 0.857 0.847 0.821 0.800 0.905
RBBB 0.905 0.909 0.918 0.898 0.911 0.872 0.935
PAC 0.487 0.268 0.333 0.397 0.734 0.618 0.704
PVC 0.733 0.763 0.859 0.807 0.852 0.830 0.842
STD 0.784 0.800 0.814 0.768 0.788 0.711 0.823
STE 0.444 0.105 0.462 0.286 0.509 0.686 0.610

Average F1 0.737 0.664 0.748 0.699 0.797 0.786 0.829

Additionally, we present the confusion matrix, receiver operating characteristic (ROC)
curve, and area under the curve (AUC) for CNN-DVIT in Figure 4a,b, respectively. The
confusion matrix demonstrates our model’s strong classification ability for almost all types
of ECGs. However, in Figure 4a, we can observe that the PAC, STD, and STE categories
exhibited relatively poor performance compared to other categories in the data set. This is
attributed to a limited distribution of data within these categories. Meanwhile, the normal
and STE classes demonstrated high similarity, particularly with regard to the morphology
of their T waveforms. As a consequence, there was confusion and misclassification between
these two classes. The ROC curve illustrates the network output at different classification
criteria with FP and TP as the axis co-ordinates, effectively reflecting the classification
performance of the network structure. As shown in Figure 4b, the AUC values of our CNN-
DVIT model are greater than 95% for most classes, except for ST-segment elevated (STE).
Therefore, it can be concluded that our model has excellent performance in classifying
different cardiac diseases. These results align well with our F1 score assessment.
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4. Discussion

In this section, we analyze the effectiveness of key components in our CNN-DVIT
model through ablation experiments. We present the results for the ECG arrhythmia
detection task in the CPSC-2018 data set.

First, we assess the effectiveness of the deformable attention module. In our CNN-
DVIT model, we apply the deformable multi-head attention (DMHA) module to replace
the multi-head self-attention (MHSA) block of the vision transformer. We compare the
classification performance of both methods, and the results are recorded in Table 2. As
shown in Table 2, the average F1 score of the models that use the DMHA module is higher
than those using the multi-head self-attention (MHSA) block. These experimental results
indicate that the deformable multi-head attention can more effectively extract information
from ECG signals and exhibit outstanding performance in ECG classification on CPSC-2018
data sets.

Table 2. Results of ablation experiments.

DMHA MHSA DWS-CNN CNN
Average

F1 Precision Recall
√ √

0.797 0.751 0.860√ √
0.789 0.775 0.825√ √
0.819 0.814 0.830√ √
0.829 0.819 0.849

Next, we investigate the impact of depthwise separable convolution (DWS-CNN) in
our model. We conduct an ablation experiment by comparing the DWS-CNN with conven-
tional convolution (CNN). As shown in Table 2, models that apply the DWS-CNN have a
clear advantage over those using conventional convolution. These ablation experiments
demonstrate that the depthwise separable convolution (DWS-CNN), which is applied to
each lead and projects the feature map of every channel to a new space, can effectively
extract features of heart disease from multi-lead ECG signals for diagnosis.

5. Conclusions

This paper presents an end-to-end model named CNN-DVIT for arrhythmia classifica-
tion of multi-lead ECG signals. The model combines a CNN backbone and a transformer
block to extract information from ECG signals through two steps: the first step is learning
the details of waveform variation from every lead of ECG by the CNN backbone with
depthwise separable convolutions; and the second step involves combining the features
extracted by CNN with positional encoding using the deformable attention transformer
encoder module. Particularly, in the first step, we employ a spatial pyramid pooling layer
to convert the variable dimensions of the final output feature graph into fixed-dimensional
CNN features. This enables our model to accept ECG signals of varying lengths. Our
CNN-DVIT network architecture exhibits exceptional performance in ECG classification
on CPSC-2018 data sets, achieving an average F1 score of 82.9% across eight types of
arrhythmias and sinus rhythms. These results demonstrate that deformable attention is
well-suited to the unique characteristics of ECG signals and can effectively perform ECG
classification tasks.

In the task of arrhythmia classification, CNN-DVIT synthesizes feature data more
effectively than using any single method alone, such as LSTM, ResNet, or the transformer
with the multi-head self-attention. In recent years, advancements in hardware technology,
information transmission, and computing capabilities have contributed to the increasing
significance of wearable ECG devices as a diagnostic modality [47]. However, our model in
this study is a multi-label arrhythmia classification model for the 12-lead ECG. As such, it
may not be suitable for dynamic ECG data from wearable ECG devices, which are subject
to greater interference. In a clinical setting, the timeliness of the auxiliary diagnosis system
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is generally required. Therefore, we plan to shift our focus towards developing lightweight
models with fewer parameters that are better suited for analyzing dynamic ECG data from
wearables in future work.
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