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Abstract: This paper presents a novel nano-material composite membrane for detecting aflatoxin
B1 (AFB1). The membrane is based on carboxyl-functionalized multi-walled carbon nanotubes
(MWCNTs-COOH) @ antimony-doped tin oxide (ATO)-chitosan (CS). To prepare the immunosensor,
MWCNTs-COOH were dissolved in the CS solution, but some MWCNTs-COOH formed aggregates
due to the intertwining of carbon nanotubes, blocking some pores. ATO was added to the solution
containing MWCNTs-COOH, and the gaps were filled by adsorbing hydroxide radicals to form a
more uniform film. This greatly increased the specific surface area of the formed film, resulting in a
nano-composite film that was modified on screen-printed electrodes (SPCEs). The immunosensor was
then constructed by immobilizing anti-AFB1 antibodies (Ab) and bovine serum albumin (BSA) on an
SPCE successively. The assembly process and effect of the immunosensor were characterized using
scanning electron microscopy (SEM), differential pulse voltammetry (DPV), and cyclic voltammetry
(CV). Under optimized conditions, the prepared immunosensor exhibited a low detection limit of
0.033 ng/mL with a linear range of 1 × 10−3–1 × 103 ng/mL. The immunosensor demonstrated
good selectivity, reproducibility, and stability. In summary, the results suggest that the MWCNTs-
COOH@ATO-CS composite membrane can be used as an effective immunosensor for detecting AFB1.

Keywords: immunosensor; aflatoxin B1; multi-walled carbon nanotubes; antimony-doped tin oxide;
field real-time detection

1. Introduction

Aflatoxin (AFT), a potent natural carcinogen, is a biologically active secondary metabo-
lite mainly produced by Aspergillus flavus, Aspergillus parasiticus, and Aspergillus
oryzae [1]. Among them, Aflatoxin B1 (AFB1) is the most toxic and widespread, pos-
ing a significant threat to human health [2]. It is almost impossible to avoid AFB1 in
agricultural products, and its continuous consumption, even at low levels, can lead to a
dramatic increase in the incidence of cancer and other diseases, particularly in developing
countries, where AFB1 is associated with many types of cancers. Therefore, the maximum
residue levels of AFB1 in foods must be strictly controlled. Traditional methods of AFB1 de-
tection are time-consuming and not suitable for on-site monitoring of agricultural products.
Hence, there is an urgent need to develop rapid and quantitative methods and instruments
for AFB1 detection to achieve effective control of its levels in agricultural products.
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To safeguard food safety and protect human health, a range of instrument detection
techniques have been developed, such as thin-layer chromatography (TLC) [3], high-
performance liquid chromatography (HPLC) [4], and HPLC-mass spectrometry (MS) [5].
Although these methods offer high detection accuracy and stability, their complex and time-
consuming operations have hindered their advancement in the realm of rapid detection [6].
Hence, the need of the hour is to devise a simple, swift, and efficient means of detecting
AFB1. In recent years, immunosensors have emerged as a promising detection method
that leverages the specific binding of antigens and antibodies to detect small molecules [7].
Owing to their high detection accuracy, low cost, time efficiency, and ease of use, a range
of immunosensors have been deployed to detect AFTs [8]. Among the electrochemical
signal transduction techniques, electrochemiluminescence immunosensors [9] and elec-
trochemical immunosensors [10] have exhibited high sensitivity and are widely applied
in diverse immune reactions using voltammetry and amperometry, which are the most
prevalent and widely adaptable methods [11]. Enhancing the current response of the
immunosensor through the incorporation of nanomaterials represents an effective means of
heightening its sensitivity. Nanomaterials such as gold nanoparticles [12], Fe3O4 [13], and
graphene oxide [14] are typically employed to modify electrodes. This incorporation not
only improves the transmission efficiency on the surface of the electrode but also amplifies
the specific surface area.

Chitosan, a naturally-occurring alkaline polysaccharide compound, is also known as
polyglucosamine (1-4)-2-amino-B-D glucose. It is obtained by the deacetylation of chitin,
and is highly versatile due to its abundant amino groups. When chitosan is dissolved in
acidic solution, these amino groups become free and protonated, giving it polycationic
electrolyte properties. This remarkable feature allows chitosan to serve as a highly effective
dispersant, capable of chelating various heavy metal ions. In addition, chitosan exhibits
exceptional anion adsorption capabilities and is naturally biodegradable, making it a highly
attractive and eco-friendly option [15].

Multi-walled carbon nanotubes (MWCNTs) possess remarkable electrical conductivity,
thermal conductivity, and mechanical properties, rendering them ideal for developing high-
performance polymer composites with multifunctional capabilities. The unique structure
and high specific surface area of MWCNTs allow for precise control of electronic properties
through molecular adsorption, doping, and charge transfer [16]. Furthermore, the deposi-
tion of MWCNTs onto electrode surfaces can create a continuous, ordered arrangement on
the electrode, establish a favorable micro-environment for immobilizing enzymes, aptamers,
or antibodies, and provide a pathway for electron transfer [17]. However, nano-films of
MWCNTs have the tendency to non-specifically adsorb small molecules, which may lead
to inaccuracies in small molecule detection.

Nanostructured doped oxides have become a focal point in the realm of research due
to their remarkable electrochemical properties [18]. Among them, antimony-doped tin
oxide (ATO) stands out as a promising alternative, as it enhances the conductivity of the
doping agent without compromising on high optical transparency [19]. Additionally, ATO
also exhibits exceptional electrocatalytic performance [20]. When added to a solution of
carboxyl-functionalized multi-walled carbon nanotubes (MWCNTs-COOH), ATO engulfs
the aggregates of MWCNTs-COOH to generate novel nanocomposites. The integration of
ATO results in a denser and more uniform nanocomposite film, which in turn reduces the
interaction between MWCNTs-COOH and the reaction substrate, thus lowering the rate of
electron transfer.

In this work, taking advantage of the combination of MWCNTs-COOH and ATO
nanomaterials, we developed nanocomposite membranes and used them for the construc-
tion of the AFB1 immunosensor. The aim of this work is to provide a sensitive and stable
membrane for quantitative determination of AFB1 in food and agricultural products.
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2. Experimental
2.1. Apparatus

The cyclic voltammetry (CV) and differential pulse voltammetry (DPV) measurements
were conducted using a CHI660D electrochemical workstation purchased from Shanghai
Chenhua Co., Shanghai, China. The screen-printed carbon electrodes (SPCEs, TE100,
d = 3 mm) used in the experiment were purchased from Zensor R&D (Taiwan, China). The
morphology of the modified electrodes was observed using a scanning electron microscope
(SEM) from the Netherlands. Ultrasonication was performed using a SK3300H ultrasonic
cleaner from Shanghai, China, and the solution was blended using a PTR-35 SPC vortex
mixer from Britain. All experiments were performed at room temperature.

2.2. Reagents and Materials

The antibodies (Abs) were procured from the Oil Crops Research Institute of the
Chinese Academy of Agricultural Sciences (Wuhan, China). The antimony-doped tin oxide
(ATO) with an OD of 20 nm and purity of 99% and carboxyl-functionalized multi-walled
carbon nanotubes (MWCNTs-COOH) with an OD range of 10–20 nm were purchased from
Beijing Gold Deco Island Co., Ltd. (Beijing, China). Potassium ferrocyanide (K3[Fe(CN)6])
and potassium ferricyanide (K4[Fe(CN)6]) were purchased from Yongda Chemical Reagent
Co., Ltd. (Tianjin, China). The 0.01 M pH 7.2–7.4 phosphate buffer solutions (PBS) were
procured from Beijing Solarbio Science & Technology Co., Ltd., Beijing, China. All other
chemicals used were of analytical reagent grade. Ultrapure water (18.2 MΩ·cm) purified
with an LS MK2 PALL-water purification system was used for the preparation of all
solutions. Chitosan (CS) was obtained from Sangon Biotech Co., Ltd. (Shanghai, China).

2.3. Preparation of MWCNTs-COOH @ ATO-CS Composites

A total of 0.2 g of CS was dissolved in 100 mL of 1% acetic acid solution, and magnetic
stirring was continued for more than 8 h to prepare a 0.1% (w/v) CS solution. Then, 2 mg
of MWCNTs-COOH powder and 1.2 mg of ATO powder were accurately weighed and
dissolved in 4 mL of CS solution using 2 h of ultrasonic treatment and 2 h of mixing with a
mixer until the suspension became uniform and stable. The resulting highly dispersed and
dark grey suspension was the MWCNTs-COOH @ ATO-CS solution, which was stored in a
refrigerator (4 ◦C) for the experiment.

2.4. Preparation of Immunosensor Based on SPCEs
2.4.1. Preparation of SPCEs

To prepare the electrode for modification, it was thoroughly cleaned by ultrasonic
cleaning in NaOH and HCl solutions for 5 min each. The electrode was then washed with
ultrapure water and dried with nitrogen gas. To further ensure cleanliness, the electrode
was washed with anhydrous ethanol and dried again with nitrogen gas. The treated
electrodes were then immersed in pH 5.0 PBS solution for 300 s with a potential of 1.75 V
and subsequently scanned from 0.3 V to 1.25 V and from 0.3 V to −1.3 V until a steady state
CV curve was obtained [21].

2.4.2. Preparation of AFB1/BSA/Ab/MWCNTs-COOH @ ATO-CS/SPCEs Immunosensor

A total of 6 µL MWCNTs-COOH @ ATO-CS solution was applied to the pre-treated
SPCE surface and allowed to dry at room temperature, creating the MWCNTs-COOH @
ATO-CS/SPCE. Next, 6 µL of Ab was added to the modified electrode surface to form
Ab/MWCNTs-COOH@ATO-CS/SPCE. To create the BSA/Ab/MWCNTs-COOH@ATO-
CS/SPCE, 6 µL of BSA was added to the nanomaterial-modified electrode surface and
dried at −4 ◦C. The electrode was then stored at 4 ◦C for AFB1 detection. The preparation
process of the immunosensor is illustrated in Figure 1.
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Figure 1. Schematic diagram of the preparation process of the immunosensor.

2.4.3. Electrochemical Measurements

The composites of MWCNTs-COOH @ ATO-CS were subjected to scanning elec-
tron microscopy (SEM) to analyze their properties. All electrochemical measurements
were carried out in 15 mL of 0.1 M PBS (pH 7.0) that contained a 1:1 mixture of 5 mM
K3[Fe(CN)6]/K4[Fe(CN)6] as a redox probe and 0.1 M KCl at ambient temperature. CV
was conducted within a potential range from −1.0 V to 1.0 V at a scan rate of 100 mV/s.
Electrochemical differential pulse voltammetry (DPV) measurements were performed un-
der the following conditions: voltage was scanned from −0.30 V to 0.60 V with a pulse
height of 100 mV, while the step height and frequency were maintained at 4 mV and 15 Hz,
respectively. To investigate the sensitivity and specificity of the proposed immunosensor,
DPV was utilized. Additionally, parameters that affected the immunosensor response, such
as the Ab concentration and response time, were optimized. Following optimization, the
proposed immunosensor was used to detect AFB1.

2.5. Immunosensor Specificity Analysis

In order to validate the specificity of the immunosensor, control experiments were
conducted using five different fungal toxins, namely, AFM1, α-zearalenone (α-ZEN), zear-
alenone (ZEN), ochratoxin A (OTA), and fumonisin B1 (FB1) at a concentration of 5 µg/mL.
In addition, AFB1 at a concentration of 100 ng/mL was also detected using the same
sensor under unchanged experimental conditions. The detected currents from the control
experiments were compared to observe any differences in response.

2.6. Peanut Oil Sample Pretreatment Method

Weigh precisely 5 g of peanut oil into a 100 mL triangular flask, and then add 25 mL
of 10% methanol PBS solution. Different concentrations of AFB1 should be added and
the mixture should be shaken vigorously with an oscillator for 30 min to ensure thorough
mixing. Next, the mixture should be centrifuged in a centrifuge for 10 min at 10,000 r/min.
After centrifugation, 1 mL of the supernatant should be taken and 4 mL of methanol PBS
solution should be added. Vigorous shaking for 5 s is necessary to ensure proper mixing,
and then the sample should be stored in a refrigerator for further use.
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3. Results and Discussion
3.1. Characterizations of Modified Electrodes

The modified electrodes were characterized using scanning electron microscopy (SEM)
to investigate the morphology and structure of the prepared materials. The SEM images in
Figure 2A revealed the presence of nano-scale cracks and holes on the electrode surface
after the MWCNTs-COOH-CS composite film was modified onto the electrode. Figure 2B
showed uniform density and size distribution of ATO-CS nanoparticles. The SEM image in
Figure 2C depicted the morphology of MWCNTs-COOH @ ATO-CS. The MWCNTs-COOH
formed clusters that were wrapped by a layer of ATO through electrostatic interaction,
which increased the specific surface area of the nanocomposite material and made the
material distribution more uniform. Compared to MWCNTs-COOH-CS or ATO-CS alone,
MWCNTs-COOH @ ATO-CS was denser, which helped to increase the transfer rate of
electrons. During the early stage of the formation of MWCNTs-COOH, they were prone to
stacking together layer by layer, and many cracks or gaps appeared during the stacking
process, resulting in the surface of MWCNTs-COOH being full of small holes. However,
the addition of ATO compensated for these gaps and improved the uniformity of the
nanocomposite, while also greatly enlarging its specific surface area. The EDS image in
Figure 2D showed the analysis of the composition of C, O, Sn, Sb, and other elements in
MWCNTs-COOH @ ATO-CS.
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In addition, the stability of the MWCNTs-COOH @ ATO modified electrode was
also evaluated. Six consecutive tests were conducted on the modified SPCE using the
nanomaterials. As depicted in Figure 3, the six curves exhibited a high degree of consistency,
suggesting that the nanocomposites demonstrated excellent stability.
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3.2. Electrochemical Behavior of the Modified Electrodes

The assembly process of the immunosensor was investigated using CV and DPV
techniques, where the bottom liquid contained 5 mM [Fe(CN)6]3−/4− and 0.1 M KCl. As
illustrated in Figure 4, the redox peaks of bare SPCEs were evident. Upon modification of
the electrode with MWCNTs-COOH @ ATO, the peak current increased substantially to
160 µA (curve b), suggesting that the MWCNTs-COOH @ ATO possessed a large surface
area and good electronic conductivity. Since antibodies lack conductivity as macromolec-
ular proteins, their addition impeded electron transfer between [Fe(CN)6]3−/4− and the
electrode surface. BSA acted as a blocker, eliminating non-specific binding by closing
specific sites on the surface of the electrode. Furthermore, since BSA had no conductivity,
electron transfer was further obstructed, resulting in a rapid decrease in peak current.
These results imply that the antibodies and BSA were successfully immobilized on the
electrode surface.
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3.3. Optimization Parameters of the Immunosensor Performance

The impact of Ab concentration on the immunosensor’s response was investigated
and the results are presented in Figure 5. As shown in the figure, the peak current increased
gradually with increasing Ab concentration until it reached a maximum value at 20 ng/mL.
Subsequently, the response remained relatively stable as the Ab concentration continued
to increase, indicating that the maximum number of Ab molecules had already been
immobilized on the electrode surface. Thus, 20 ng/mL was identified as the optimal Ab
concentration for fabrication of the immunosensor.
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Figure 5. Influence of immunosensor concentration.

A study was conducted to investigate the effects of reaction time on the response of
the immunosensor, and the findings are illustrated in Figure 6. It was observed that the
peak current increased in a gradual manner with the increase in reaction time and reached
its highest value at 40 min. Furthermore, the response became almost stable as the reaction
time was further extended, indicating that the reaction time had reached a saturation point
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on the immunosensor. Based on these observations, 40 min was deemed the most suitable
reaction time for the fabrication of the immunosensor.
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3.4. Calibration Curve

The unknown solution’s AFB1 concentration was deduced by analyzing the current
response of the immunosensor at various AFB1 concentrations immobilized on the electrode
surface. A correlation between different AFB1 concentrations and the immunosensor was
established, revealing that as the AFB1 concentration increased, the current response
difference decreased.

Figure 7 demonstrates a remarkable linear relationship between the current variance
and the corresponding AFB1 concentration. With the ideal experimental conditions, the AFB1
concentration could be accurately determined in the range of 1 × 10−3 to 1 × 103 ng/mL
using the linear equation y = 15.771 + 3.318x (R2 = 0.995). The immunosensor also exhibited a
remarkable detection limit of 0.03 ng/mL (S/N = 3).
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3.5. Selectivity and Stability of Immunosensor

The selectivity of the immunosensor was evaluated by comparing the sensing results of
five different mycotoxins: α-zearalenone (α-ZEN), ochratoxin A (OTA), fumonisin B1 (FB1),
zearalenone (ZEN), and AFM1, all at concentrations of 5 µg/mL, while the concentration of
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AFB1 was maintained at 100 ng/mL. As illustrated in Figure 8, except for AFM1, the current
response of other toxins was lower than 5 µA. Although AFM1 exhibited a current response
of 7 µA, its concentration was 50 times higher than that of AFB1. These findings indicate that
the developed immunosensor possessed an excellent selectivity for practical applications.
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To ensure the success of the immunosensor preparation, the stability of the prepared
immunosensors was assessed as a crucial factor. Following optimized conditions, a to-
tal of 12 immunosensors were fabricated and stored at 4 ◦C for 15 days. Subsequently,
these immunosensors were used to detect AFB1 at a concentration of 100 ng/mL. The
results revealed a slight decrease of approximately 9.2% in the measured current difference,
indicating that the immunosensor exhibited good stability.

3.6. Determination of Spiked Recovery of AFB1 in Peanut Oil

To assess the accuracy of the immunosensor, spiked recoveries were measured in
peanut oil samples after pretreatment. AFB1 was added to the peanut oil samples at
spiked concentrations of 10−1 ng/mL, 10 ng/mL, and 102 ng/mL. These experiments were
conducted under optimal conditions, and the results are presented in Table 1. The results
demonstrated spiked recoveries ranging from 95.15 to 111.60%, with relative standard
deviations ranging from 2.3 to 5.3%. These findings suggest that the immunosensor
exhibited good detection accuracy.

Table 1. Detection of peanut oil by immunosensor.

Sample AFB1 Addi-
tion(ng/mL)

Standard Current
Difference (µA)

∆I
(µA)

RSD
(%, n = 5)

Recovery Rate
(%)

1 10−1 5.82 5.6 5.2 95.15
2 10 9.14 10.2 3.2 111.60
3 102 12.45 12.08 2.3 96.10

3.7. Sensor Performance Comparison

Referring to Table 2, to conduct a comprehensive evaluation of the sensor developed in
this study, we compared and assessed various performance indicators of immune sensors.
Notably, our sensor boasts a wider detection range and a superior detection limit, which
suggests its great potential for practical applications.
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Table 2. Comparison of the performance of the sensor prepared in this study to other immunosensors.

Sensors Detection Method LOD Linear Rang Practical Samples Ref.

Porous AuNPs/GCE DPV 0.94 ng/mL 0.01–20 ng/mL Glutinous rice/Corn/Rice [22]
Au/Bi2S3/ERGO/CF DPV 8 pg/mL 10 pg–20 ng/mL Cornflour [23]

MWCNTs/RTIL/Ab/AFB1/GCE EIS 0.03 ng/mL 0.1–10 ng/mL Olive oils [24]
BSA/Ab/MWCNTs-COOH @

ATO-CS/SPCEs DPV 0.033 ng/mL 1 × 10−3–1 × 103 ng/mL Peanut oil This Work

GCE: glassy carbon electrode, ERGO: electrochemically reduced graphene oxide, CF: carbon fiber, RTIL: room
temperature ionic liquid, EIS: electrochemical impedance spectroscopy.

4. Conclusions

This study aimed to develop an AFB1 immunosensor using a nanocomposite material,
MWCNTs @ ATO-CS, via an experimental approach. The nanocomposite film was created
by incorporating multi-walled carbon nanotubes with nano-stannic oxide antimony and
CS as a dispersant, resulting in a film with excellent adhesion and biocompatibility. SEM
and CV were used to characterize the nanocomposite film, which exhibited a high level
of uniformity, allowing for amplified current signal detection in the immunosensor and
facilitating the immobilization of Ab. The immunosensor was constructed by immobi-
lizing MWCNTs @ ATO-CS, Ab, and BSA on SPCE through the layer-wise self-assembly
method. Each step of sensor fabrication was characterized using CV and DPV. Parameters,
such as the loading of antibodies and the incubation time of the immune reaction, were
optimized. The calibration curve was established under optimal conditions, showing a
linear relationship for AFB1 in the range of 10−3 to 103 ng/L with a linear equation of
y = 3.318x + 15.771 (R2 = 0.995). The immunosensor also demonstrated a limit of detection
of 0.03 ng/L (S/N = 3). The specificity and stability of the immunosensor were verified,
demonstrating excellent performance. Furthermore, the spiked recovery detection test in
peanut oil samples illustrated the immunosensor’s potential for practical sample detection.
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