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Abstract: In the process of determining positioning point by constructing geometric relations on the
basis of the positions and poses obtained from multiple pairs of epipolar geometry, the direction
vectors will not converge due to the existence of mixed errors. The existing methods to calculate
the coordinates of undetermined points directly map the three-dimensional direction vector to the
two-dimensional plane and take the intersection points that may be at infinity as the positioning result.
To end this, an indoor visual positioning method with three-dimensional coordinates using built-in
smartphone sensors based on epipolar geometry is proposed, which transforms the positioning
problem into solving the distance from one point to multiple lines in space. It combines the location
information obtained by the accelerometer and magnetometer with visual computing to obtain more
accurate coordinates. Experimental results show that this positioning method is not limited to a single
feature extraction method when the source range of image retrieval results is poor. It can also achieve
relatively stable localization results in different poses. Furthermore, 90% of the positioning errors
are lower than 0.58 m, and the average positioning error is less than 0.3 m, meeting the accuracy
requirements for user localization in practical applications at a low cost.

Keywords: visual positioning; coordinate transformation; pose estimation; epipolar geometry; built-in
sensors; indoor localization

1. Introduction

The complex and changeable indoor environment brings great difficulties and chal-
lenges to indoor positioning technology. Due to factors such as wall occlusion and multipath
effects, satellite signals cannot achieve stable positioning results indoors [1]. Positioning
methods based on Wi-Fi [2], radiofrequency identification, Bluetooth [3], ultrawideband
(UWB) [4], and ZigBee [5] cannot achieve the mature positioning performance of GNSS be-
cause their accuracy is affected by problems such as electromagnetic interference, distance
limitation, multipath effects, and high costs. The rapid development of the microelectrome-
chanical system (MEMS) inertial measurement unit (IMU) has been widely used in the
military, industrial, and civil fields by virtue of its low cost, low power consumption, and
small size. It often appears in various integrated navigation systems with unique advan-
tages. In addition, machine vision positioning promoted by artificial intelligence stands out
because it does not require additional equipment [6–8]. This image-based method makes it
possible to achieve good positioning performance in an economical and applicable way [9].
At present, indoor positioning technology based on a fingerprint database is one of the
hotspots of visual localization. This method mainly includes two stages. The first is the
offline fingerprint database construction stage, i.e., collecting fingerprint information in
the indoor environment and recording the corresponding location labels. The second is
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position estimation in the online stage, i.e., comparing the fingerprint information input
with the database so as to obtain the coordinates of the point to be located.

To obtain high-precision positioning results in a low-cost way and ensure the accuracy
of dataset construction with cheap and popular equipment, it is necessary to obtain coordi-
nates that can provide strong support for future navigation. Therefore, in the offline dataset
construction stage, we consider the image acquisition equipment, acquisition methods, and
how to obtain image attitude and position. Using the image and corresponding informa-
tion obtained in the offline stage, the disadvantages of the current positioning method are
studied to establish the necessity of using epipolar geometry for positioning. According
to the analysis of the current pose acquisition methods under the epipolar constraint, we
determine the implementation of this study. Lastly, the problems existing in other location
determination methods are studied to determine the realization route of obtaining the
three-dimensional positioning result.

Image fingerprint acquisition devices are divided into three categories, monocular,
binocular, and RGB-D cameras that can obtain depth information. The Kinect sensor devel-
oped by Microsoft is most widely used to capture depth information. Some studies [10–12]
took a depth camera as the carrier to acquire indoor color and depth images, and then
built a visual positioning framework on the basis of image features and depth information.
The binocular camera can obtain the depth data of target points according to the focal
length, baseline, and parallax matrix. However, depth and binocular cameras are expensive,
significantly reducing their ease of use and universality. With the popularity of smartphone
terminals and the reduction in the cost of vision sensors, indoor visual positioning based
on monocular images has broader application prospects.

There exist some practical problems indoors, such as a large area with complex and
changeable environments. It is an important problem to construct an effective fingerprint
database with limited resources on the premise of ensuring localization efficiency and accu-
racy. Monocular images can be used to build offline databases by shooting videos [13–15],
constructing landmark feature descriptors [16], and obtaining fingerprint information at
reference points [17,18]. When building an offline database, we prefer getting images
with accurate positions and poses. The error divergence is fast when only using IMU for
navigation; thus, it cannot complete the task of indoor positioning alone. However, the
built-in IMU of smartphones can obtain precise pose information, significantly improving
the accuracy of dataset construction. Therefore, we took images at fixed reference points to
build an accurate offline dataset. The poses calculated by the built-in accelerometer and
magnetometer are used as location labels.

The main task of the online stage is to obtain an accurate position. Some scholars are
devoted to research on image retrieval technology [19,20], returning the location label of the
retrieved image to the user as the positioning result. Although these image retrieval meth-
ods gradually achieve higher accuracy, directly using the retrieval results as localization
results depends on the image acquisition density of the dataset [21]. Intensive collection
points improve the accuracy, but also have the disadvantages of increasing the workload
of dataset construction and the number of retrieval operations, as well as reducing the
efficiency. The development of depth restoration technology solves the mutual exclusion
of acquisition density and database size. Image-based depth estimation methods directly
calculate the depth information from the input RGB images [22,23]. There is no need for
expensive equipment, providing a broader application space [24]. According to the number
of required input images, it can be divided into monocular depth estimation and multi-
view depth estimation. Due to the lack of depth clues, monocular depth estimation often
needs to obtain information on the basis of perspective projections, shadows, and other
environmental assumptions for calculation, which is an ill-posed problem. The multi-view
depth estimation method calculates the depth information on the basis of several observed
images. Classical methods include structure from motion (SfM), multi-view system (MVS),
and triangulation. However, these methods need to obtain the actual coordinates of some
feature points, which is a massive requirement in the offline dataset establishment.
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In addition, iterative closest point (ICP) is used to solve the device pose estimation
problem in 3D. The depth estimation of monocular images can obtain the relative pose
from the object coordinate system to the camera coordinate system through perspective-n-
point (PnP) and its improved algorithms [25–27]. It can solve the pose estimation problem
between 3D and 2D when n 3D points and their projection positions are known. Both ICP
and PnP need to know the actual 3D coordinates of some features. This kind of method
has a massive workload in the offline database construction of large buildings, and it is
straightforward to introduce random deviation into the final positioning result due to tool
and operation errors.

For monocular images, the fundamental matrix is calculated according to the principle
of epipolar geometry, so as to obtain the camera position and pose changes in 2D [28].
The existing fundamental matrix estimation methods can be roughly divided into three
types: linear estimation based on algebraic error, nonlinear estimation based on iteration,
and hypothesis testing strategy. Among them, the linear estimation method includes
the traditional normalized eight-point method [29], seven-point method, n-point method,
and improved eight-point method. Fischler et al. proposed a random sample consen-
sus (RANSAC) algorithm [30]. It can estimate the parameters of a mathematical model
iteratively from a set of observation data containing outlier points, and it is widely used
in solving fundamental matrices. With the deepening of the problem, researchers have
proposed improved methods based on the inspection strategy least median of squares
(LMedS) [31].

After obtaining the pose information, namely, the rotation vector and the translation
vector, it is the last step in the positioning process to determine the final coordinates
according to the direction vector whose modulus length is unknown and only represents
the relative position relation. A geometric relationship composed of multiple direction
vectors can be constructed through the pose transformation of a single query image and
multiple dataset images. All direction vectors will theoretically intersect at the same
point, i.e., the undetermined point where the user is located. However, it is difficult for
multiple vectors to converge under the influence of measurement and calculation errors.
The authors of [32,33] calculated the distance from each direction vector intersection point
to other direction vectors, and returned the coordinates of the intersection point with the
minimum distance to the user. The authors of [34] considered the correct matching of the
retrieved images. For each intersection point, its distance to each retrieved image was
calculated, and the number of correct matching pairs was used as a weight to multiply the
distance. Lastly, the minimum sum of weighted distance of the corresponding intersection
point was obtained as the positioning coordinates. Although the above methods can obtain
the positioning point, they all project the three-dimensional vector to the two-dimensional
plane for calculation. They increase intersection points by reducing dimension and losing
altitude information. In addition, they all choose the intersection point that may occur at
infinity as the final result, which is prone to being wide of the mark.

For this reason, in view of the shortcomings of the existing position determination
methods that can only obtain 2D coordinates, taking into account the fact that a single
positioning method cannot meet the positioning accuracy requirements of complex and
changeable indoor environments, a Three-dimensional reconstruction localization method
based on threshold dynamic selection (3D RLM-TDS) is proposed. This method uses an
accelerometer and magnetometer to obtain accurate pose labels to construct the dataset.
Then, it calculates the relative pose relationship between several images from the dataset
with pose labels and the image taken at the point to be located according to the epipolar
constraint. In the case that the direction vectors pointing to the undetermined point from
the retrieved dataset images cannot converge due to the existence of mixed error, the
positioning problem is transformed into solving the minimum distance in 3D space. In this
way, we can solve the problem that the direction vector modulus length obtained from the
epipolar geometry calculation is unknown, and we can achieve the effect of reconstructing
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the 3D information in positioning. The roadmap of this paper is shown in Figure 1. The
main contributions are as follows:

• An image collection framework is designed with accurate poses to construct the offline
database. It uses built-in sensors of a smartphone to obtain relevant data on the basis
of Matlab Mobile, and then calculates the Euler angles of the device when shooting
images of the dataset.

• In the online stage, an indoor visual positioning method with three-dimensional coor-
dinates using accelerometer and magnetometer is proposed to solve the problems of
modulus length loss and only 2D coordinates being obtained in position determina-
tion after epipolar geometry. The relative direction of the query image is determined
according to the direction vector of the retrieved image pointing to itself. The localiza-
tion problem is transformed into solving the distance between one point and multiple
lines in 3D space to solve the situation that the positioning lines do not converge due
to errors.

• A WeChat positioning mini-program mounted on the mobile intelligent terminal is
built, and the user’s location is determined in the experimental scene by means of
human–computer interaction. The localization error is calculated under different
image retrieval schemes, three feature extraction methods, and eight shooting poses,
so as to verify the accuracy, robustness, and adaptability of the positioning method
proposed in this paper.
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2. Preliminaries
2.1. Feature Extraction and Matching

Image features are the essential characteristics that distinguish a certain type of objects
from others, which are the basis and premise of computer vision research such as target
recognition, classification, and matching. In the process of feature extraction, features can
be divided into global and local features according to the different scopes of extraction. In
this paper, the classical blob feature extraction methods scale-invariant feature transform
(SIFT) [35] and speeded up robust features (SURF) [36], as well as the corner feature
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extraction method oriented fast and rotated brief (ORB) [37], are selected to obtain image
feature points.

The calculation speed, robustness, and other performance comparisons of each feature
extraction method are shown in Figure 2, and the corresponding extraction results are
shown in Figure 3. The ORB method can achieve faster processing results in situations with
high real-time requirements [38,39]. In the case of more illumination and blur, the SIFT
algorithm can obtain more accurate feature points. In the case of rotation, scale, and viewing
angle changes, SURF can be used to extract blobs more quickly and accurately. Therefore,
the above three feature extraction methods have typical characteristics, can resist a variety
of interference conditions, and meet the verification conditions of positioning performance.
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Feature matching is used to pair the feature points in two images according to a certain
similarity standard. Common matching algorithms include brute force (BF) and fast library
for approximate nearest neighbors (FLANN). Because BF tries everything, it always finds
the best match. FLANN proposed by Muja et al. is an approximation method, which
screens the best matching feature points according to the ratio of nearest neighbor to second
nearest neighbor. The result found is an approximate nearest neighbor match; hence, it
runs more efficiently.

Three feature extraction methods described in Section 2.1 are used to extract images
of two scenes, and then FLANN method is used to achieve matching. The corresponding
matching results are shown in Figure 4. All three methods can extract a large number of
feature points and achieve a high correct matching rate. Since the positioning method is
oriented to practical application scenes, in addition to the accuracy, the calculation speed
greatly affects the user’s experience. Therefore, the ORB method is mainly selected to
obtain matching feature pairs in the subsequent calculation process.
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2.2. Camera Calibration Principle and Experiments

Camera calibration is used to determine the parameters of the camera imaging ge-
ometry model. Calibration accuracy directly affects the accuracy of computer vision
applications, especially when the distance is calculated using images. Therefore, it is an
essential step to achieve visual positioning.

Camera calibration technologies can be divided into the traditional camera calibration
method [40] and self-calibration method [41]. The traditional camera calibration method
is time-consuming and labor-intensive, which requires a 3D calibration board with high
precision and difficulty to manufacture. Self-calibration does not require calibration objects,
but it is not accurate when directly calibrating the camera while only relying on the
relationship between the corresponding points of multiple images. Zhang’s calibration
method is a compromise between them [42]. Considering the calibration cost, this method
does not need to make a refined calibration board, and it has the characteristics of flexible
operation and high robustness, thus becoming the most widely used method.

The camera calibration experiment used a 13 × 9 checkerboard, each of which was
15 × 15 mm. Two groups of photos were taken in the experiment, with 25 photos in each
group, from the front, left, and right, looking down, and looking up. When taking photos
in each direction, the checkerboard calibration board was located at the top left, bottom left,
top right, bottom right, and center of the imaging plane, ensuring that the minimum angle
between the camera lens and the image plane did not exceed 45◦. According to Zhang’s
calibration method, images could be taken by means of a stationary image and moving
camera or a moving image and stationary camera. The positions between the camera and
the board in the experiment are shown in Figure 5.
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Figure 5. The positional relationship between the camera and the calibration board: (a) stationary
board; (b) stationary camera. Each image is numbered while being taken.

Matlab R2016a was used for camera calibration, and the checkerboard after corner
extraction is shown in Figure 6. A lower reprojection error indicates a better result. An
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error lower than 0.5 can meets the accuracy requirement of camera calibration. The av-
erage reprojection errors of the two groups were 0.238 and 0.28, as shown in Figure 7,
both of which met the requirements. Lastly, the internal parameters obtained from the
group with smaller reprojection errors were selected for subsequent experiments, and the
corresponding parameters of each group are shown in Table 1.
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Table 1. Camera calibration parameters.

Camera Parameters Specific Parameters Values

Intrinsic parameters Focal length [563.1549 561.96807]
Principal point [457.5447 344.0597]

Lens distortion
Radial distortion [0.2042 −0.9537 1.0331]

Tangential distortion [2.6321× 10−4–4.0797× 10−4]

Accuracy of estimation Mean reprojection error 0.2380

3. Epipolar Geometry 3D Information Reconstruction
3.1. Offiline Dataset Construction
3.1.1. Dataset Construction

In order to verify the performance of the localization method and avoid the particular-
ity of a single experimental environment, the experimental dataset consists of two parts.
The local maps of each experimental space are shown in Figure 8. The interval between
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reference points in the same horizontal direction is 3.6 m, as shown by the blue circle in the
figure. Some reference points are added for performance verification in Sections 4.2 and 4.3.
As indicated by the green circles in the Figure 8, the spacing between them is 0.6 m.
The datasets of these two experimental environments meet the needs of positioning and
multi-performance verification in practical applications. The reasons for the selection are
elaborated in Section 4.1.
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DJI equipment was used to take photos with model DJI Pocket2, shown in Figure 9a. In
addition, the precise distance was obtained with a handheld laser rangefinder, shown in Figure 9b,
whose maximum range is 50 m, and whose measurement accuracy is±(1.5 mm + d× 5/105).
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3.1.2. Pose Acquisition of Dataset

Each image in the dataset needs to be annotated with the camera pose at the time of
shooting for coordinate transformation in the subsequent positioning process. Since rough
observations cannot guarantee the accuracy of the data, the built-in sensors were used for
precise pose determination when constructing the dataset.

In the process of attitude angle calculation, the rotation order of coordinate axes affects
the final coordinate system orientation. In this paper, the roll–pitch–yaw (RPY) method was
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selected for attitude angle calculation; that is, the rotation order of the axis is Z–Y–X. We
used Matlab Mobile to get the rotation angle of the axis according to the information picked
up by the accelerometer and magnetometer. When rotating around the X-axis Y-axis, and
Z-axis of the inertial measurement unit (IMU), the changed angle is called roll, pitch and
yaw, and the rotation angle is α, β, and γ respectively. The corresponding rotation matrix is
shown in Equation (1) [43].

Rcw = Rx(α)Ry(β)Rz(γ), (1)

where Rcw represents the rotation matrix that the camera converts from the world co-
ordinate system to the camera coordinate system. R(α), R(β), and R(γ) are shown in
Equations (2)–(4), respectively.

Rx(α) =

1 0 0
0 cos α sin α
0 − sin α cos α

. (2)

Ry(β) =

cos β 0 − sin β
0 1 0

sin β 0 cos β

. (3)

Rz(γ) =

 cos γ sin γ 0
− sin γ cos γ 0

0 0 1

. (4)

Therefore, the rotation matrix in Equation (1) can be further calculated and expressed
as Equation (5).

Rcw =

 cos β cos γ cos β sin γ − sin β
− cos α sin γ + sin α sin β cos γ cos α cos γ + sin α sin β sin γ sin α cos β
sin α sin γ + cos α sin β cos γ − sin α cos γ + cos α sin β sin γ cos α cos β

. (5)

3.2. Online Positioning
3.2.1. Coordinate System and Coordinate Transformation

The positioning process involves the transformation of four coordinate systems. The
relative relationship between them is shown in Figure 10. The gray world coordinate
system Ow–XwYwZw is a coordinate system artificially set in each positioning scene to
facilitate the identification of the position, represented by w. The camera coordinate system
Oc–XcYcZc in blue takes the optical central as the origin. The Zc axis is the camera’s optical
axis, and the Xc axis and Yc axis are parallel to the X axis and Y axis of the image coordinate
system, respectively. The green pixel coordinate system O0–uv takes the upper left corner
of the image as the origin and establishes the coordinate system in pixels. u and v represent
the number of columns and rows of a pixel in a digital image, respectively. The yellow
image coordinate system O1–xy takes the intersection point between the camera’s optical
axis and the image plane as the origin. This coordinate system is established to represent
the position of the image in physical units. If the origin of the physical coordinate is O1(u0,
v0) in the pixel coordinate system, the relationship between the image coordinate system
and the pixel coordinate system is shown in Equation (6).{

u = x
dx + u0

v = y
dy + v0

(6)
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The unit of x/dx is pixel. It is expressed in the form of matrix shown in Equation (7). u
v
1

 =

 1
dx 0 u0
0 1

dy v0

0 0 0


 x

y
1

 (7)

3.2.2. Position and Pose Acquisition

Epipolar geometry describes the geometric information between the two perspective
projection images of a single rigid scene, reflecting the pose relationship between the
cameras when the two monocular images are taken, and completing the 2D–2D conversion.
The epipolar constraint relationship is shown in Figure 11.
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Figure 11. Epipolar geometry relation.

The image plane of the camera is I1 and I2, and the orange point P is a point in the
actual space. The projection of this point on the two planes is divided into p1 and p2.
When using epipolar geometry, p1 and p2 are feature pairs with known pixel coordinates
corresponding to feature extraction and matching. The line O1O2 formed by the center
O1 and O2 of the two cameras is the baseline, and the plane containing the baseline is the
epipolar plane. The baseline intersects each image at the green poles in the figure, denoted
by e1 and e2, respectively. The lines where the epipolar plane intersects the phase plane are
epipolar lines, as shown in yellow l1 and l2. The epipolar transformation is represented
by T, and T21 represents the pose transformation from camera 1 to camera 2, which is
composed of the rotation matrix R and the translation vector t.

Let P = [XP, YP, ZP]
T be the position of point P in 3D space; p1 and p2 are the cor-

responding feature pairs of P. The transformation between pixel coordinates and world
coordinates of two images is shown in Equation (8).

Zc1 p1 = KP, Zc2 p2 = K(R21P + t21), (8)
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where K is the internal parameter of the camera. Zc1 and Zc2 represent the distance between
the image plane of the camera and its optical center when shooting at two positions. R21
and t21 describe the movement between cameras 1 and 2.

In the process of representing the projection relationship with homogeneous coordi-
nates, the projection plane is usually normalized, i.e., Zc = 1, which leads to the loss of
length information of the translation vector. In this case, the relationship between pixel
coordinates and world coordinates can be obtained as shown in Equation (9).

p1 = KP, p2 = K(R21P + t21). (9)

Let the two camera coordinates be c1 = K−1 p1 and c2 = K−1 p2; Equation (10) can
then be obtained.

c1 = P, c2 = R21P + t21 = R21c1 + t21. (10)

Both sides of the equation can be cross-multiplied by t21 at the same time to get
Equation (11).

t21 × c2 = t21 ×R21c1 + t21 × t21. (11)

As t21 × t21 = |t21||t21| sin(0◦), Equation (11) can be simplified.

t21 × c2 = t21 ×R21c1. (12)

Since cT
2 · c2 = 0, Equation (13) can be obtained.

cT
2 · t21 ×R21c1 = 0. (13)

The cross-product of vectors is used to calculate their outer product. The cross-product
is a vector whose direction is perpendicular to the original two vectors. It is the area of
a quadrilateral of two vectors. The cross-product operation of vectors a and b can be
expressed as Equation (14) [44].

a× b =

∣∣∣∣∣∣
∣∣∣∣∣∣
e1 e2 e3
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣
∣∣∣∣∣∣ =

a2b3 − a3b2
a3b1 − a1b3
a1b2 − a2b1

 =

 0 −a3 a2
a3 0 −a1
−a2 a1 0

b , a∧ · b. (14)

According to Equation (14), the cross-product of two vectors can be expressed as
matrix and vector multiplication. We introduce the symbol “∧” as the skew-symmetric
symbol, and we express vector a as a skew-symmetric matrix, as shown in Equation (15).

a∧ =

 0 −a3 a2
a3 0 −a1
−a2 a1 0

. (15)

Because of t21 ×R21 = t∧21 ·R21, the epipolar constraint can be obtained, as shown in
Equation (16).

cT
2 t∧21R21c1 = 0. (16)

Since the derivation of the epipolar constraint is obtained on the normalized plane,
we cannot judge the specific distance between the cameras. Equation (14) can also be
transformed into a form with camera internal parameters, i.e., pT

2 K−Tt∧21R21K−1 p1 = 0.
The fundamental matrix and the essential matrix reflect the positional relationship

between a point on one image and the corresponding point on another image under the
epipolar constraint. The essential matrix is E = t∧21R21; thus, the epipolar constraint can
be expressed as cT

2 Ec1 = 0. The epipolar constraint can also be expressed as pT
2 Fp1 = 0

because the fundamental matrix F = K−TEK−1 = K−Tt∧21R21K−1.
In the process of calculating the fundamental matrix, the eight-point method, seven-

point method, RANSAC algorithm, and LMedS can be used. The eight-point method uses
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eight randomly selected pairs of matching feature points to construct a system of equations.
It solves the fundamental matrix according to the singular value decomposition (SVD)
method. Both RANSAC and LMedS algorithms need to go through five steps: random
sampling, calculation of model parameters, realization of classification, iterative calculation
until the optimal solution meeting the threshold is obtained, and precise optimization of
model parameters. The main difference between the two approaches lies in the way the
classification is implemented. RANSAC divides the inliers and outliers according to the
set threshold. LMedS is used to calculate the deviation of the point set of the model, and
then find the median of the deviation for classification. The threshold of RANSAC is easier
to determine when it has physical meaning or collective meaning, but difficult to adjust
when the threshold does not have characteristics. LMedS can obtain the optimal solution
through adaptive iteration and is robust to error matching and external points. Therefore,
two methods of RANSAC and LMedS are adopted to calculate the fundamental matrix in
the process of calculating the epipolar geometry.

The relative pose between the unpositioning node and the dataset images can be
obtained using the epipolar geometry, as shown in Figure 12. Oc1 − Xc1Yc1 Zc1 in green is
the coordinate system of camera 1 in the dataset, and Oc2 − Xc2Yc2 Zc2 is the coordinate
system of camera 2 when the images are taken at the point to be located. The transformation
relationship between two cameras can be determined through Equation (17), which consists
of a rotation matrix Rc2c1 and a translation vector tc2c1 .

Tc2c1 =

[
Rc2c1 tc2c1

Z 1

]
. (17)
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The pose of camera 1 is transformed into that of camera 2 through Equation (18).

c2 = Rc2c1 c1 + tc2c1 , (18)

where Rc2c1 is the rotation matrix when camera 1 moves to camera 2, and tc2c1 is the
translation vector from Oc2 to Oc1 in camera 2 coordinates. According to the coordinates
of the translation vector tc2c1 and Oc2 , a straight line passing through Oc1 and Oc2 can be
represented, and the direction vector of the straight line is tc2c1 .

Since tc2c1 represents the direction vector in the camera 2 coordinate system, it needs
to be converted to the world coordinate system during the positioning process. Therefore,
the direction vector is reversely transformed according to the pose relationship obtained
by the epipolar geometry, as shown in Equation (19), from which the corresponding data
can be converted to the camera 1 coordinate system. Then, it is converted to the world
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coordinate system according to the relationship between the camera 1 coordinate system
and the world coordinate system, as shown in Equation (20).

c′2 = Rc1c2 c2 = R−1
c2c1

c2. (19)

c′′2 = Rcwc1 c′2 = Rcwc1R−1
c2c1

c2 = R−1
c1cw R−1

c2c1
c2. (20)

Since the rotation matrix is an orthogonal matrix, i.e., R−1 = RT, Equations (19) and
(20) can be further transformed.

c′2 = RT
c2c1

c2. (21)

c′′2 = RT
c1cw R−1

c2c1
c2. (22)

In the process of constructing the dataset, the position and pose Rc1w of the image are
marked; thus, the coordinates of the point to be located in the world coordinate system can
be obtained.

3.2.3. 3D Information Construction

It is necessary to compare the images captured by the user with those in the dataset.
Through image retrieval, the photos are sorted according to the similarity between them,
and several results that are closest to the image to be located input by the user in the dataset
are returned. If only one image is output, the current retrieval result is identified as the
location of the querying user.

When there are two or more retrieved results, the corresponding number of translation
vectors can be obtained by calculating the pose between the image to be located and them
according to the epipolar constraint. The lack of modulus length of the translation vector
makes it impossible to get the specific distance between the dataset images and that taken
at the point to be located. The actual position coordinate of the retrieved image is regarded
as a point on the straight line, and the translation vector is regarded as the direction vector
of the line, so that two lines in the 3D space can be obtained. Theoretically, the intersection
of two or more straight lines is the coordinate of the point to be located. However, they
do not intersect due to errors during the experiment. Therefore, the localization problem
of retrieving two images can be transformed into finding the midpoint coordinates of the
minimum distance between two lines. When more images are retrieved, the positioning
problem is upgraded to finding the coordinate of a point in 3D space so that the distance
between the point and multiple disjoint lines is the smallest.

Compared with obtaining only one image by retrieval, obtaining multiple similar im-
ages can increase the credibility of localization. However, it is possible to accumulate errors
if too much coordinate calculation is used in positioning. Considering the image collection
density and practical application requirements in the construction of the dataset in this
paper, it is more appropriate to select the three most similar images as the retrieval results.
When the user inputs the image taken at the undetermined node, the three most similar
images are obtained through image retrieval, which are annotated with the corresponding
position information and poses Rcw.

Let the coordinates of the point to be located be P(XP, YP, ZP), and the positions
of the three images in the retrieved dataset be p1(Xp1 , Yp1 , Zp1), p2(Xp2 , Yp2 , Zp2), and
p3(Xp3 , Yp3 , Zp3), respectively. In the positioning process, p1, p2, and p3 are respectively
taken as points on the three lines, and the translation vector t calculated according to
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the epipolar geometry is taken as the direction vector of the corresponding line. The
symmetrical expressions of the three straight lines are as follows:

L1 :
X−Xp1

tx1
=

Y−Yp1
ty1

=
Z−Zp1

tz1
= α1

L2 :
X−Xp2

tx2
=

Y−Yp2
ty2

=
Z−Zp2

tz2
= α2

L3 :
X−Xp3

tx3
=

Y−Yp3
ty3

=
Z−Zp3

tz3
= α3

, (23)

where tx1 , ty1 , and tz1 respectively correspond to the values of the direction vector t of L1
on the X, Y, and Z coordinate axes.

The three lines do not intersect each other due to the error. When the three lines are
not parallel to each other, a point can be found in the 3D space such that the sum of the
distances from the point to the lines is minimized. The matrix is used to calculate the
coordinates of the node.

X + 0 ·Y + 0 · Z− tx1 · α1 − 0 · α2 − 0 · α3 = Xp1

0 · X + Y + 0 · Z− ty1 · α1 − 0 · α2 − 0 · α3 = Yp1

0 · X + 0 ·Y + Z− tz1 · α1 − 0 · α2 − 0 · α3 = Zp1

X + 0 ·Y + 0 · Z− 0 · α1 − tx2 · α2 − 0 · α3 = Xp2

0 · X + Y + 0 · Z− 0 · α1 − ty2 · α2 − 0 · α3 = Yp2

0 · X + 0 ·Y + Z− 0 · α1 − tz2 · α2 − 0 · α3 = Zp2

X + 0 ·Y + 0 · Z− 0 · α1 − 0 · α2 − tx3 · α3 = Xp3

0 · X + Y + 0 · Z− 0 · α1 − 0 · α2 − ty3 · α3 = Yp3

0 · X + 0 ·Y + Z− 0 · α1 − 0 · α2 − tz3 · α3 = Zp3

. (24)

This can be expressed as Equation (25).

Φ ·ϕ = p, (25)

where

Φ =



1 0 0 tx1 0 0
0 1 0 ty1 0 0
0 0 1 tz1 0 0
1 0 0 0 tx2 0
0 1 0 0 ty2 0
0 0 1 0 tz2 0
1 0 0 0 0 tx3

0 1 0 0 0 ty3

0 0 1 0 0 tz3


, ϕ =



X
Y
Z
α1
α2
α3

, p =



Xp1

Yp1

Zp1

Xp2

Yp2

Zp2

Xp3

Yp3

Zp3


. (26)

When three lines are parallel to each other, an infinite number of solutions will be
obtained to form a line LP, where the points on the line are the same distance from L1, L2,
and L3. When the matrix has a unique solution, the coordinates of the point to be located
can be obtained by the least square method. However, when the solution of the equations
is not unique (i.e., the rank of the equations is not full), the least square method cannot
provide a solution, while the singular value decomposition can effectively solve them. This
method can effectively solve the case of both unique solutions and infinite solutions. When
the matrix column is full rank, the unique solution can be obtained using both methods.

Φ = UΩVT. (27)
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The general form of Equation (27) is Equation (28).

Φ = [u1, u2, . . . , uk, uk+1, . . . , um]


ω1 · · · 0
...

. . .
...

0 · · · ωk

Zk(n−k)

Z(m−k)k Z(m−k)(n−k)

[v1, · · · , vk, vk+1, · · · , vn]
T, (28)

where Z is the zero matrix, m = 9, and n = 6. The above expression can be further split, as
shown in Equation (29).

Φ = [u1, u2, . . . , uk]

ω1 · · · 0
...

. . .
...

0 · · · ωk


vT

1
...

vT
k

+ [uk+1, . . . , um]Z(m−k)(n−k)

vT
k+1
...

vT
n

. (29)

The second half of the above equation is 0; thus, it can be further simplified to obtain
Equation (30).

Φ = [u1, u2, . . . , uk]

ω1 · · · 0
...

. . .
...

0 · · · ωk


vT

1
...

vT
k

. (30)

To find Ω, the following calculation is required:

ΦTΦ =
(

UΩVT
)T

UΩVT = VΩUTUΩVT = VΩΩVT. (31)

If S = ΩΩ, Equation (31) can be transformed into the form of Equation (32).

ΦTΦV = VS. (32)

Therefore, λi is an eigenvalue of ΦTΦ, and vi is the corresponding eigenvector of λi,
which is expressed in Equation (33).

ΦTΦvi = λivi, i = 1, 2, . . . , 6. (33)

Each eigenvalue of the above equation can be calculated according to
(

ΦTΦ− λI
)

x = 0,
and the corresponding singular value can be obtained by square root of the eigenvalue, as
shown in Equation (34).

ωi =
√

λi, i = 1, 2, · · · , 6. (34)

According to ΦV = UΩ, the corresponding vector in U can be obtained as shown in
Equation (35).

uj =
1

Ωj
Φvj, j = 1, 2, · · · , 6. (35)

The coefficient matrix Φ is decomposed according to the singular value and brought
back to the expression Φ ·ϕ = p, from which Equation (36) can be obtained.

ϕsvd = VT
6 ·Ω−1

6 ·U
T
6 · p. (36)

Therefore, the coordinates of the point to be located are as follows:

P(Xp, Yp, Zp) = (ϕsvd[1],ϕsvd[2],ϕsvd[3]). (37)



Micromachines 2023, 14, 1097 16 of 31

The perpendiculars of the three lines are given by Equation (38).
Pf _L1=p1 + t1 ·ϕsvd[4]
Pf _L2=p2 + t2 ·ϕsvd[5]
Pf _L3=p3 + t3 ·ϕsvd[6]

. (38)

Under the ideal condition without electromagnetic interference, measurement, and
calculation errors, the three direction vectors can converge at the undetermined node, as
shown in Figure 13a. However, due to the complex electromagnetic environment in the
indoor environment, measurement and calculation errors are inevitable, such that the
direction vector cannot be effectively converged. Therefore, a three-dimensional recon-
struction localization method (3D RML) is proposed to obtain the intersection points and
perpendiculars according to Equations (37) and (38), as shown in Figure 13b.
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Figure 13. Determination of 3D coordinates: (a) ideal error-free case; (b) case with errors.

The purple rectangle in the figure is the position of the three most similar images
obtained through image retrieval in the world coordinate system. The three lines are the
relative direction vectors obtained by epipolar geometry. As can be seen from Figure 13b,
3D RML can find the green intersection point with the minimum distance sum of the three
lines when they do not intersect each other as the positioning result. The distance between
this positioning coordinate and the real node to be located, shown by the red star, is small.

Considering the different datasets and image acquisition densities used by different
researchers, the number of most similar images obtained during retrieval to support
positioning is also different. Therefore, the localization method in this paper is extended to
retrieve r images. Equation (24) can be extended to Equation (39).

X + 0 ·Y + 0 · Z− tx1 · α1 − · · · − 0 · αk − · · · − 0 · αr = Xp1

0 · X + Y + 0 · Z− ty1 · α1 − · · · − 0 · αk − · · · − 0 · αr = Yp1

0 · X + 0 ·Y + Z− tz1 · α1 − · · · − 0 · αk − · · · − 0 · αr = Zp1
...

X + 0 ·Y + 0 · Z− 0 · α1 − · · · − txk · αk − · · · − 0 · αr = Xpk

0 · X + Y + 0 · Z− 0 · α1 − · · · − tyk · αk − · · · − 0 · αr = Ypk

0 · X + 0 ·Y + Z− 0 · α1 − · · · − tzk · αk − · · · − 0 · αr = Zpk
...

X + 0 ·Y + 0 · Z− 0 · α1 − · · · − 0 · αk − · · · − txr · αr = Xpr

0 · X + Y + 0 · Z− 0 · α1 − · · · − 0 · αk − · · · − tyr
· αr = Ypr

0 · X + 0 ·Y + Z− 0 · α1 − · · · − 0 · αk − · · · − tzr · αr = Zpr

. (39)
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The coordinates of the point to be located can be obtained according to the singular
value decomposition, as shown in Equations (40) and (41).

ϕsvd = VT
k ·Ω

−1
k ·U

T
k · p. (40)

P(Xp, Yp, Zp) = (ϕsvd[1],ϕsvd[2],ϕsvd[3]). (41)

The perpendiculars to the r lines are given by Equation (42).

Pf _L1=p1 + t1 ·ϕsvd[4]
...

Pf _Lk=pk + tk ·ϕsvd[k + 3]
...

Pf _Lr=pr + tr ·ϕsvd[r + 3]

. (42)

3.2.4. The Optimal Threshold Determination

We constructed a three-dimensional reconstruction localization method on the basis of
the above research. This method can determine the 3D coordinates of the camera when the
user takes the image at the node to be located in the indoor condition. However, the dataset
is constructed from images collected in different areas of the environment, inevitably
leading to differences in feature points. The specificity of the image leads to the different
support degree of the feature points to the positioning, which results in a significant
variance of the positioning error. However, if the coordinate centroid is calculated for most
similar images retrieved, the location results can be limited to the vicinity of the image
retrieval results. The instability of the search results directly affects the location results, as
shown in Figure 14. The gray triangle is the location of the three images obtained by image
retrieval, and the yellow circle is the result obtained using the centroid method. At this
time, because the retrieval results are on the same side of the real point, the final result is far
away from the actual node. Using 3D RLM, the positioning result obtained by calculating
the relative pose is closer to the actual position. Although the simple centroid method
depends on uniform and accurate image retrieval results, it can limit the result area of the
results when the positioning method based on epipolar geometry performs badly. Their
complementarity provides a new idea for higher-precision positioning.
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Figure 14. Positioning method switching: (a) 3D MSD is more accurate; (b) centroid is more accurate.

Under the condition that the building structure is an irregular rectangle and the room
layout is uneven due to different application conditions, a single positioning method is not
universal. It cannot meet the needs of accurate indoor positioning. A 3D reconstruction
localization method based on threshold dynamic selection (3D RLM-TDS) is proposed for
such cases. The positioning method is switched according to an optimal threshold so that
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the effect of accurate indoor positioning is achieved. When the location result deviates too
far from the retrieval results, the centroid method can limit the location result. When the
retrieval results are all on the same side of the location point, causing the centroid to be far
away from the real coordinates, 3D RLM is used to calculate the final positioning results so
as to obtain the coordinate with higher accuracy in continuous and real-time positioning.

The measurement points were located according to the epipolar geometry and the
centroid method, respectively, and the 3D shortest distance between the positioning coordi-
nates obtained by the two methods was calculated. Taking their gap as the measurement
target, six threshold values between 0.1 m and 0.6 m with 0.1 m intervals were selected
for a rough test experiment, and six positioning points were estimated. Considering the
representative pose and the source range of image retrieval, 2688 data were selected for
each group of experiments. The positioning error results under different threshold values
are shown in Figure 15.
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According to the bar chart, it can be observed that the differences between the coordi-
nates obtained by positioning with different thresholds and the real coordinates generally
reached the minimum near the dark-coffee color and the light-coffee color, which means
that lower positioning error could be achieved when the threshold value was in the neigh-
borhood of 0.3 to 0.4. In order to obtain a more accurate threshold value, a fine experiment
was conducted on the threshold values with an interval of 0.02 within the range of 0.2 to
0.4, and the results are shown in Figure 16.
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Although the positioning error from 0.2 to 0.4 fluctuated, the overall trend was concave.
The lowest point of error obtained at different thresholds for each node was the intersection
point of the orange dotted line in Figure 16. The lowest point of localization error differed
because the image features extracted at different positions also differed. Therefore, accord-
ing to the average value of the threshold when the error of each positioning point was the
lowest, it was calculated that, when the image retrieved was eight points around the point
to be located, the highest positioning accuracy could be obtained using a threshold of 0.3.

4. Performance Verification
4.1. Dataset Selection

Large indoor places such as shopping malls, supermarkets, teaching buildings, hos-
pitals, and parking lots are located in complex buildings. As shown in the first column
of yellow lines in Figure 17, although the overall structure of the building presents a
symmetrical distribution, the external outline is irregular, and the layout of the rooms in
the building is also crisscrossed. The corridors, stairwells, and passageways between the
buildings are intricate. Therefore, it is necessary to conduct indoor positioning for this kind
of environment.
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Figure 17. Scenes of dataset.

This experiment chose a teaching building as scene II, including multimedia class-
rooms, conference rooms, lecture halls, offices, laboratories, and underground parking lots.
The structure of the building is complex, and there are many corridors and intersections.
The orange rectangle in the middle of Figure 17 shows the corridors, and the corresponding
blue arrow shows their direction. Therefore, it is in line with the building structure that
needs indoor positioning. As shown by the blue circle in the last column of Figure 15, the
building contains a large number of corners, columns, partitions, etc., which meets the
condition of uneven occlusion of the building to the line of sight and the requirements for
performance verification of the positioning method. In order to avoid the contingency of a
single scene experiment, we selected the laboratory building as scene I, which is similar in
structure to scene II.

In order to verify that the localization method can cope with different image retrieval
methods and apply different poses and feature extraction methods, we traversed all possible
retrieved images to obtain the final localization result. Eight representative directions were
used to represent different poses, and three classical feature extraction methods were
selected, covering the extraction of spot and corner features. The positioning results were
visualized, and the positioning accuracy was compared.

4.2. Positioning Effect

In order to verify the accuracy of positioning, experiments were carried out on the
two scenes mentioned in Section 3.1.1, and the positioning point arrangement is shown
in Figure 18.
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Figure 18. Distribution map of points to be located in experimental scenes.

The corridor in the building was narrow in scene I; hence, the square hall in scene
II was selected as the main test site. Data were collected from five effective shooting
directions of 32 test points in this corridor. Considering that the width of the corridor
in the actual scene and the positioning performance to be verified need to ensure the
diversity of poses, the center line of the corridor was selected as the central axis of the
test point in scene II, which was expanded at an interval of 0.6 m. The 24 sampling
points covered all eight representative directions for image shooting. In order to verify the
comprehensive positioning effect and accuracy, scene II was taken as an example of the
subsequent positioning experiment.

4.2.1. Effect of Different Range of Image Retrieval Results on Localization Accuracy

The purpose of image retrieval is to obtain several images that are most similar to the
image to be located. Due to the large camera angle of view, the retrieved results may also
be obtained because some local patterns in the angle of view are very similar. However, the
distance between the images is far at this time. As shown in Figure 16, the images in the
dataset were all taken in the same local area in the same direction. The minimum distance
between the images was 0.6 m, and the furthest distance was about 3 m. The similarity
between images was too great to ensure that the source range of retrieval results was in a
stable state.

Therefore, in order to explore the influence of the distance between the image retrieval
result and the point to be located on the positioning accuracy, the experiment was conducted
on the range of the result source. Scene II was taken as an example, corresponding to the
reference points in green in Figure 8b. The position of point Pos_k, represented by an
asterisk in Figure 18, is the point to be located, while the remaining points Pos_a to Pos_x
are the positions of the images in the dataset.

The ranges of different sources of image retrieval results are shown in purple in
Figure 17. When the retrieval results all came from the four points around Pos_k, namely,
Pos_h, Pos_j, Pos_l and Pos_n, as shown in Figure 19a, the distance between the retrieval
results and the undetermined site was 0.6 m. When the results came from the surrounding
eight, 10, and 14 points, the corresponding source ranges of search results are as shown in
Figure 19b–d. The number of surrounding points represents the distance range between the
dataset and the node to be located, and the corresponding relationship is shown in Table 2.
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Table 2. Localization accuracy and improvement rate under different ranges of retrieval results.

Scope of
Source

Distance
between

Retrieved
Images and

Query Image

Maximum
Distance
between

Retrieved
Images

90% 2D
Positioning

Error (m)

Improvement
Rate of 2D
Positioning

Error

90% 3D
Positioning

Error (m)

Improvement
Rate of 3D
Positioning

Error

4 points 0.60 1.20 0.27 55.00% 0.32 46.67%
8 points 0.85 1.70 0.54 36.47 0.54 36.47%
10 points 1.20 2.40 0.62 48.33% 0.63 47.50%
14 points 1.34 2.68 0.79 41.04% 0.79 41.04%

With different image retrieval results, different source ranges of points were used
to determine coordinates, resulting in different final positioning accuracy. When the
retrieval results came from eight representative directions of the surrounding ξ nodes,
Pos_k was used as the test point for the experiment with the localization method proposed
in this paper, and the first three most similar retrieved images were used for localization.
Considering that the retrieval results obtained by different retrieval methods differ, all
possible results were traversed according to 8× C3

ξ . When the maximum distance between
the retrieved image and the test point was 0.6 m, 0.85 m, 1.2 m, and 1.34 m, the number of
data obtained was 32, 448, 960, and 1760, respectively. The cumulative distribution function
of the corresponding positioning error is shown in Figure 20. Compared with directly
taking the retrieval results as the positioning results, the positioning accuracy improvement
rate and other relevant data of the positioning method proposed in this paper are shown
in Table 2.

When the source of image retrieval results was within 0.6 m around the node to be
located, the 2D error of 90% of nodes could reach 0.27 m using 3D RLM-TDS, improving
by 55%. When the distance between the image retrieval result and the actual point to be
located was within 1.34 m, and the maximum distance between the retrieved images was
2.68 m, 90% of the 2D and 3D positioning errors were within 0.79 m, improving by 41.04%.
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Among the four groups of experiments, the second one had the slightest improvement in
positioning accuracy at only 36.47%.
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In order to verify that the positioning method proposed in this paper could achieve
a higher positioning accuracy, the conditions that led the positioning accuracy to present
the lowest state were selected in the subsequent positioning experiments. That is to
say, the image retrieval range was eight points around the node to be located, and the
distance between the retrieval result and the point to be located was 0.85 m. If, under these
conditions, 3D RLM-TDS can resist the influence of the two conditions to be verified and
present stable positioning accuracy, then it can achieve higher localization accuracy when
the retrieval results show the other three groups in better states.

4.2.2. Visualization of Positioning Effect

In order to observe the localization experimental results of the proposed method
in detail, scene II was taken as an example to locate the six points Pos_e, Pos_h, Pos_k,
Pos_n, Pos_q, and Pos_t, and the positioning results were visualized. According to the
reasons mentioned in Section 4.2.1, eight known points near the test node were selected
as the subsequent positioning sources. Three points were randomly selected for epipolar
geometry pose calculation. According to C3

8 , there were 56 groups of experimental data
in total. The above verification was carried out on the images of the six points and eight
directions; thus, 6 × 56 × 8 = 2688 positioning results were obtained. The 2D and 3D
positioning results are shown in Figure 21.
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The positions of the big ball in Figure 21 represent the ground truth of the six test
points, and the small balls with the same color of each test point represent the positioning
result of the test point using 3D RLM-TDS. According to the distribution of the positioning
points, it can be seen that the positions obtained using the positioning method proposed in
this paper were all near the actual nodes, and there were no outliers with a large gap.

4.3. Positioning Accuracy Verification
4.3.1. Verification of Positioning Accuracy under Different Positions and Poses

The localization effect of images taken from different directions was verified in two
experimental scenes. The images with eight representative poses are shown in Figure 22.
The dataset contained more pose information collected by the built-in smartphone sensors.
We took the camera’s optical axis, i.e., the Zc axis of the camera coordinate system, consistent
with the positive direction of the Xw axis of the world coordinate system, specified as
direction 1. Rotating counterclockwise in 45◦ increments, the sequence had directions 2–8.
The Euler angle and rotation matrix corresponding to the orientation pose are shown
in Table 3.
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Table 3. Conversion of the camera coordinate system and world coordinate system under the
condition of each pose.

Pose Angle Rotation Matrix Pose Angle Rotation Matrix

Pose 1 y: −90◦

x: 90◦

 0 0 1
−1 0 0
0 −1 0

 Pose 2 y: −45◦

x: 90◦

 0.707106781 0 0.707106781
−0.707106781 0 0.707106781

0 1 0


Pose 3 y: 0◦

x: 90◦

1 0 0
0 0 1
0 −1 0

 Pose 3 y: 45◦

x:90◦

0.707106781 0 −0.707106781
0.707106781 0 0.707106781

0 −1 0


Pose 5 y: 90◦

x: 90◦

0 0 −1
1 0 0
0 −1 0

 Pose 6 y: 135◦

x: 90◦

−0.707106781 0 −0.707106781
0.707106781 0 −0.707106781

0 −1 0


Pose 7 y: 180◦

x: 90◦

−1 0 0
0 0 −1
0 −1 0

 Pose 8 y: −135◦

x: 90◦

−0.707106781 0 0.707106781
−0.707106781 0 −0.707106781

0 −1 0



The 3D RLM-TDS proposed in this paper was used to locate the images taken in eight
representative directions, and the 2D and 3D positioning errors are shown in Figure 23.
The cumulative distribution trend of positioning errors in all directions was consistent,
indicating that the positioning method was not limited to a specific pose. The 2D positioning
error and the 3D positioning error showed a uniform trend. Specifically, 90% of the 3D
positioning errors were within 0.58 m, verifying the method’s robustness under different
poses and meeting the positioning accuracy requirements in practical applications.
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4.3.2. Verification of Positioning Accuracy Using Three Feature Extraction Methods

In the experiment, different methods were selected for feature extraction and matching.
The poses calculated using the epipolar constraint differed in terms of feature matching
pairs. As described in Section 2.1, classical image extraction and matching algorithms
include SIFT, SURF, and ORB. Therefore, these methods were used to locate the six points
of Pos_e, Pos_h, Pos_k, Pos_n, Pos_q, and Pos_t among the 24 coordinate points in scene II.
Image retrieval was derived from a dataset of eight points around the point to be located,
and each node is verified against the dataset images in eight directions. The corresponding
2D and 3D positioning accuracies are shown in Figure 24.

Micromachines 2023, 14, x FOR PEER REVIEW 25 of 32 
 

 

indicating that the positioning method was not limited to a specific pose. The 2D position-

ing error and the 3D positioning error showed a uniform trend. Specifically, 90% of the 

3D positioning errors were within 0.58 m, verifying the method’s robustness under differ-

ent poses and meeting the positioning accuracy requirements in practical applications. 

  

(a) (b) 

Figure 23. Positioning error under different poses: (a) 2D positioning error; (b) 3D positioning error. 

4.3.2. Verification of Positioning Accuracy Using Three Feature Extraction Methods 

In the experiment, different methods were selected for feature extraction and match-

ing. The poses calculated using the epipolar constraint differed in terms of feature match-

ing pairs. As described in Section 2.1, classical image extraction and matching algorithms 

include SIFT, SURF, and ORB. Therefore, these methods were used to locate the six points 

of Pos_e, Pos_h, Pos_k, Pos_n, Pos_q, and Pos_t among the 24 coordinate points in scene 

Ⅱ. Image retrieval was derived from a dataset of eight points around the point to be lo-

cated, and each node is verified against the dataset images in eight directions. The corre-

sponding 2D and 3D positioning accuracies are shown in Figure 24. 

  

(a) (b) 

Figure 24. Positioning error under different feature extraction methods: (a) 2D positioning error; (b) 

3D positioning error. 

It can be observed that, no matter which feature extraction method was used for epi-

polar geometry calculation, the final positioning accuracy showed a uniform trend. It can 

be seen from the data statistics that 90% of the positioning errors obtained by the three 

methods were all lower than 0.575 m. 

We compared the CDF of positioning error of different pose images and different 

feature extraction methods. The average positioning error was sorted out to further ob-

serve the errors clearly. The average 3D positioning error of the 2688 data obtained using 

Figure 24. Positioning error under different feature extraction methods: (a) 2D positioning error;
(b) 3D positioning error.

It can be observed that, no matter which feature extraction method was used for
epipolar geometry calculation, the final positioning accuracy showed a uniform trend. It
can be seen from the data statistics that 90% of the positioning errors obtained by the three
methods were all lower than 0.575 m.

We compared the CDF of positioning error of different pose images and different
feature extraction methods. The average positioning error was sorted out to further observe
the errors clearly. The average 3D positioning error of the 2688 data obtained using the
ORB, SIFT, and SURF methods was 0.3186, 0.3106, and 0.3121 m, respectively. The 2D and
3D average positioning errors of different poses and different positioning points are shown
in Figures 25 and 26.
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Due to the differences in the patterns and objects in the images captured at different
nodes with different poses, the extracted feature points also changed accordingly; thus, the
average positioning error obtained also fluctuated. However, it was basically concentrated
at about 0.3–0.32 m, showing a relatively stable state. Therefore, 3D RLM-TDS proposed
in this paper can cope with different shooting poses, adapt to different feature extraction
methods, and resist the influence caused by different source ranges of image retrieval
results. It has high robustness and achieves the effect of stably meeting the demand for
accuracy in practical positioning applications.

4.4. Real-Time Performance Analysis

To verify that the positioning method proposed in this paper can meet the require-
ments of engineering practice, 100 positioning experiments were carried out, and the time
consumption of each involved process was statistically analyzed. In engineering, response
times for software interfaces are typically based on certain criteria. When the response
time is below 2 s, it is considered a “very attractive” user experience. Users rate a response
within 5 s as a “relatively good” experience. However, if the response time is between 5 s
and 10 s, it is considered a “bad” experience, and, if no response is received after 10 s, the
request is judged to have failed. Therefore, if the time is less than 5 s from when the user
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uploads the image to when the positioning coordinate is obtained, the positioning system
can be considered to be real-time and meet the needs of practical applications.

After the user uploads the image, it needs to go through four main steps: feature
extraction, dataset image retrieval, relative pose calculation, and 3D RML-TDS location
determination. According to the relevant features shown in Figure 2, ORB and SURF, which
are relatively efficient, were selected for feature extraction and retrieval to shorten the
overall positioning response time. A total of 100 positioning experiments were carried out
at different nodes. The image feature extraction and retrieval time were determined, and
the average value was calculated. The program operation results are shown in Figure 27.
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Figure 27. Feature extraction and image retrieval time: (a) ORB; (b) SURF.

The experiment showed that the feature extraction time of ORB and SURF was
14.9246 ms and 61.9981 ms, respectively. The time of image retrieval is related to the
method, dataset size, and the similarity degree of dataset images. In this experiment, the
dataset consisted of 500 images, and the average time of 100 retrievals for ORB and SURF
features was 0.3576 s and 4.22 s, respectively. The relative pose calculation process of a
pair of images was about 30 ms. We selected the three most similar images to get poses.
Therefore, acquiring the three translation vectors required a total of 90 ms. The matrix oper-
ation and position switching based on a threshold in 3D RML-TDS consumed a short time,
and the acquisition from attitude calculation to final positioning result could be achieved
in 100 ms. To sum up, the overall time of feature extraction and image retrieval based
on ORB and SURF with 3D RML-TDS for positioning was 472.5246 ms and 4381.9981 ms,
respectively. That is, 3D ML-TDS (ORB) and 3D ML-TDS (SURF) could be positioned
within 0.5 s and 5 s, respectively, meeting real-time requirements.

4.5. Construction of Positioning Mini Program and Comparison of Localization Performance
4.5.1. Performance Comparison of Location Determination Methods

In order to further verify the performance of the positioning method proposed in this
paper, the pose estimation method proposed in [30,31] and the position determination
method used in [32–34] were selected for combined experiment. In order to unify the
preconditions for comparison, the three most similar images obtained from image retrieval
were selected for pose determination and positioning point calculation. The cumulative
distribution of positioning errors and average positioning errors are shown in Figure 28 and
Table 4, respectively. Among them, 3D RLM is the positioning error obtained by solving the
minimum distance sum in three-dimensional space without threshold constraints. N × dis
is the positioning method considering the quantity of feature matching in [34], and Dis
corresponds to [32,33]. The first two items in Table 4 refer to the location obtained by direct
image retrieval using ORB and SURF, respectively.
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Table 4. Comparison of average error of different positioning methods. The check and cross marks
indicate whether 3D coordinates can be obtained and whether there are large outliers.

Position
Determination Pose Acquisition 3D Coordinate Large Outlier Average Positioning

Error (m)

ORB image retrieve ×
√

× 1.887250
SURF image retrieve ×

√
× 0.724250

N × dis [34] LMedS ×
√

1.431490
N × dis [34] RANSAC × × 1.335285
Dis [32,33] LMedS ×

√
1.062031

Dis [32,33] RANSAC × × 0.877582
3D RML LMedS

√
× 0.539870

3D RML RANSAC
√

× 0.487767
3D RML-TDS LMedS

√
× 0.318551

3D RML-TDS RANSAC
√

× 0.315481

Combining Figure 28 and Table 4, it can be observed that the errors of these four
positioning methods were similar when the pose estimation method was changed. Since
N × dis and Dis methods map 3D vectors to 2D, large outliers are generated when trans-
lation vectors are obtained by LMedS. RANSAC can achieve a more stable positioning
situation. However, 3D RLM-TDS does not select the intersection point that may occur at
infinity as the positioning result and adds the constraint on the location of the retrieved
image; thus, the error obtained is significantly lower than other methods.

4.5.2. Construction of WeChat Positioning Mini Program and Positioning Results

In order to verify the positioning performance of this positioning method in an actual
scenario, we developed the WeChat positioning mini program mounted on the mobile smart
terminal. It is based on the WeChat developer tools, and the .wxml, .json, .js, and .wxss
files were written to build the program interface, as shown in Figure 29. The instruction
to retrieve corresponding dataset by SURF is sent according to the building selected by
the user. Photos chosen from albums or taken by users are compressed and uploaded to
obtain poses by RANSAC. Lastly, the adjusted coordinates calculated by 3D RLM-TDS are
transmitted to the mini program for marking.

In order to verify the actual positioning performance of the WeChat mini program and
the localization method proposed in this paper, a positioning experiment for a user was
conducted in scene II to simulate the real situation. The corresponding positioning results
are shown in Figure 30.
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Figure 30. The positioning results of the fixed points when the user walks in different directions.

In the experiment, we walked along the central red dotted line in the corridor in
directions 1 and 5. Then, we stopped, uploaded a clear photo taken at each asterisk location,
and obtained the positioning result. The asterisk positions are the pre-marked fixed
points. The locations of the blue and green triangles correspond to the results according to
different images obtained in directions 1 and 5, respectively. It can be seen that the method
proposed in this paper can acquire an accurate location without additional equipment,
meet the application requirements of the actual indoor environment for user positioning,
and achieve the effect of real time and practicability.

5. Discussion

Whether using a linear algorithm or a nonlinear algorithm to estimate the fundamental
matrix, the core idea is to transform the problem into an optimization problem. When there
are many matching points, the computational complexity of this method is large, and it
is difficult to obtain a globally optimal solution. Therefore, how to design the solution
method of the fundamental matrix and further improve the accuracy and stability of the
fundamental matrix estimation will be a follow-up research direction.
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6. Conclusions

This paper studied the visual positioning of large indoor places such as teaching
buildings, hospitals, libraries, shopping malls, and parking lots. Both ICP and PnP need
to obtain the actual 3D coordinates of some feature points in space to achieve 3D–3D and
3D–2D position estimation. Considering factors such as ease of use, equipment price, and
deployment cost, it is more cost-effective to obtain location information from 2D images.
However, the existing methods to calculate the positioning coordinates using the pose
obtained from the epipolar geometry project the 3D vector onto the 2D plane and select the
intersection point, which may be at infinity as a result. Therefore, we proposed an indoor
visual positioning method with 3D coordinates using an accelerometer and magnetometer
to realize the precise positioning of indoor users.

Firstly, the checkerboard calibration board was established, and the internal parame-
ters satisfying the reprojection error were obtained according to Zhang’s calibration method
for fundamental matrix calculation. We constructed an offline dataset in two scenes and
marked the pose obtained by built-in smartphone sensors and the position acquired by a
laser rangefinder onto the images taken at corresponding locations. Secondly, 3D RLM-TDS
was designed to transform the positioning problem into solving the minimum distance
from one point in the space to multiple straight lines. Experiments were carried out to
determine the optimal threshold of the constraint method so as to limit the location of the
positioning results. Thirdly, the localization experiment and result visualization were car-
ried out in three situations of different range images as the retrieval results, with different
camera poses and different feature extraction methods. The findings indicated that, even
when the retrieval results are the worst, the positioning method could still achieve 90%
positioning effect with an error of less than 0.58 m under different poses. Moreover, the
method was not limited to a single feature extraction method, and the average positioning
error was lower than 0.32 m. Lastly, a WeChat mini program mounted on mobile devices
was designed to realize dynamic experiments, and the positioning method proposed in
this paper was compared with other recent work. The results showed that the proposed 3D
RLM-TDS achieves ease of use under the condition of low equipment and deployment cost,
while meeting the error requirements of user positioning in practical applications.
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