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Abstract: A microfluidic distillation system is proposed to facilitate the separation and subsequent
determination of propionic acid (PA) in foods. The system comprises two main components: (1) a
polymethyl methacrylate (PMMA) micro-distillation chip incorporating a micro-evaporator chamber,
a sample reservoir, and a serpentine micro-condensation channel; and (2) and a DC-powered distilla-
tion module with built-in heating and cooling functions. In the distillation process, homogenized PA
sample and de-ionized water are injected into the sample reservoir and micro-evaporator chamber,
respectively, and the chip is then mounted on a side of the distillation module. The de-ionized water
is heated by the distillation module, and the steam flows from the evaporation chamber to the sample
reservoir, where it prompts the formation of PA vapor. The vapor flows through the serpentine
microchannel and is condensed under the cooling effects of the distillation module to produce a PA
extract solution. A small quantity of the extract is transferred to a macroscale HPLC and photodiode
array (PDA) detector system, where the PA concentration is determined using a chromatographic
method. The experimental results show that the microfluidic distillation system achieves a distillation
(separation) efficiency of around 97% after 15 min. Moreover, in tests performed using 10 commercial
baked food samples, the system achieves a limit of detection of 50 mg/L and a limit of quantitation
of 96 mg/L, respectively. The practical feasibility of the proposed system is thus confirmed.

Keywords: Propionic acid; micro-distillation; microfluidics; food

1. Introduction

Propionic acid (PA) (CH3CH2COOH) is a three-carbon short-chain fatty acid formed
naturally in the human body through the fermentation of dietary fiber and indigestible
carbohydrates by symbiotic bacteria in the colon. It is also widely used in the pesticide, food,
plastics, and beverage industries. One of the most common uses of PA is as a preservative
in extending the shelf life of baked foods such as bread and cookies.

PA is naturally present in the human body and plays an important role in preventing
obesity and improving the health condition of diabetes type 2 patients [1,2]. However,
an excessive intake of PA is associated with a range of adverse health effects, including
cognitive decline [2], gingival inflammation [3], neurotoxicity [4], and the aggravation of
autism spectrum disorders (ASD) [5]. Consequently, the concentration of PA additives in
foods and beverages must be carefully controlled. For example, the Taiwan Food and Drug
Administration (TFDA) stipulates that the concentration of PA in bread and cakes should
not exceed 2.5 g/kg (2500 ppm).

Many methods are available for separating and quantifying the PA content in food,
including high-performance liquid chromatography-UV detection (HPLC-UV detection) [6],
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gas chromatography-mass spectrometry (GC/MS) [7], and gas chromatography-flame
ionization detection (GC-FID) [8]. These methods all require sample pretreatment prior to
the separation and detection process. Owing to commonly high fat content and volatile
components, the PA in baked foods must be isolated in some way such that its content
can be properly determined. The HPLC method is most commonly performed using
steam distillation (see Official Method No. 1001900044TFDA of the Taiwan Food and
Drug Administration (TFDA), for example). However, the distillation process is lengthy
(typically around 4~6 h) and requires professional expertise and the use of bulky and
specialized equipment. Thus, the distillation procedure is largely confined to modern
and well-equipped laboratories. Consequently, the development of alternative distillation
methods which allow the PA pretreatment process to be performed in a cheaper, faster, and
more straightforward manner is of great interest.

Microfluidics devices have many advantages, such as a lower sample and reagent
consumption, cheaper cost, simpler operation, faster detection time, and improved sen-
sitivity [9–18]. As a result, they have found widespread uses in many fields nowadays,
including biomedical analysis, food safety screening, drug development, and environmen-
tal monitoring [19–27]. Many micro-distillation systems have been proposed in recent
years [28–35]. Giordano et al. [29] presented a gravity-assisted micro-distillation system
consisting of a polydimethylsiloxane (PDMS) microchip incorporating a heating resistor,
a distillation flask, a condenser, and a distillate collector. The feasibility of the proposed
system was demonstrated by performing desalination tests under harsh saline conditions.
Moreover, the practicality of the system was shown by quantifying the concentration of
ethanol in seven alcoholic beverages. Hsu et al. [33] proposed a micro-distillation system for
quantifying the concentration of formaldehyde (CH2O) in food samples. The sample was
vaporized by a steam flow and driven through a cooled condenser zone. The CH2O content
of the resulting distillate was then determined using an AHMT (4-Amino-3-hydrazino-5-
mercapto-1,2,4-triazole, C2H6N6S)-based colorimetric spectrometry technique. The results
showed that the system achieved an efficiency of around 98%.

The performance of the micro-distillation systems described above is fundamentally
dependent on the heat transfer efficiency and temperature distribution within the mi-
crofluidic device. Accordingly, many researchers have employed numerical simulation
methods to optimize the performance of micro-distillation systems [36–42]. For example,
Stanisch et al. [38] conducted numerical simulations to investigate the effects of the primary
processing parameters (e.g., the reflux ratio, evaporation rate, and choice of feed stage) on
the performance of a micro-distillation system intended for the separation of ethanol/water
feed streams. Overall, the results presented in [37,38] confirmed that numerical simulations
provide a versatile and effective approach for the design, characterization, and optimization
of microfluidic distillation systems.

The present study proposes a microfluidic distillation system consisting of a PMMA
microchip and a self-built distillation module for separating the PA content in foods and
beverages. The microchip incorporates a micro-evaporator filled with deionized (DI) water,
a sample chamber, a serpentine microchannel condenser, and a distillate collection zone.
In the distillation process, the microchip is mounted on the side of the distillation module
and the evaporator chamber is heated in order to produce steam. The steam flows through
a connecting microchannel to the sample chamber, where it vaporizes the homogenized
sample to produce PA vapor. The vapor then flows through the serpentine channel, where
it is cooled and condensed to produce PA extract. A small quantity of the distilled extract is
then transferred to a HPLC and photodiode array (PDA) detector system to determine the
corresponding PA concentration.

2. Materials and Methods
2.1. Micro-Distillation Chip Fabrication

Figure 1a presents a schematic illustration of the proposed micro-distillation chip
consisting of a PMMA cover layer (thickness 1.5 mm), a PMMA chip body layer (thickness
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6 mm), and an aluminum foil adhesive layer (thickness 0.3 mm). As shown in Figure 1b,c,
the body layer of the microchip incorporates an evaporation chamber, a sample reservoir, a
serpentine condensation microchannel, a distillate collection zone, and a release valve. The
release valve is designed to prevent excessive pressure in the micro-condensation channel
during distillation, to balance the pressure between the micro-condensation channel and
the atmosphere, and to prevent the extract solution stock from splashing out. The PMMA
layers were designed using commercial AutoCAD software (2011) and fabricated by a CO2
laser ablation system [43]. The cover layer and body layer were joined using a conventional
hot-press bonding technique, and the aluminum foil was adhered to the bottom of the
body layer to seal the device and improve the heat transfer efficiency within the chip. The
finished chip had overall dimensions of 210 mm × 76 mm × 7.8 mm.
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Figure 1. Configuration and dimensions of micro-distillation chip: (a) dimensions and layout of
individual layers in microchip, (b) functional components in microchip, and (c) photograph of
assembled chip.

Compared with the devices proposed in previous studies by the present group [33,34],
the proposed microfluidic distillation system has the advantage that the steam required for
distillation purposes is generated by an external heating source mounted in the distillation
module. Similarly, the cooling effect required to condense the PA vapor in the serpentine
coil is also produced by an external system installed in the distillation module. Thus, the
size, cost, and complexity of the micro-distillation chip are all reduced. Furthermore, the
water required to vaporize the homogenized sample is stored in the chip itself, and hence
the need for an external water tank is removed. Finally, the simple design of the distillation
chip, together with its low cost (<US$3), renders it suitable for single-use application,
thereby eliminating the risk of cross-contamination from samples.

In general, different food additives have different characteristics (e.g., different boiling
points, densities, chemical properties, and so on) and thus appropriate micro-distillation
chip designs are required to maximize the separation efficiency depending on a specific
analyte. The simple design of the microchip proposed in the present study lends itself
to the use of numerical simulation methods, optimizing not only the design of the micro-
distillation chip but also the operating conditions.
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2.2. Distillation Module

Figure 2a shows the self-built distillation module developed in the present study. As
shown, the main components include a power supply system, a heater module, a cooler
module, and two temperature control panels. The heater module comprised a 15 W pli-
ability heater (TSC0100010gR70.5, King Lung Chin Co., Ltd., Taichung, Taiwan) with a
maximum temperature capability of 180 ◦C mounted on a solid copper block with dimen-
sions of 52 mm × 30 mm × 10 mm. The cooling block consisted of a commercial cooling
module (72041/071/150B, Ferrotec Taiwan Co., Ltd., Hsinchu, Taiwan) with a power of
10 W, a minimum temperature capability of 4 ◦C, and a size of 110 mm × 40 mm × 10 mm.
The module casing was made of ABS using a 3D printer (Kingssel K3040, Mastech Machine
Co., Ltd., New Taipei City, Taiwan) and measured 200 mm × 100 mm × 65 mm.
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Figure 2. Self-built distillation module: (a) arrangement of main components in module, and
(b) attachment of micro-distillation chip to side of module during distillation process.

As shown in Figure 2b, in the distillation process, the micro-distillation chip was
clipped to the side of the micro-distillation module and positioned such that the evaporator
chamber and micro-condensation channel were aligned with the heater and cooler modules,
respectively. On completion of the distillation process, the device was removed from the
module and a small quantity of distillate was retrieved from the collection zone and
transferred to a cuvette for HPLC-PDA determination of the PA concentration.

2.3. Experimental Details

The reagents employed in the present study included phosphoric acid (H3PO4, 85~87%,
J. T. Baker, Phillipsburg, NJ, USA), PA (CH3CH2COOH, Nippon Reagent Industry Co., Ltd.,
Osaka, Japan, boiling point: 141 ◦C), and ammonium dihydrogen phosphate ((NH4)H2PO4,
Showa Kako Corp., Osaka, Japan). All the chemicals were reagent grades with a resistance
of 18.2 MΩ in DI water. A 1 M phosphoric acid solution was prepared by diluting 67.4 mL
phosphoric acid in 1000 mL DI water. 1 g of PA was dissolved in 100 mL of DI water and
then diluted with 1 M phosphoric acid solution as required to produce control samples
with concentrations of 50~3000 mg/L. 1.5 g of diammonium hydrogen phosphate was
dissolved in 1000 mL of DI water and adjusted to pH 3 through the addition of phosphoric
acid to serve as the mobile phase for the HPLC determination process.

To determine the PA concentration of the real food samples, 5 g of each food was
homogenized by a commercial machine, and 0.1 g of the homogenized sample was dis-
solved in 1 mL DI water for 15 min distillation in the micro-distillation chip. Following the
distillation process, the PA content of the sample was determined via HPLC-PDA system
in accordance with the official method published by the Taiwan Food and Drug Admin-
istration (TFDA, No. 1001900044). For comparison, the PA content of the food samples
was also evaluated using a traditional benchtop steam distillation apparatus followed
by HPLC-PDA separation and detection in accordance with the TFDA No. 1001900044
method. In the distillation process, the temperature and cooling modules of the distillation
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unit were set to 150 ◦C and 20 ◦C, respectively, and 4.5 mL of DI water was injected into
the micro-evaporation chamber of the chip. 1 mL of homogenized sample (containing
0.1 g of the original sample) was placed in the sample reservoir. The injection inlets of the
evaporation chamber and sample chamber were both sealed with heat-resistant tape. The
microchip was then clipped to the side of the distillation module (as shown in Figure 2b).
During the distillation process, the steam produced in the evaporation chamber flowed
into the sample chamber, prompting the generation of PA vapor. The vapor flowed through
the cooled serpentine channel, where it condensed and then entered the distillate collection
zone due to gravity and steam driving force. The distillation process was stopped after
15 min (as discussed later in Section 3). The distillate was retrieved from the collection
zone, and its pH value was adjusted to about 3.0 through the addition of 1 M phosphoric
acid solution. 25 µL of the test solution (according to TFDA, No. 1001900044) was taken
for HPLC-PDA analysis. The HPLC procedure was conducted on a Shimazdzu LC-20AT
system equipped with a 5-µm reversed-phase chromatography column (Agilent ZORBAX
Eclipse Plus C18, 0.46 cm × 25 cm). The separation process was performed using 0.15%
disodium hydrogen phosphate as the mobile phase with a flowrate of 1.2 mL/min. PDA
detection was then performed using ultraviolet light with a wavelength of 214 nm.

3. Results

In general, numerical simulations provide an efficient means of optimizing the design
of micro-distillation chips and exploring the corresponding flow field, steam temperature,
and distillation efficiency [44,45]. In the present study, the flow field and steam temper-
ature distribution within the micro-distillation chip were examined by ANSYS FLUENT
simulations. (Note that full details of the numerical method and solution procedure are
described elsewhere [33,34].) As shown in Figure 3a, a vortex structure was formed as the
vapor stream entered the sample reservoir after being accelerated through the connecting
microchannel. The vortex structure perturbed the sample within the chamber, thereby
improving the vaporization efficiency. Figure 3b shows the simulated temperature distri-
bution within the microchip. In general, the results confirm that a temperature setting of
150 ◦C for the micro-evaporator chamber is sufficient to prompt the vaporization of the PA,
while a cooling temperature of 20 ◦C is sufficient to condense the vapor and produce PA
distillate in the collection zone.
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Overall, the simulation results substantiate the ability of the micro-distillation chip
to accomplish the distillation and condensation operations required, to separate the PA
content of the homogenized sample prior to HPLC-PDA determination. The average
temperatures of the sample reservoir and distillate outlet of the micro-distillation chip were
measured experimentally using thermocouples and were found to be 101.8 ◦C and 20.5 ◦C,
respectively. The simulated temperature values (i.e., 100.2 ◦C and 20.1 ◦C, respectively)
deviated by no more than 2.5% from the experimental measurements. Thus, the basic
validity of the numerical model was confirmed.

For calibration purposes, six control solutions with known PA concentrations in the
range of 50~3000 mg/L were prepared. For each sample, the distillation (separation)
efficiency was evaluated by Equation (1).

Distillation (separation) e f f iciency =
Distilled o f PA(mg/L)

Re f erences o f PA(mg/L)
(1)

Figure 4 shows the variation in the distillation efficiency over time for the control
sample with a PA concentration of 1000 mg/L. As shown, the efficiency increases initially
with an increasing distillation time, which could be attributed to increased amount of
steam produced in the evaporation chamber due to increasing distillation time. Thus, a
greater amount of acid vapor is generated in the sample chamber and flows through the
condensation channel. However, as the heating time is further increased, the DI water in
the evaporation chamber is gradually consumed. Consequently, the quantity of PA vapor
reduces, and the distillation efficiency saturates at an approximately constant value. The
maximum distillation efficiency is around 97% and is obtained after 15 min. Consequently,
the distillation time was set as 15 min in all of the remaining distillation experiments.
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(Experimental operation conditions: condensation channel length: 50 cm; sample volume: 1 mL; DI
water volume: 4.5 mL; distillation and condensation temperatures: 150 ◦C and 20 ◦C).

Figure 5 shows the experimental results for the distillation efficiencies varied with the
condensation channel length. As the channel length first increases, the distillation efficiency
also increases since the time for which the PA vapor is exposed to the low temperature
condition (20 ◦C) increases. However, as the channel length increases beyond 50 cm, the
driving force provided by the steam is insufficient to push the distillate through the channel
and into the collection zone, and therefore the distillation efficiency drops. Accordingly,
the optimal condensation channel length was determined to be 50 cm.
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Figure 6 shows the variation in the distillation efficiency with the volume of DI water
injected into the micro-evaporator chamber of the chip. Note that the results correspond to
the 1000 mg/L control sample with a volume of 1 mL. As the amount of DI water increases,
the volume of steam vapor generated over the distillation process also increases, hence a
greater amount of distillate is obtained in the collection zone. However, for 5 mL of water,
the entire sample is distilled within 15 min and accompanied by saturation of distillation
efficiency. Accordingly, the injection volume of DI water was set as 4.5 mL and the sample
volume as 1 mL in all of the remaining experiments.
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The feasibility of the proposed microfluidic distillation system was investigated by
measuring the PA concentrations of the six control samples with known concentrations of
50 mg/L, 500 mg/L, 1000 mg/L, 1500 mg/L, 2500 mg/L and 3000 mg/L, respectively. For
comparison, the concentrations were also measured using the official HPLC-PDA detection
method with a benchtop steam distillation apparatus.

Figure 7 compares the measurement results obtained by the two methods. The high
correlation coefficient (R2 = 0.9971) indicates a good agreement between the two sets
of results. Moreover, six different PA concentrations (50 mg/L, 500 mg/L, 1000 mg/L,
1500 mg/L, 2500 mg/L and 3000 mg/L) were added to PA-free breads. The analytical
accuracy of the proposed microfluidic distillation system and HPLC-PDA detector system
is 96.7 ± 1.8%. (Note that the accuracy was evaluated using Equation (1) below.) Thus, the
basic feasibility of the proposed system was validated.
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detection results (microfluidic distillation method) for control samples with known PA concentrations.
(Micro-distillation method experimental operation conditions: distillation time: 15 min; condensation
channel length: 50 cm; sample volume: 1 mL; DI water volume: 4.5 mL; distillation and condensation
temperatures: 150 ◦C and 20 ◦C).

The practical applicability of the proposed system was verified by detecting the PA
concentrations of 10 real-world baked food samples acquired from convenience stores in
Taiwan (see Table 1). For each sample, the pretreatment process was performed using a
microfluidic distillation system (as described in Section 2.3), and the PA content was then
evaluated using the HPLC-PDA method listed in Official Method No. 1001900044 of the
Taiwan Food and Drug Administration (TFDA). For comparison purposes, the PA content
of each sample was also evaluated by the Center for Agriculture and Aquaculture Product
Inspection and Certification (CAAPIC) at National Pingtung University of Science and
Technology (NPUST) in Taiwan, using the benchtop steam distillation, separation, and
detection procedures with the same official method. In the case of the micro-distillation
process, the reliability of the measurement results was ensured by testing each food sample
five times using a newly homogenized sample on each occasion.
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Table 1. Comparison of detection results obtained by two methods for 10 commercial baked food
products. (The detection values reported for the microfluidic distillation technique represent the
average values obtained over five independent measurements).

Sample No. Micro-Distillation
(ppm)

NPUST CAAPIC
Detection (ppm) Accuracy (%)

1 Maple Sugar Cookies 791 ± 8 800 98.9%
2 Milk cookies 92 ± 2 N. D. —
3 Peanut cookies 1091 ± 6 1100 99.2%
4 Cookies N. D. N. D. —
5 Chocolate cookies 683 ± 8 700 97.5%
6 Apple bread 505 ± 3 500 99%
7 Beard 1188 ± 5 1200 99%
8 Butter bread N. D. N. D. —
9 Toast N. D. N. D. —
10 whole wheat bread 581 ± 7 600 96.8%

N. D.: Non-Detectable.

As shown in Table 1, no PA was detected in Samples #4, #8, or #9 using the micro-
distillation chip. Thus, it was inferred that these samples either contained no PA, or had a
PA concentration lower than the limit of detection (LOD) of the proposed device. For the
official method conducted by CAAPIC, no PA was detected in Samples #4, #8, or #9 or in
Sample #2.

Taking the detection results obtained using the exact official HPLC method as a
benchmark, the detection accuracy of the proposed micro-distillation system was quantified
by Equation (2).

Accuracy =

(
1 − CAAPIC Method − Microdistillation method)

CAAPIC Method

)
× 100% (2)

As shown in Table 1, the detection accuracy varies from 96.8% (Sample 10) to 99.2%
(Sample 3). In other words, the accuracy deviates from that of the official method by no
more than 3.2%. Moreover, the proposed method has a LOD of 50 mg/L and a LOQ
of 96 mg/L. Finally, the proposed distillation method requires just 0.1 g of sample for
determination purposes, whereas the exact official method requires more than 100 g. Thus,
the proposed system has significant benefits over the traditional method for the real-world
determination of the PA concentration in baked food products.

Table 2 presents a qualitative comparison of the microfluidic distillation system and
detection method proposed in the present study with other PA detection methods reported
in the literature. The micro-distillation method developed in this study not only achieves
an outstanding recovery, but also could shorten the sample pretreatment time significantly.
Moreover, the developed method requires only a very small amount of test sample and ana-
lytical reagents. All the advantages combined would make this developed microdistillation
chip a perfect tool in a largescale market sampling survey of PA in foods.
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Table 2. Comparison of proposed microfluidic distillation–based HPLC-PDA detection method and
other reported methods in the literature.

Refs. Target Sample
Pretreatment

Separation
Method Detection Method Limit of

Detection Time Sample
Volume

[7] PA, BA, SA HS-SPME GC MS 0.1 mg/L 65 min 20 g

[31] PA Microchannel
distillation Microchannel Acid-base titration - 1 h -

[43] SA, BA, SO2 Micro-distillation Microchannel Micro-
spectrometer 200 mg/L 15 min 0.1 mL

[46] PA, BA, SA Solvent extraction GC MS 29.9 mg/L 49 min 100 g

[47] PA, AA, FA, BuA Traditional steam
distillation - IEC 0.3 mg/L 31 min 50 mL

[48] PA Degrease and
direct extraction GC FID 3 mg/L 24 min 2 g

[49] PA Direct extraction GC FID 120 mg/L 100 min 5 g
[50] SBA Micro-distillation Microchannel Colorimetric 50 mg/L 12 min 0.5 g

TFDA official
method PA Traditional steam

distillation HPLC PDA - 60 min 25 g

This study PA Micro-distillation HPLC PDA 50 mg/L 15 min 1 mL

AA: acetic acid; BA: benzoic acid; BuA: butyric acid; FA: formic acid; HS-SPME: headspace solid-phase microex-
traction; FID: flame ionization detector; GC: gas chromatography; ICE: ion-exclusion chromatography; MS: mass
spectrometer; SA: sorbic acid; SBA: sodium benzoate.

4. Conclusions

This study has presented a microfluidic distillation system to facilitate the deter-
mination of the PA concentration in baked foods. The proposed system consists of a
PMMA-based micro-distillation chip and a self-built distillation module with heating and
cooling components. By retrieving the distillate from sample, the PA concentration is
determined using a conventional HPLC-PDA system. The proposed microfluidic distilla-
tion system provides several important advantages over a traditional benchtop apparatus,
including a higher throughput, a reduced sample and reagent consumption, a lower
power consumption, minimal risk of cross-contamination, greater portability, and a lower
fabrication cost.

The experimental results have shown that the microfluidic distillation system achieves
a distillation efficiency of 97% in 15 min. Moreover, the detection results obtained for
control samples with known PA concentrations in the range of 50~3000 mg/L have been
shown to be in excellent agreement (R2 = 0.9971) with those obtained using an official
HPLC-PDA detection method with a traditional benchtop steam distillation process. Fi-
nally, the detection results obtained for 10 real-world baked food products have shown
that the proposed system has an LOD of 50 mg/L and an LOQ of 96 mg/L. The sys-
tem thus outperforms the official distillation method employed in the present study
(LOQ = 500 mg/L) and provides a rapid and feasible approach for practical PA deter-
mination in foods.
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