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Abstract: To form a diffraction-free beam with a complex structure, we propose to use a set of primi-
tives calculated iteratively for the ring spatial spectrum. We also optimized the complex transmission
function of the diffractive optical elements (DOEs), which form some primitive diffraction-free distri-
butions (for example, a square or/and a triangle). The superposition of such DOEs supplemented
with deflecting phases (a multi-order optical element) provides to generate a diffraction-free beam
with a more complex transverse intensity distribution corresponding to the composition of these
primitives. The proposed approach has two advantages. The first is the rapid (for the first few
iterations) achievements of an acceptable error in the calculation of an optical element that forms
a primitive distribution compared to a complex one. The second advantage is the convenience of
reconfiguration. Since a complex distribution is assembled from primitive parts, it can be reconfig-
ured quickly or dynamically by using a spatial light modulator (SLM) by moving and rotating these
components. Numerical results were confirmed experimentally.

Keywords: structured laser beams; diffraction optical elements; diffraction-free beam; holographic
optical tweezers

1. Introduction

The term “diffraction-free beam” was introduced to denote a laser beam propagating
along the optical axis without changing the transverse distribution, i.e., without the influ-
ence of diffraction effects. The most famous among diffraction-free beams are the Bessel
modes [1–3], which are the solution of the Helmholtz equation in cylindrical coordinates. In
addition, Mathieu beams [4,5] are famous for the elliptic coordinate system and parabolic
beams [6,7] for the parabolic coordinate system, as well as various generalized beams [8–10].
A general property of classical diffraction-free beams is the concentration of the spatial
spectrum on a narrow ring. Such a property is often used to generate diffraction-free
beams [2,11]. There are also other beams with diffraction-free properties whose spatial
spectrum differs significantly from a narrow ring. They include Airy beams, Olver beams,
and their modifications [12–15].

Among the effective methods of forming diffraction-free beams are the applications
of axicons [16–18], diffraction optical elements (DOEs) [19–21], or spatial light modulators
(SLMs) [22–24]. With these approaches, in contrast to the focusing of a narrow ring [2,11], a
significant part of the energy of the incident beam goes to the formation of a diffraction-free
beam. However, in some cases, additional coding of the calculated complex amplitudes
into a phase-only mask may be required [25,26]. Another simple method of energetically
efficient formation of various diffraction-free beams is based on a partial diaphragm of the
annular light distribution [27,28], formed, for example, by a tandem of an axicon and a
lens [29,30], or a toroidal lens [31,32].
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Increased interest in the development and formation of new types of diffraction-
free beams is associated with their great utility in various applications, including optical
trapping [33–36], material processing [37–39], long-distance self-healing alignment [40–42],
encryption in optical communications [43–45], and increasing depth of field [46–48].

Diffraction-free beams play a special role in holographic optical tweezers for controlled
laser manipulation of an ensemble of microparticles. Structured laser beams with a complex
intensity and phase distribution make it possible to hold and move nano- and micro-sized
trapped objects in space. In this case, it is especially important to have the ability not only
to form beams with a given transverse field distribution but also to quickly rearrange the
structure of the beam. Usually, in this case, SLMs are used for the generation and dynamic
movement of a set of focused light points [49–51]. Simple optical elements shaping various
contour beams [52–54] and autofocusing beams [55–58] are also known. However, this
does not ensure the diffraction-free nature of the beams.

The design of optical elements to generate complex diffraction-free patterns, as a rule,
requires the use of iterative algorithms [59–63]. Although iterative methods seem to be a
universal tool, they do not have global convergence, i.e., only a certain local minimum is
guaranteed (one of the possible solutions with some accuracy). The disadvantage of an
iterative approach is also the fact of repeated use of the direct and inverse operator at each
iteration, which leads to significant time and computational costs.

In this paper, we propose a compromise approach, when a complex image is assembled
from a set of diffraction-free primitive pictures (for example, a square or/and a triangle),
for which the corresponding DOEs are pre-calculated and optimized using an iterative algo-
rithm based on the narrow ring spatial spectrum. Based on the superposition of such DOEs,
taking into account the rotation and displacement of primitives, it is possible to dynamically
(for example, using SLM) generate various more complex diffraction-free patterns.

2. Methods
2.1. Theoretical Background

It is known that a light field bounded by a narrow annular diaphragm is transformed
into a diffraction-free beam when focused by a lens. The length of the diffraction-free
region in the longitudinal direction is determined by the following parameters [2]:

zmax ≈ 2R0 f /d (1)

where f is the focal length of the lens, d is the middle radius of the annular diaphragm, and
the radius R0 is the smaller value of the lens radius or the effective radius of the diffraction
pattern [64]:

Re f f =
d
2
+

λ f
∆d

(2)

where λ is the radiation wavelength, ∆d is the width of the ring slit.
Thus, the length of the diffraction-free region defined by Equation (1) decreases both

with increasing the radius and the width of the ring slit. Thereby, the diffraction-free beam
is formed precisely by a very thin ring (∆d→ 0). In an ideal case, when the spatial spectrum
is the annular delta function, an arbitrary diffraction-free light field can be described by the
Whittaker integral [65–67]:

END(x, y, z) = exp
(

i
2π

λ
αzz
) 2π∫

0

A (ϕ) exp
[

i
2π

λ
αt(x cosϕ+ y sinϕ)

]
dϕ (3)

where αt < 1 is the constant corresponding to the radius of the annular spatial spectrum,

αz =
√

1− α2
t , and A(ϕ) is an arbitrary angular function on the annular spatial spectrum.

Note, the pattern of the angular spectrum may be obtained as the result of an iterative
solution to the inverse problem [68].
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However, in the case of an infinitely thin spectral ring, energy losses are inevitable,
and the convergence of the iterative process of the calculation deteriorates due to the small
number of degrees of freedom [59,69,70]. That is why, in the given work, we consider in
fact pseudo-diffraction-free beams [61,71], which have all the properties of diffraction-free
beams at a certain propagation distance defined by Equation (1) related to the size of the
bounding aperture.

2.2. Iterative Algorithm

We use an iterative algorithm that was previously successfully used to calculate a
DOE shaping a diffraction-free beam of the “light sheet” type [72] suitable for fluorescence
microscopy [73,74]. The iterative algorithm is based on the modeling of the action of
the lens using the Fourier transform and superimposing the annular diaphragm in the
spectrum plane (Figure 1).

Figure 1. The schematic representation of the iterative algorithm (upper line for the zero iteration
and bottom line for nth iteration) for the formation of a diffraction-free structured laser beam with a
transverse intensity distribution in the form of a given primitive (in particular, “triangle”).

The iterative algorithm presented in Figure 1 consists of the following main blocks:
truncation of the complex field in the spectral plane by an annular diaphragm, modeling,
action of the lens using the Fourier transform and replacement of the intensity by given
one in the focal plane. The stopping criterion for the iterative algorithm is determined
by the root mean square error (RMSE) of the generated intensity distribution from the
given (primitive) picture. When the RMSE falls below the specified threshold MSE0, the
calculation is finished. Figure 2 presents a block diagram of an iterative algorithm for the
formation of a diffraction-free structured laser beam with a transverse intensity distribution
in the form of a given primitive (in particular, “triangle”). The iterative process is described
in more detail below.

At the zero iteration n = 0, the complex distribution is given in the form of a constant
amplitude and a random phase with values in the range from 0 to 2π (“input field” in
Figure 1, block “begin” in Figure 2):

ψ0(x, y) = exp[i rand(0..2π)] (4)

Then the input complex field is truncated by an annular diaphragm (ψ̂n(x, y) in
Figure 1, block “1” in Figure 2):

ψ̂n(x, y) = ψn(x, y) · T(x, y), (5)

where T(x,y) is the ring-function:

T(x, y) =
{

1, rs ≤
√

x2 + y2 ≤ re,
0, else

(6)

where rs = d− ∆d/2, re = d + ∆d/2.
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Figure 2. Block diagram of the iterative algorithm, n is the iteration number, N is the maximum
number of iterations, block 1 is the stage with the application of the annular diaphragm, blocks 2
and 5 are the modeling of the lens action using the Fourier transform, block 4 is the stage with the
replacement of the intensity according to the shape of the primitive, block 3 is the exit criterion from
the iterative algorithm.

The annular spectral distribution defined by Equation (5) is Fourier transformed
simulating the lens action (={ψ̂n(x, y)} in Figure 1, block “2” in Figure 2):

Ψn(u, v) = =
{
ψ̂n(x, y)

}
=

∞∫
−∞

∞∫
−∞

ψ̂n(x, y) exp[−2πi(ux + vy)]dxdy. (7)

The RMSE between the calculated intensity |Ψn(u, v)|2 and the given distribution
(primitive) D(u, v) is estimated. If it does not exceed a given value of MSE0, then the exit
criterion (block “3” in Figure 2) is successfully fulfilled, otherwise, we go to the next stage
of the algorithm.

At the next stage, the complex distribution Ψn(u, v) is replaced corresponding to the
primitive distribution (“primitive” in Figure 1 and block “4” in Figure 2):

Ψ̂n(u, v) =
Ψn(u, v)
|Ψn(u, v)| ·

√
D(u, v). (8)

Next, the Fourier transform is performed again (={Ψ̂n(u, v)} in Figure 1, block “5” in
Figure 2):

ψ̃n(x, y) = ={Ψ̂n(u, v)}. (9)

The jump to the next iteration is carried out either at this step:

ψn+1(x, y) = ψ̃n(x, y), (10)

or after reducing the input field to a pure phase distribution:

ψn+1(x, y) = exp
(

iarg
[
ψ̃n(x, y)

])
(11)

In the second case, the convergence will be worse due to the loss of part of the
degrees of freedom. Therefore, we used the first option in accordance with expression (10).
However, in this case, at experimental implementation, additional encoding of amplitude
information into phase information will be required [24–26,75].

Note that the proposed algorithm is very simple and will work effectively for fairly
elementary distributions D(u, v), i.e., precisely for “primitives”. We propose to form a
more complex image from a set of various primitive pictures (taking into account rotation
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and displacement), for which the corresponding generating DOEs have already been
calculated. This approach is convenient when using SLMs for the dynamic reconstruction
of diffraction-free pictures, for example, in optical trapping [33–36] and laser material
processing [37–39].

3. Calculation Results
3.1. Simple Primitives

This section presents the results of calculating the complex transmission function
ψ(x, y) using the iterative algorithm described in Section 2.1 with the aim of forming
various primitive diffraction-free distributions D(u,v), for example, a triangle and a square
(Figure 3).

Figure 3. Considered primitives: (a) “triangle”, (b) “square”.

Table 1 shows the transverse distribution of the intensity |Ψn(u, v)|2 of the calculated
field with a “triangle”-type primitive for different numbers of iterations n. It can be seen
that the iterative algorithm after some number of iterations comes to a stagnation state, i.e.,
further iterations do not lead to significant changes.

Table 1. Simulation results for iterative algorithm with primitive “triangle”.

Iteration, n 2 4 10 50 90

Intensity

RMSE 0.0064 0.0046 0.0029 0.0021 0.0019

The complex transmission function ψn(x, y) and the corresponding intensity distribu-
tion |Ψn(u, v)|2 at the n = 90 iteration are presented in Figure 4.

Figure 4. Amplitude (a) and phase (b) for ψn=90(x, y) generating a diffraction-free beam (c) with a
given transverse intensity distribution in the form of a triangle.

To optimize the characteristics of the formed field, variations of the average radius
of the circular spectrum d were considered (Table 2) at a fixed width ∆d. The calculation
results for the “triangle” primitive (Figure 5) show that increasing the radius of the ring d
allows improving the convergence of the algorithm and minimizing the achieved RMSE for
a given number of iterations. This is obviously due to an increase in the number of points
inside the ring, which leads to an increase in the number of degrees of freedom. Note, the
large radius of the spectral ring allows us to take into account high frequencies and clearly
describe small details, for example, the borders of the primitive.
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Table 2. DOE phase ψn=90(x, y) with fixed maximal outer ring radius R0 and variable width of the
ring slit ∆d to form a diffraction-free “triangle” primitive.

The Variable
Width ∆d 0.20 R0 0.25 R0 0.30 R0 0.35 R0 0.40 R0

DOE phase

Focal
intensity

RMSE 0.0019 0.0015 0.0012 0.0009 0.0005

Figure 5. RMSE for the formed intensity distribution from the given (“triangle”-type primitive) for
the N = 90 iterations with a variable middle radius of the ring d: 0.90 R0; 0.80 R0; 0.70 R0; 0.60 R0;
0.50 R0 (R0 is defined in Section 2.1).

Obviously, the larger the slit width (area), the higher the energy efficiency of the
beam, and more pixels (degrees of freedom) can be used to improve the convergence of
the algorithm. As can be seen from the numerical calculations (Table 2), an increase in
the width of the ring slit ∆d leads to a decrease in RMSE. However, the diffraction-free
properties of the beam will deteriorate. This clearly follows from Equations (1) and (2),
since the length of the diffraction-free region zmax decreases with the increase of the ring
slit width ∆d. Recall that an ideal diffraction-free beam is formed at an infinitely narrow
ring (∆d→ 0) [65–67].

Therefore, in order to preserve the diffraction-free properties, we chose another way to
increase the area of the ring, namely by increasing the middle ring radius d, keeping ∆d with
a small fixed size. As the results of the calculations show (Table 3), increasing the middle
ring radius d with a fixed ring slit width ∆d also leads to a decrease in RMSE, although
not so significantly. This is an inevitable compromise between providing diffraction-free
properties and forming a given image with acceptable accuracy.
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Table 3. DOE phase ψn=90(x, y) with fixed ∆d = 0.2 R0 and variable middle ring radius d to form a
diffraction-free “triangle” primitive.

The Middle
Radius of
the Ring d

0.5 R0 0.6 R0 0.7 R0 0.8 R0 0.9 R0

DOE phase

Focal
intensity

RMSE 0.0028 0.0027 0.0027 0.0026 0.0019

In a similar way, we calculated the complex transmission function ψn=90(x, y) for the
“square”-type primitive D(u,v) (Figure 6). From the comparison of the RMSE graph for a
“square” (Figure 6d) and a “triangle” (Figure 5), it can be seen that error increases with the
increase in the area of the primitive.

Figure 6. Calculations for the “square”-type primitive D(u, v): amplitude (a) and phase (b) of the
generating field ψn=90(x, y) and the corresponding transverse intensity distribution in the focal plane
|Ψn=90(u, v)|2 (c). Graph of RMSE versus the number of iterations (d).

Next, we target to form complex diffraction-free beams based on the superposition
of already calculated primitives. To show the advantage of this approach, let us first
consider the iterative calculation of a complex picture, for example, the “sign” picture
(Figure 7a), consisting of four triangles and one square. The calculation results are shown in
Figure 7. Obviously, the RMSE for complex pictures is greater than the RMSE for individual
primitives (Figures 5 and 6d). A more detailed comparison is shown in Figure 8.
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Figure 7. Picture “sign” (a); amplitude (b) and phase (c) of the generating field ψn=90(x, y) and the
corresponding transverse intensity distribution in the focal plane |Ψn=90(u, v)|2 (d). Graph of RMSE
versus the number of iterations (e).

Figure 8. RMSE of the generated intensity distribution for “triangle” (dark solid line) and “square”
(light solid line) primitives and for complex “sign” picture (dashed line) for N = 90 iterations with a
fixed middle radius of the ring d = 0.90 R0.

3.2. Complex Patterns

For the formation of a diffraction-free beam with a complex predetermined transverse
intensity distribution in the form of a grayscale image, we use the same iterative algorithm.
Figure 9 presents a complex pattern D(u,v) with a grayscale “bird” image; amplitude
and phase of the calculated DOE ψn=90(x, y), and the corresponding transverse intensity
distribution in the focal plane |Ψn=90(u, v)|2.
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Figure 9. Complex pattern D(u,v) according to the grayscale image “bird” (a); amplitude (b) and
phase (c) of the calculated DOE ψn=90(x, y) and corresponding transverse intensity distribution in
the focal plane |Ψn=90(u, v)|2 (d). Graph of RMSE versus the number of iterations (e).

The results of the calculation of a DOE shaping the light field with the complex pattern
“bird” (Figure 9a) with different numbers of iterations are shown in Figure 10. The resulting
intensity distribution |Ψn=10(u, v)|2 at n = 10 iteration has RMSE equal to 0.1147, which
is insufficient for the exact reproducibility of the structured beam. The algorithm comes
to stagnation approximately at the n = 50 iteration with RMSE = 0.0785, so at n = 90, the
RMSE decreased slightly to 0.0723.

Figure 10. Transverse intensity distribution of the diffraction-free beam |Ψn(u, v)|2 for the complex
pattern D(u,v) of the “bird” image for different numbers of iterations n: n = 2 (a), n = 10 (b), n = 50 (c),
n = 90 (d).

Thus, for complex patterns, RMSE minimization requires significantly more iterations
with RMSE values remaining significant (Figure 9) compared to RMSE for primitive patterns
(Figure 8).

3.3. Superposition of Simple Primitives

In this section, we consider the construction of a diffraction-free beam with a complex
predetermined transverse intensity distribution based on the superposition of previously
calculated primitives. This method is effective for the optical trapping and manipulation
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of particles [33–36], as it provides dynamic restructuring of the configuration of optical
traps [35,49–51].

To design a multi-order DOE matched with several primitives (such as in Section 3.1),
we use the method of spatial carrier frequencies [76]. It is known from the theory of
diffraction and the properties of the Fourier transform that if the complex transmission
function of DOE ψ(x, y) is multiplied by the carrier function exp[i(ax + by)], then in the
focal plane of the element the intensity distribution:

|Ψ(u, v)|2 = |=(ψ(x, y) exp[i(ax + by)])|2 (12)

will be shifted by a distance proportional to a along the x-axis and by a distance propor-
tional to b along the y-axis. The rotation of the complex function ψ(x, y) by ϕ0 degrees
corresponds to the rotation of the intensity distribution |Ψ(u, v)|2 by ϕ0 degrees also.

We consider the multi-order DOE as a superposition of DOEs calculated for different
primitivesψ(p)(x, y) taking into account both the rotation anglesϕ0p and the displacements
(ap, bp):

τ(x, y) =
P

∑
p=0

ψ(p)(x, y) exp
[
i
(
apx + bpy

)]
. (13)

Figure 11 shows the results of the action of the multi-channel DOEs τ(x, y) calculated
by Equation (12) and matched with the “triangle” primitives.

Figure 11. Action of the multi-channel DOEs τ(x, y) calculated from Equation (13) and matched
with the “triangle” primitives: amplitude of DOE (a–d) and corresponding transverse intensity
distributions |={τ(u, v)}|2 (e–h).

Obviously, we can compose the multi-channel DOE τ(x, y) calculated by Equation (12)
from different types of primitives. Figure 12 shows the multi-channel DOE matched with
one “square”-type primitive at the central part and four a “triangle”-type primitives rotated
by angles ϕ0p = πp/2 and shifted from the central part. Figure 12d presents the synthesis
scheme for such multi-channel DOE in detail.
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Figure 12. The amplitude (a), phase (b) of the composed multi-channel DOE, the corresponding
transverse intensity distribution shaped in the focal plane (c), and the synthesis scheme (d).

4. Simulation and Experimental Results
4.1. Diffraction-Free Properties

To visualize the diffraction-free properties of a beam generated by the multi-channel DOE
composed of the superposition of DOEs calculated for different primitives (Equation (13)), we
will calculate the transverse intensity distribution at different distances from the focal plane of
the lens.

Such intensity distribution can be calculated using the Fourier transform with the
addition of the defocusing function as follows:

Ψz(u, v) = =
{
ψ(x, y) exp

[
i π

λz (x2 + y2)
]}

=

=
∞∫
−∞

∞∫
−∞

ψ(x, y) exp
[
i π

λz (x2 + y2)
]

exp
[
−i 2π

λ f (ux + vy)
]
dxdy, (14)

where f is the focal length and z is the defocusing distance.
Table 4 presents a comparison of numerical modeling results for a primitive “triangle”

and for the composed diffraction-free beam (superposition of simple primitives) defocused
from the focal plane (f = 100 mm) on different distances.

It can be seen from Table 4 that a diffraction-free beam based on the “triangle” primitive
with a slit width ∆d = 0.2 R0 (1st line) retains its structure better than for ∆d = 0.4 R0
(2nd line): the deviation between the intensity distributions in the focal plane (∆z = 0)
and at a distance ∆z = −75 mm to the focus is RMSEz = 0.0072 (for ∆d = 0.2 R0) and
RMSEz = 0.009 (for ∆d = 0.40 R0).

Table 4 shows that the composed diffraction-free beam (3rd line) keeps well enough its
structure up to 75 mm from the focal plane: the deviation between the intensity distributions
in the focal plane (∆z = 0) and at a distance ∆z = −75 mm before the focus does not
exceed 0.07.
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Table 4. The comparison of numerical modeling results for a primitive triangle and the composed
diffraction-free beam (superposition of simple primitives) defocused from the focal plane (f = 100 mm)
at different distances ∆z.

Type of Beam
Distance to the Focal Plane ∆z, mm

−75 −50 −25 −15 0

Primitive Triangle
with ∆d = 0.2 R0

Primitive Triangle
with ∆d = 0.4 R0

Superposition
of simple

primitives with
∆d = 0.2 R0

We expect that the generated diffraction-free beam retains its structure also after the
focal plane. The RMSE between the intensity distribution at the focal plane and the intensity
distribution defocused at 75 mm distance (after focus) does not exceed 0.06. The calculation
results for the generated diffraction-free beam at defocus distance z in the range from
−75 mm to 75 mm are presented in Figure 13.
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Figure 13. Cross-sectional intensity distribution of a diffraction-free beam given by the superposition
of a triangle-type primitive with a different angle of rotation and a square-type primitive at a distance
of −75 mm (a), −25 mm (b), 0 mm (c), 25 mm (d), and 75 mm (e) from the focal plane of a lens with a
focus of 100 mm.

Table 5 presents a comparison of numerical modeling results for a complex pattern
of the “bird” image defocused from the focal plane (f = 100 mm) on different distances. It
can be seen that a diffraction-free beam based on the complex pattern of the “bird” with
a slit width ∆d = 0.2 R0 (1st line) in the focal plane has a larger deviation from the given
pattern D(u,v), than for ∆d = 0.4 R0 (2nd line): RMSE = 0.07 and RMSE = 0.05, respectively.
However, in the first case, when defocusing, the structure is better preserved: the deviation
between the intensity distributions in the focal plane and at a distance ∆z = −50 mm to the
focus is RMSEz = 0.16 and RMSEz = 0.19, respectively.
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Table 5. The comparison of numerical modeling results for a complex pattern D(u,v) of the “bird”
image from the focal plane (f = 100 mm) at different distances for ∆d = 0.2 R0 and ∆d = 0.4 R0.

Type of Beam
Distance to the Focal Plane ∆z, mm

−75 −50 −25 −15 0

Complex pattern
D(u,v) of the “bird”

image with
∆d = 0.2 R0

Complex pattern
D(u,v) of the “bird”

image with
∆d = 0.4 R0

4.2. Experimental Results

For the experimental investigation of the designed DOEs, the optical scheme based on
a reflective spatial light modulator (SLM) HOLOEYE PLUTO VIS (1920×1080 pixels, pixel
size of 8 µm) was used (see Figure 14).

Figure 14. The optical scheme for investigation of the designed DOEs forming diffraction-free laser
beams: Laser is a solid-state laser (λ = 532 nm); L1, L2, L3, and L4 are spherical lenses (f 1 =25 mm,
f 2 =150 mm, f 3 =500 mm, f 4 =125 mm); M1 and M2 are mirrors, SLM is a reflective spatial light
modulator (HOLOEYE PLUTO VIS); D is a circular diaphragm, CAM is a video camera (TOUPCAM
UHCCD00800KPA, 3264 × 2448 pixels, 1.67 µm pixel size) mounted on an optical rail.

A Gaussian beam from a solid-state laser (λ = 532 nm, Pout = 20 mW) was extended
and collimated with a combination of two lenses L1 and L2 with focal lengths of 25 and
150 mm. The collimated laser beam was directed onto the SLM with the help of mirrors
M1 and M2. The optical system consisting of two lenses L3 and L4 with focal lengths of
500 and 125 mm as well as a circular diaphragm D was used for spatial filtering of the
modulated laser beam reflected from the SLM. Then a video camera CAM (TOUPCAM
UHCCD00800KPA; 1600 × 1200 pixels, with a pixel size of 3.34 µm) mounted on an optical
rail was used to record the intensity distributions of the formed laser beam at different
distances. In the experiments, we used a pure-phase DOE resulting from the encoding of
the amplitude-phase transmission function presented in Figure 12.

For the encoding, we used the partial encoding method [75]. Similar to other tech-
niques of amplitude encoding, the used method is sensitive to the inhomogeneity and
irregularity of an encoded amplitude distribution. Of course, this introduces the encoding
error. In fact, in our work, we used the amplitude encoding only to encode zero amplitude
values in the central region of the elements (which have a localized ring structure) to
direct light from this region to higher diffraction orders. A limitation of this encoding
method is the pixel resolution of the SLM or the manufacturing resolution of the fabricated
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DOE used to implement the encoded phase mask because the number of pixels increases
during coding.

The intensity distributions formed by the investigated pure-phase DOE are shown in
Figure 15. The experimentally obtained results are in good agreement with numerically
obtained ones.

Figure 15. The intensity distributions experimentally generated using the encoded DOE at different
distances. The image size is 5 by 5 mm.

The experimental results qualitatively confirmed numerical calculations and demon-
strated the possibility of implementing the calculated ring distribution (when the informa-
tive part of the field is concentrated in a narrow region) using SLM, a device with a fixed
resolution and number of pixels.

5. Discussion

Let us compare the RMSE for the “sign”-pattern (referred to as “pattern”) and the
superposition of primitives composed as “sign”-picture (referred to as “composition”)
when we used the iterative algorithm with N = 90 iterations (Figure 16).

Figure 16. Comparison of the RMSE for the “sign”-pattern (referred to as “pattern”) and the superpo-
sition of primitives composed as “sign”-picture (referred to as “composition”) (a) and difference in
percentage (b) for N = 90 iterations with a fixed middle ring radius d = 0.9R0.

As seen from Figure 16, the use of the multi-order DOE of Equation (13) composed of
primitives in comparison with a DOE calculated for the complex pattern makes it possible to
reduce the RMSE already at the first iteration by almost 30% (from 0.044 to 0.034). Moreover,
the advantage in RMSE remains during 50 iterations. After the 50th iteration, the situation
changes since the iterative algorithm for primitives enters stagnation (after about the 30th

iteration, Figure 16a). Thus, the use of a composition of primitives is convenient due to
the rapid (for the first few iterations) achievements of an acceptable error (less than 0.02).
Changing the structure of the composition does not require additional iterative calculation,
as it is achieved by simple operations of rotation and displacement of individual parts of
the composition.

From a practical point of view, the results obtained in the article will make it possible
to carry out optimization structured light traps, introducing dynamic corrections to the
formed intensity distribution with diffraction-free properties.

6. Conclusions

In this work, an iterative algorithm based on a ring spectrum and a lens was developed
for the formation of a complex structure diffraction-free beam. DOEs were calculated and
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studied for various values of the parameters responsible for the number of iterations and
the radius of the circular spectrum. It was shown that, for primitive patterns, the iterative
algorithm provides the rapid (for the first few iterations) achievement of an acceptable
RMSE (<0.02) and then comes to a stagnation state when further iterations do not lead to
significant changes in the error. The calculated RMSE does not exceed 0.006 for a triangle-
type primitive, 0.015 for a square-type primitive, 0.06 for a superposition of primitives, and
0.07 for a complex grayscale image.

To calculate the structured laser beam given from the superposition of primitives, a
multi-order DOE based on the method of spatial carrier frequencies was developed. A
diffraction-free beam with a more complex transverse intensity distribution was formed
based on the superposition of the DOEs pre-calculated for different primitives (taking
into account rotation and shifting). The proposed method of synthesis of multi-order
DOEs is convenient due to the rapid or dynamic (when using SLM) reconfiguration of the
composition structure without additional iterative calculation, as it is achieved by simple
operations of rotation and displacement of individual parts of the composition.

To visualize the diffraction-free properties of the calculated beam, the transverse
distribution of the intensity at different distances from the focal plane of the lens was
calculated. We estimated that the RMSE between the focal intensity distribution (for a lens
with a focal length of 100 mm) and the intensity at a distance of 75 mm from the focal
plane does not exceed 0.07. To test the diffraction-free properties of the calculated beam, an
optical experiment was carried out and the intensity distributions were recorded before and
after passing through the lens. The experimentally obtained results are in good agreement
with the numerical ones.
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Microscopy Using an Airy Beam. Nat. Methods 2014, 11, 541–544. [CrossRef] [PubMed]

https://doi.org/10.1016/j.ijleo.2019.164057
https://doi.org/10.1007/s11801-021-1007-4
https://doi.org/10.1364/OL.20.001062
https://doi.org/10.1364/OL.40.004070
https://doi.org/10.1109/JPHOT.2018.2867173
https://doi.org/10.1364/OL.44.001634
https://doi.org/10.1364/JOSAA.36.001039
https://doi.org/10.3389/fphy.2021.698343
https://doi.org/10.1038/nature01935
https://doi.org/10.1016/S0030-4018(02)01524-9
https://doi.org/10.1364/OL.29.002270
https://www.ncbi.nlm.nih.gov/pubmed/15524377
https://doi.org/10.1364/OE.21.020544
https://www.ncbi.nlm.nih.gov/pubmed/24103927
https://doi.org/10.1038/srep35341
https://doi.org/10.1016/j.ijleo.2021.166299
https://doi.org/10.1209/0295-5075/107/34001
https://doi.org/10.1016/j.optcom.2019.124846
https://doi.org/10.3390/sym13101794
https://doi.org/10.1088/1367-2630/7/1/117
https://doi.org/10.1103/PhysRevLett.105.013902
https://doi.org/10.1080/09500340.2010.536592
https://doi.org/10.1364/AO.57.00A189
https://www.ncbi.nlm.nih.gov/pubmed/29328145
https://doi.org/10.1364/AO.31.002708
https://www.ncbi.nlm.nih.gov/pubmed/20725197
https://doi.org/10.1364/JOSAA.4.000651
https://doi.org/10.1080/0010751042000275259
https://doi.org/10.1364/OE.14.002108
https://www.ncbi.nlm.nih.gov/pubmed/19503543
https://doi.org/10.1016/j.jqsrt.2020.107357
https://doi.org/10.1088/1742-6596/1368/2/022014
https://doi.org/10.1038/nmeth.2922
https://www.ncbi.nlm.nih.gov/pubmed/24705473


Micromachines 2023, 14, 989 18 of 18

74. Piksarv, P.; Marti, D.; Le, T.; Unterhuber, A.; Forbes, L.H.; Andrews, M.R.; Stingl, A.; Drexler, W.; Andersen, P.E.; Dholakia,
K. Integrated Single- and Two-Photon Light Sheet Microscopy Using Accelerating Beams. Sci. Rep. 2017, 7, 1435. [CrossRef]
[PubMed]

75. Khonina, S.N.; Balalayev, S.A.; Skidanov, R.V.; Kotlyar, V.V.; Päivänranta, B.; Turunen, J. Encoded Binary Diffractive Element to
Form Hyper-Geometric Laser Beams. J. Opt. A Pure Appl. Opt. 2009, 11, 065702. [CrossRef]

76. Khonina, S.N.; Karpeev, S.V.; Paranin, V.D. A Technique for Simultaneous Detection of Individual Vortex States of
Laguerre—Gaussian Beams Transmitted Through an Aqueous Suspension of Microparticles. Opt. Laser. Eng. 2018,
105, 68. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1038/s41598-017-01543-4
https://www.ncbi.nlm.nih.gov/pubmed/28469191
https://doi.org/10.1088/1464-4258/11/6/065702
https://doi.org/10.1016/j.optlaseng.2018.01.006

	Introduction 
	Methods 
	Theoretical Background 
	Iterative Algorithm 

	Calculation Results 
	Simple Primitives 
	Complex Patterns 
	Superposition of Simple Primitives 

	Simulation and Experimental Results 
	Diffraction-Free Properties 
	Experimental Results 

	Discussion 
	Conclusions 
	References

