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Abstract: The hash function KECCAK integrity algorithm is implemented in cryptographic systems
to provide high security for any circuit requiring integrity and protect the transmitted data. Fault
attacks, which can extricate confidential data, are one of the most effective physical attacks against
KECCAK hardware. Several KECCAK fault detection systems have been proposed to counteract fault
attacks. The present research proposes a modified KECCAK architecture and scrambling algorithm
to protect against fault injection attacks. Thus, the KECCAK round is modified so that it consists
of two parts with input and pipeline registers. The scheme is independent of the KECCAK design.
Iterative and pipeline designs are both protected by it. To test the resilience of the suggested detection
system approach fault attacks, we conduct permanent as well as transient fault attacks, and we
evaluate the fault detection capabilities (99.9999% for transient faults and 99.999905% for permanent
faults). The KECCAK fault detection scheme is modeled using VHDL language and implemented
on an FPGA hardware board. The experimental results show that our technique effectively secures
the KECCAK design. It can be carried out with little difficulty. In addition, the experimental FPGA
results demonstrate the proposed KECCAK detection scheme’s low area burden, high efficiency and
working frequency.

Keywords: cryptographic circuits; security; KECCAK; fault attacks; fault detection

1. Introduction

In the current world of online banking, online shopping, e-mail, and other sensitive
digital interactions, cryptography has become an indispensable instrument for protecting
the confidentiality of data transmissions. Hash functions form the basis of a large number of
widely used cryptographic techniques, including Transport Layer Security (TLS), the Digital
Signature Standard (DSS), encryption algorithms, numerous random number generation
algorithms, Internet Protocol Security (IPSec) protocols, all or nothing transforms, and
password storage mechanisms. The well-known SHA-1 algorithm has been significantly
degraded. After the widely used SHA-1 hash algorithm became less secure and there were
worries about the SHA-2 family of algorithms with a similar structure, the US National
Institute of Standards and Technology (NIST) held a public competition to find a new
cryptographic hash function standard to replace SHA-2. The KECCAK hash function was
submitted to the SHA-3 competition and is one of the five remaining candidate functions.
After three rounds of evaluation, KECCAK was selected as the winning algorithm for
this standard in 2012. In October 2012, the competition concluded with the KECCAK
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algorithm as the victor. By August 2015, the final version of the new SHA-3 standard was
published [1].

The KECCAK algorithm is utilized in daily systems to protect data privacy and
assure the integrity of data exchange. Enhancing the performance of a KECCAK circuit
implemented in embedded circuits is a significant challenge. Currently, the KECCAK
algorithm is used in a wide range of applications requiring high security, such as smart
cards and mobile communication [2–9]. Consequently, there is a need to enhance the
KECCAK algorithm’s resilience against multiple physical attacks, such as fault attacks.

Fault attacks extract private information by inducing faults into the KECCAK archi-
tecture. Malicious and spontaneous fault injections reduce the KECCAK’s resilience and
may result in leakage of secure data in unprotected implementations. The introduction of
malicious faults is caused by voltage/clock glitches and electromagnetic radiation, as well
as the surrounding environment. The KECCAK implementation on hardware is sensitive
to these errors. More importantly, the introduced errors result in an incorrect KECCAK
state, rendering the integrity message output untrustworthy. So far, only a handful of
fault detection algorithms have been developed to increase the KECCAK implementation’s
resilience [10–19].

Mestiri et al. proposed in [10] an effective error detection technique based on modify-
ing the KECCAK architecture. The proposed system is not tied specifically to the KECCAK
method of implementation. This means that pipeline and iterative designs may both benefit
from it. The authors perform experimental attacks on their implementation to analyze it
against fault injection attacks, and they estimate the fault detection capabilities to be about
99.997%. The KECCAK detection approach was developed using the VHDL hardware
language, and the FPGA results demonstrate that their system can successfully defend
KECCAK against fault attacks when implemented in hardware.

In order to offer a high degree of protection against fault attacks, an efficient error
detection approach based on the bytes’ permutation technique has been developed in [11].
To investigate the robustness of the proposed detection technique against fault attacks, the
authors conducted fault injection simulations and demonstrated that the fault coverage
is around 99.996%. They have outlined the suggested detection technique, and the study
of FPGA indicates that the scheme may be simply implemented with minimal complexity
and effectively defend KECCAK against fault attacks.

Luo et al. present in [12] a technique for error detection in KECCAK based on parity
testing that is both straightforward and effective. In addition, they offer optimized designs
as a means of further enhancing the effectiveness of the proposed approach. In order to
determine whether or not the suggested system has fault coverage, they first design it
in VHDL and then simulate fault injection at the gate level. The results indicate that our
approach provides high fault coverage for hardware implementations while placing only a
very little burden on the resources available.

In this paper, we conduct a comprehensive fault analysis to evaluate the impact of fault
attacks on the KECCAK implementation so that we can ensure a high level of protection
against them. Moreover, we provide a reliable error detection system that improves upon
the original KECCAK design. We summarize our contributions as:

• The KECCAK architecture is going to be modified according to the plan. Each KEC-
CAK round is broken up into two separate half rounds. Therefore, the first half of the
round is checked for errors at the same point in time during the clock cycle that the
second part of the round is being carried out, and vice versa.

• In order to ensure the safety of all KECCAK operations, we suggest an updated archi-
tecture for KECCAK, which will result in a new fault detection method. In addition,
we apply the scrambling technique to increase the degree of security provided by
KECCAK. It is essential to point out that in comparison to its equivalents, our ap-
proach has a greater clock frequency, reduced area hardware requirements, and less
throughput degradation.
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• We provide proof that the fault detection technique that was suggested for the KEC-
CAK identifies all naturally occurring as well as maliciously introduced faults. For
this reason, we undertake fault attacks on our suggested architecture in every feasible
location, including the error comparator detection and the integrity structure. This
allows us to accomplish our goal. Using our simulation attacks, we demonstrate that
the proposed scheme achieves 99.999905%, 99.9999% and 100% fault coverage for per-
manent faults, transient multiple and single fault, respectively. This is accomplished
after injecting 2,000,000 multiple random and burst, single and permanent faults.

• Finally, we build both the unprotected and the proposed protected KECCAK architec-
ture on FPGA, and we extract and compare the frequency and area overheads, as well
as the throughput and efficiency deterioration caused by each. In comparison to the
most current KECCAK error detection systems, the FPGA hardware implementation
results reveal that our design has reduced throughput, area overhead and efficiency
degradation, as well as a higher frequency.

The remainder of the paper is structured as follows: The second section provides
background information. Section 3 presents the KECCAK implementation. In Section 4, we
present the KECCAK fault analysis results. The fifth section describes the architecture of
the proposed scheme for KECCAK. Section 6 compares and discusses the fault coverages.
The results and comparisons of hardware implementation are presented in Section 7. The
paper concludes with Section 8.

2. Background
2.1. KECCAK Algorithm

The Keccak algorithm relies heavily on the permutation f as its foundation. This
function is often used to KECCAK states that have a constant length of b = c + r bits
(r: bit-rate, c: capacity). The KECCAK data speed rose in direct proportion to the bit-rate r,
but the KECCAK security level increased in direct proportion to the capacity c. An initial
padding operation is performed on the KECCAK input message in order to generate a new
input message with a length that is a multiple of r. Following this, there are five stages that
make up each KECCAK round when it comes to the assimilating phase. In the last step of
the process, compression is applied while the first r bits of the state are used as the data
output block.

In this investigation, we zero in on the proposed KECCAK type, which is as follows:
A cryptographic hash function may be referred to by the notation Keccak-f[1600], where
c = 1024, r = 576, and f = 1600 represent the permutation bit width. The state of Keccak-
f[1600] is laid out as an array of 5 × 5 channels, where w corresponds to a data length of
64 bits. KECCAK has a round number of 24, and each round executes the five operations
denoted by iota (ι), chi (χ), pi (π), rho (ρ) and theta (θ). Simple logical operations and the
permutation of bits provide the basis for these procedures.

2.2. Fault Attacks

Fault attacks are a powerful tool for cracking unprotected implementations of KEC-
CAK in hardware. The basic premise of this attack is to corrupt the KECCAK process by in-
serting one or more bit errors or byte faults during execution, and then exploit the corrupted
integrity output to deduce the secret message contained in the cryptographic component.

As described in our previous research [10], we evaluated the robustness of the unpro-
tected KECCAK hardware implementation by simulating a series of fault injection attacks.

Experimental results expose that fault attacks are effective against unprotected KEC-
CAK implementations, and that the KECCAK hardware implementation must be secured
against them in order to prevent extracting the KECCAK secret message after a certain
number of faults have been injected.
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3. KECCAK Implementation

Figure 1 illustrates the suggested pipelined hardware design for the KECCAK algo-
rithm. The Input Buffer, Padder Unit, Controller, KECCAK Round, and Output Buffer are
the five components that make up this design.
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• Input Buffer: it ensures KECCAK round-input external module connectivity.
• Padder Unit: executes inversions per byte and performs padding operations. The

KECCAK sponge function, which is produced by this module, is 1600 bits in length.
A 2-to-1 multiplexer controls the information flow between the Padder Unit and the
KECCAK core components.

• The Controller is built to guarantee that all KECCAK modules are synchronized with
one another regarding their data transmission.

• KECCAK Round is the core component of KECCAK and runs the 512-bit message
digests in 24 clock cycles. The hash output for the current KECCAK Round is calculated
using the result from the previous round and the KECCAK constant value.

• Output Buffer: it ensures KECCAK round-output external module connectivity.

Figure 1 shows the KECCAK round’s five operations. Theta, Rho, Pi, Chi, and Iota.

• Theta θ operation: This XORs five columns of input round bits. All state columns are
left rotated one bit and XORed again with the preceding operation results. Then, the
component’s input lanes are XORed with those results.

• Rho ρ operation: This part carries out a left rotation for each lane’s unique number of
positions. The rotation number is found by dividing the component lanes length by
the remainder of the fixed value division.

• Pi π operation: This feature was built to adjust the lanes’ location in the Keccak
columns as required by the design. In addition, for each row, the component performs
logical AND, XOR, and NOT operations on the lanes.

• Chi χ operation: the system is comprised of a matrix consisting of five rows and five
lanes, which incorporates a total of 25 XOR, 25 AND, and 25 NOT logic gates, each
with a bit capacity of 64.
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• Iota ι operation: this component executes an XOR operation on the initial lane (1599-
1536) and the round constant value.

We provide KECCAK’s implementation on Xilinx’s Virtex-5 FPGA XC5VFX70T to
assess hardware implementation costs. Our KECCAK architecture was modeled in VHDL,
and simulated and synthesized with ModelSim 10.1 and Xilinx ISE 14.1, respectively.

The following synthesis results of the proposed KECCAK architecture for FPGA
implementation are reported in Table 1:

• Area;
• Frequency;

Table 1. KECCAK architecture without fault detection scheme: FPGA hardware implementation.

Design Area (Slice) Freq. (MHz) Throu. (Gbps) Eff. (Mbps/Slice)

[13] 5363 110 - -

[14] 1365 326.38 7.83 5.73

[15] 1192 223 5.35 4.49

Proposed 1370 258.6 10.77 7.96

Throughput =
#bit× f requency

#clockcycles
(1)

E f f iciency =
Throughput

Area
(2)

In addition, Table 1 compares the proposed architecture with three similar reported
works [13–16].

The KECCAK implementation takes 1370 slices for 258.6 MHz frequency. This pro-
posed design achieves 10.77 Gbps throughput for 7.96 Mbps/Slice efficiency. The results
indicate that our KECCAK process incurs a reduced area by one fourth and an increased
working frequency by 2.3 in comparison to the design proposed in reference [13]. Table 1
presents a comparison between the architecture proposed in this study and the proposed
architecture in [14]. Although our architecture has a working frequency less than [14], it
allows a higher throughput (10.77 vs. 7.83) and efficiency (7.96 vs. 5.73). Table 1 presents
another comparison with the architecture in [15]. This architecture decreases the area
and frequency, as well as it reduces the throughput by one half and the efficiency by 1.77
compared to our KECCAK architecture.

4. Fault Analysis

In this part, we analyze how fault attacks affect the KECCAK operation. The five round’s
procedures performed in the sequence as shown in Figure 1.

Experiments were carried out by putting multiple and single faults into the KECCAK
input processes and then counting the number of erroneous bits produced by that operation
at its output. These faults might be single or numerous in nature. Because KECCAK
processes are carried out a total of 24 times, faults were introduced at random during each
round, and the total number of bits that were flawed was determined.

The θ operation is a combination of the XOR and rotate functions. The rotate function
modifies the placements of the incorrect bits in the θ output. Therefore, single and multiple
faults introduced into the input process result in more than faulty bits in the θ output.
Figure 2 illustrates the impact of a single fault attack on the Theta function. The fault is
inserted into the input of a single-bit operation. In 99.36% of single fault attack situations,
11 bits of the θ output were flawed.

Two of the 64 operation inputs were defective in the event of a multiple-bit failure
attack. The impact of a multiple fault attack on the θ function is presented in Table 2.
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Figure 2. θ operation fault distribution: 1-bit faulty input.

Table 2. θ operation fault distribution: 2-bit faulty input.

Output Bit Error Number 2 11 12 19 20 21 22

Faulty output (%) 0.169 0.229 0.642 0.02 1.05 1.22 96.67

The output contains between two and twenty-two defective bits. In 96.67% of fault
attack scenarios, 22-bit errors are produced. Error masking occurs in 0% of situations, as
indicated by the absence of the zero-error output scenario.

The χ operation depends on logic operations (XOR, AND, and NOT) conducted
between data processes. Two tests including multiple-bit and single-bit fault attacks were
conducted to determine the impact of fault attacks on this procedure. In the first experiment,
1 bit of the χ inputs was affected. Figure 3a depicts the effect of a single-bit fault attack
on the χ process. In 63.14% of fault attack scenarios, two-bit errors are produced. The
second experiment involved introducing two-bit defects into the χ inputs. As observed in
Figure 3b, the number of incorrect bits in the output ranged from 1 bit to 6 bits, indicating
that fault masking did not occur in the χ function. In 3.86% and 23.81% of fault attack
scenarios, the resulting bit errors are 2 and 5, respectively.
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5. Fault Detection Scheme

In this part, we outline the motives for this study and then offer a robust fault de-
tection approach for the cryptographic KECCAK algorithm based on modified temporal
redundancy. The fault detection technique in this research can be adapted to various
of KECCAK.

5.1. Motivations

The KECCAK algorithm is the primary one used for information integrity security.
This technique may be developed to guard against fault attacks and maintain data integrity.
The existence of a flaw detection technique for such a significant cryptographic algorithm
may be attributed to two factors.

• Cryptographic circuits are vulnerable to intentional attacks and natural defects, no-
tably, fault injection-based approaches; the KECCAK algorithm is no exception.

• The KECCAK implementation, based on fundamental temporal and hardware re-
dundancy, does the regular hash and re-hash using the same round input, using two
clock cycles for each round. In the first cycle, the standard hash is computed, while in
the second, the input is re-hashed and the round outputs are compared. In addition,
the Tetha θ and Chi χ operations are executed using a protection-based scrambling
method. This strategy is efficient since it causes, in case of fault attack, an erroneous
integrity message cannot be used to extract the secret message.

5.2. Fault Detection Scheme Architecture

As seen in Figure 4, the suggested countermeasure is implemented in the
KECCAK architecture.
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The KECCAK round (KECCAK-512) is executed twenty-four times in order to execute
the hash message. Between these two sections, the first pipeline register (FPR) is introduced.
Three registers are depicted in Figure 4.

The first pipeline register (FPR) and second pipeline register (SPR) store the inter-
mediate and round’s output values, while the KECCAK register (KR) compares the state
messages. The first KECCAK half round (FHR1,j) computes the input data’s hash message
and saves it in the FPR. The second section (SHR2,j) creates outputs that are rounded based
on intermediate data. The FHR1,j and SHR2,j critical path delays must the same. Every clock
cycle, the stages (FPR, SPR and KR) are run to conduct the KECCAK round and identify
any errors. The way registers in Figure 4 are loaded in each clock cycle to perform the
round operation and the fault detection process is depicted in Table 3.
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Table 3. Proposed architecture execution process.

Clock Cycle Registers Operations FHR1,j SHR2,j

1 Data loading

Even cycles KR←FPR
Flag Error← KR ⊕ SPR Hash Re-Hash

Odd cycles KR← SPR
Flag Error← KR ⊕ FPR Re-Hash Hash

The input message is padded and loaded to FKH1,1 during the first clock cycle. In the
second clock cycle, the first message output of the padded operation is applied to FKH1,j.
In the third cycle, while SKH2,j executes the result of first KECCAK half round, FKH1,j
repeats the FKH1,1 hash operation with the same input.

The FKH1,2 implementation starts on the fourth cycle, when the SKH2,1 is re-executed.
The KECCAK register (KR) is used to store the round output and intermediate value for
comparison with FPR and SPR stage values, respectively.

Table 3 indicates that:

• The KR register is loaded in even and odd clock cycles to store the output values
for comparison.

• The FPR and the SPR registers are loaded in all clock cycles. The stored integrity
data in FPR and the SPR are used in even and odd clock cycles, respectively, for
error checking.

• The errors checking of the FHR1,j is performed in odd clock cycles.
• The errors checking of the SHR2,j is performed in even clock cycles.

As seen in Figure 4, the FKH1,j (SKH2,j correspondingly) switch alternates between the
hash and re-hash processes throughout each clock cycle. At the third cycle of the re-hash
technique, the first error checking will be conducted when FKH1,j is compared to the output
of the first KECCAK half round. To perform all 24 rounds of KECCAK-512, this method
requires 48 clock cycles.

While the hash technique is performed during the second clock cycle, the hash mes-
sage is not used until the third clock cycle, when the output of FKH1,j is available for
fault verification.

The KECCAK hardware architecture involves the duplication of the hashing process
data. Hence, two KECCAK rounds execute concurrently. Using the hardware duplication
technique, it is straightforward to scramble KECCAK slices between two KECCAK rounds.

We utilized the scrambling method at the conclusion of each KECCAK procedure. In
other words, this strategy was utilized at the conclusion of Theta (θ) and Chi (χ). Then,
if a problem is introduced into one data hash path, the other data hash path will process
data incorrectly.

This solution eliminates fault injection attacks and does not affect the FKH1,j and SKH2,j
processes in the absence of attacks, which is an advantage of the proposed architecture. So,
we scrambled each bit of the first data hash path with its corresponding bit in the second
data hash path in order to strengthen the robustness against fault attacks.

As seen in Figures 5 and 6, the architecture details of FKH1,j and SKH2,j are presented.
The slice KECCAK half in data path 1 is mixed up with its corresponding in data path 2.

The approach of bit-level scrambling results in a robust KECCAK architecture. In addition,
this technique is simple to apply in terms of hardware implementation. Additionally, it
does not increase the implementation complexity.
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6. Fault Detection Evaluation

To validate the resilience of the proposed design against fault attacks, VHDL simu-
lations were run for our KECCAK fault detection technique. Figure 7 shows the detailed
functional description of the fault injection process for evaluating the robustness of the
protected KECCAK architecture against three injection fault tests.

The reference cryptographic model is written using VHDL; it presents the correct
functional of KECCAK model without injecting faults. The outputs of both modules are
passed to the KECCAK simulation that checks them. Then, an analysis report which
contains information about the effects of the faults on the proposed designs is generated.

Three injection fault tests are considered:

• Single-bit transient faults: these arise when a single bit of the integrity message
is altered.

• Multiple-bit transient faults: these occur whenever there is a change of at least two bits
in the integrity state.

• Permanent fault: these alter the hardware design of the KECCAK and can only be
fixed by following certain procedures.
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Errors are introduced at several target places:

• Injection of errors into the initial messages;
• Injection of errors into all KECCAK rounds FKH1,j and SKH2,j;
• Injection of errors into the fault detection data flow, including the error detection flags

and comparator;
• Injection of errors into all multiplexers, demultiplexers and registers.

It is noted that the same error can be injected twice in the same position during a single
KECCAK round. In addition, we have taken into consideration any and all transient and
permanent faults in our architecture. The proposed scheme uses only one error detection
flag for KECCAK error verification.

We are able to divide the proposed design’s output into four classes:

• False positive: the round output is the anticipated integrity message, but an inserted
error was identified.

• Silent fault: the inserted faults have no effect on our design because the round output
is the expected integrity message and no mistake is recognized in the integrity process.

• Undetected error: the detection mechanism failed to identify the occurrence or intro-
duction of faults, despite the fact that the round output was incorrect.

• Detected error: an error is discovered and the output message is different from the
expected integrity process, indicating that the fault detection mechanism has identified
the occurrence or injection of an error.

In order to lessen the appearance of errors, an effective KECCAK fault detection mecha-
nism is required. It also cannot permit the formation of false positives if the output message
is the projected value. The quiet deception is mostly determined by the characteristics of
the design.

Transient single faults: The suggested fault detection technique was initially tested for
its resistance to single-fault assaults. For this fault model, we suppose a single-bit transient
fault is injected into one of the aforementioned locations. A total of 2,000,000 errors are
used to ensure the security of the simulation. Our simulation findings for the suggested
KECCAK architecture’s security are displayed in Table 4.
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Table 4. KECCAK architecture: fault evaluation.

Type of Faults
Fault Coverage (%)

Silent Fault False Positive Undetected Error Detected Error

Tr
an

si
en

tf
au

lt
s

Single-bit (N = 1) 2.354 6.569 0 91.077

M
ul

ti
pl

e-
bi

t

Bu
rs

tf
au

lt
s

N = 2 1.047 3.632 0.023 95.298

N = 3 0.547 1.548 0.014 97.891

N = 4 0.205 0.759 0.0027 99.0333

N = 5 0.956 0.395 0.0010 98.648

N = 6 0.01 0.124 0.0004 99.8656

Random faults 0.015 0.075 0.0001 99.9099

Permanent faults
Single-bit 1.612 5.142 0 93.246

Random faults 0.0127 0.059 0.000095 99.928205

The proportion of faults discovered is calculated by dividing the total number of
single-bit defects injected into the KECCAK architecture by the number of faults detected.
Table 4 demonstrates that the vast majority of single-bit transient faults were detected as
other types of errors or as false positive. Silence fault only accounted for a minor fraction of
all errors (2.354%). Against single-bit transient faults, the rate of undetected errors reaches
0%. This means that our system provides significant protection for KECCAK against fault
injection attacks.

Transient multiple faults: Multiple-bit transient faults are the primary error model
for fault injection assaults, making their fault detection capability extremely significant.
The present simulation takes into account two distinct categories of transient faults that
affect multiple bits, namely burst faults and random faults.

• Burst faults: This experiment evaluated our KECCAK fault detection technique for
its ability to detect errors that impact at least two bits of the integrity message. We
introduce transient faults of varying lengths (2-bit–6-bit) into any KECCAK state by
injecting groups of erroneous bits. The blunders are introduced into certain specified
spots. Consequently, the fault coverage is produced by employing one error detection
flag shown in Figure 4. We have used a 2,000,000-multiple-bit evaluation for the
suggested KECCAK fault detection technique. Table 4 shows that when a fault is
injected at a potential site, it is either false positive (the KECCAK algorithm was
implemented and the comparators were subjected to a security breach) or silent fault
(rounds 1 through 24 of the KECCAK execution were activated, and the 1st round was
affected). With a multiplicity of 6, only roughly 0.0004% of intentionally introduced
faults were undetected. When the multiplicity was 2, the percentage of defects that
went undiscovered was 0.023%. This indicates that the detection capability increases
proportionally with the number of faults.

• Random faults: We inserted 2,000,000 faults with a random fault bit number into
the aforementioned locations and observed the results. Table 4 shows that while
simulating random-bit transient faults using the suggested KECCAK fault detection
technique, 99.9099% of the faults were recognized and the undetected error rate was
0.0001%. If an attacker inserts the same error into two different KECCAK states while
adhering to the same restrictions, i.e., the faults are inserted into comparable positions
at the same clock cycle, then the undetected fault situation will occur.

Permanent faults: In this experiment, we examined the stuck-at-0 and stuck-at-1
faults, wherein the injected faults endure for a duration exceeding a single clock cycle. A
total of 2,000,000 faults were injected into all feasible locations. According to Table 4, the
undetected error percentage for single-bit permanent faults reached 0%. The preponderance
of random permanent faults was categorized as detected errors. Only a tiny fraction of



Micromachines 2023, 14, 1129 12 of 15

errors was either undetected (approximately 0.000095%) or silent (0.0127%). The results of
our fault attacks demonstrate that our design provides a very high degree of protection
against attacks that cause permanent faults.

7. Hardware Implementation

We provide KECCAK’s implementation on Xilinx’s Virtex-5 FPGA XC5VFX70T to
assess hardware implementation costs. Two KECCAK architectures, both unprotected and
protected, have been implemented. These KECCAK architectures were modeled in VHDL,
simulated and synthesized with ModelSim 10.1 and Xilinx ISE 14.1, respectively.

Tables 5 and 6 contain the experimental results for the proposed protected and unpro-
tected KECCAK architectures: area and area overhead, frequency and frequency overhead,
throughput and throughput degradation, and efficiency and efficiency degradation.

Table 5. KECCAK architecture: FPGA hardware implementation.

Design Area (Slice)
(Overhead)

Freq. (Mhz)
(Overhead)

Throu. (Gbps)
(Degradation)

Eff. (Mbps/Slice)
(Degradation)

KECCAK
unprotected 1370 258.6 10.77 7.96

KECCAK
protected

1680
(22.63%)

387
(49.65%)

8.06
(25.14%)

4.91
(38.26%)

Table 6. KECCAK fault detection implementation: comparison (decrease is denoted by using ‘-’ sign).

Refs.
FC (%) Overhead (%)

Sing-Bit Rand-Bit Area Frequency Throughput Efficiency

[10] 99.458 99.997 18.59 44.69 −26.20 −37.72

[11] 99.09 99.996 66.66 −1.75 −1.77 −38.59

[12] - 89.89 60 - - -

[16] a - - 823.78 −45.74 −63.92 -

[16] b - - 823.71 −31.69 −69.28 -

Proposed 100 * 99.9999 * 22.63 49.65 −25.14 −38.26

* Equal to: detected error + silent fault + false positive; a architecture version 1 in [16]; b architecture version 2
in [16].

According to Table 5, unprotected KECCAK requires 1370 slices at 258.6 MHz fre-
quency. The protected KECCAK utilizes 22.63% more slices and increases the frequency
by 49.65% compared to the unprotected KECCAK design. Due to the divided critical path
of the proposed KECCAK architecture, the effective frequency is increased. As shown in
Table 5, the working frequency increases by 49.65% compared to unprotected KECCAK.
Since the proposed KECCAK design’s critical path is not partitioned into two identi-
cal sections, additionally, multiplexers have been incorporated into the KECCAK data
path. The protected design has a frequency overhead that is less than twice that of the
unprotected architecture.

Compared to the unprotected design, the protected KECCAK degrades throughput
by approximately 25.14% and efficiency by approximately 38.26%. Increasing the number
of cycles is the primary reason for throughput degradation. The number of unprotected
KECCAK clock cycles is 24, while the protected KECCAK requires 48 clock cycles to
generate the integrity message.

Table 6 presents a comparative analysis of the proposed architecture with three similar
works as reported in references [10–12]. The comparison is based on various parameters
such as fault coverage (FC), efficiency, throughput, frequency and area overheads. Notably,
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since most comparable works designate fault outputs as detected errors and undetected
errors, we categorized false positives and silent faults as detected errors.

Table 6 presents a comparison between the architecture proposed in this study and the
fault detection implementation proposed in [11]. The results indicate that the protected
KECCAK process incurs an area overhead of 22.63% and a working frequency overhead of
49.65%. In contrast, the integrity implementation discussed in reference [11] results in a
66.66% area overhead and a 1.75% frequency degradation when compared to the original
KECCAK process. The aforementioned statement indicates that our architectural approach
incurs a reduced area overhead by one third and an increased working frequency overhead
by 51.40% in comparison to the design proposed in reference [11]. Table 6 also demonstrates
that our secured KECCAK has a higher FC than the fault detection in [11] at a lower cost,
indicating that our fault detection scheme permits a high level of security with comparable
throughput and efficiency degradation.

Table 6 presents another comparison with the scheme in [10]. This detection scheme
has a slightly lower area overhead and less frequency overhead than our KECCAK. From a
security standpoint, the comparison with [10] demonstrates that our proposed KECCAK
achieves a higher FC, primarily in random faults (99.9999% vs. 99.997%).

Table 6 indicates that the cost overheads associated with our design are significantly
lower than those of [12]. The KECCAK implementation we have presented results in
an area overhead of approximately 22.63%. In contrast, the approach described in [12]
incurs a significantly higher area overhead of 34.40% compared to unprotected KECCAK.
Specifically, the latter KECCAK scheme exhibits an area overhead three times greater than
our proposed scheme. Furthermore, our architecture has achieved significantly superior FC
in comparison to [12], particularly in the context of random faults (99.9999% vs. 89.89%).

Alvarado et al. [16] proposed a new error detection and correction approach named
re-computing for KECCAK. Table 6 compares our architecture with all versions proposed
in [16]. The detection schemes in [16] allow frequency and throughput degradation ranges
from 31.69% to 45.74% and 63.92% to 69.28%, respectively, which means those schemes
allow a frequency degradation up to 2 times and a throughput degradation about 2.75 times
those of our architecture. The hardware performances degradation in [16], especially
in the area overhead, can be explained by the implementation of both detection and
correction schemes.

8. Conclusions

In this research, we provided a fault detection technique based on an efficient archi-
tectural modification and scrambling technique for the KECCAK algorithm. Our fault
simulation faults showed that our detection strategy can detect 99.9999% of transient faults
and 99.999905% of permanent faults. In addition, the presented fault detection technique
and its counterparts were both implemented using Xilinx Virtex FPGAs. In terms of the
KECCAK performance, a comparison was made between their area overhead, frequency
overhead, throughput deterioration, and efficiency degradation. The results of the FPGA
implementation show that the proposed system may effectively protect the KECCAK
implementation against permanent and transient fault attacks, and that it can be easily
implemented despite its relatively low complexity. In addition, the experimental results
indicate that the frequency overhead is around 44.35%, which is a greater percentage in
comparison to previous works that have the same fault coverage. According to the results
of our experiments, our suggested method has the maximum efficiency, exhibiting tolerable
throughput deterioration as well as area and frequency overheads. This is the case even
when the fault coverage is satisfactory. It was shown that the suggested system is more
efficient than other previous works in terms of fault detection as well as the hardware
implementation cost.
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