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Abstract: Microfluidics attracts much attention due to its multiple advantages such as high through-
put, rapid analysis, low sample volume, and high sensitivity. Microfluidics has profoundly influenced
many fields including chemistry, biology, medicine, information technology, and other disciplines.
However, some stumbling stones (miniaturization, integration, and intelligence) strain the develop-
ment of industrialization and commercialization of microchips. The miniaturization of microfluidics
means fewer samples and reagents, shorter times to results, and less footprint space consumption,
enabling a high throughput and parallelism of sample analysis. Additionally, micro-size channels
tend to produce laminar flow, which probably permits some creative applications that are not acces-
sible to traditional fluid-processing platforms. The reasonable integration of biomedical/physical
biosensors, semiconductor microelectronics, communications, and other cutting-edge technologies
should greatly expand the applications of current microfluidic devices and help develop the next
generation of lab-on-a-chip (LOC). At the same time, the evolution of artificial intelligence also gives
another strong impetus to the rapid development of microfluidics. Biomedical applications based on
microfluidics normally bring a large amount of complex data, so it is a big challenge for researchers
and technicians to analyze those huge and complicated data accurately and quickly. To address
this problem, machine learning is viewed as an indispensable and powerful tool in processing the
data collected from micro-devices. In this review, we mainly focus on discussing the integration,
miniaturization, portability, and intelligence of microfluidics technology.

Keywords: microfluidics; integration; miniaturization; artificial intelligence

1. Introduction

Microfluidics is a multidisciplinary technique that processes or manipulates 10−9~10−18

liters of fluids with micrometer-size channels [1]. A microfluidic platform paves an effective
way for the automatic and high-throughput analysis of biochemical samples [2]. According
to the actuation mechanisms, microfluidic platforms can be classified into several groups,
such as capillary, pressure-driven, centrifugal, electrokinetic, and acoustic [3]. Based on
the fluid-propulsion force, microfluidics can be divided into continuous-flow and droplet
microfluidics [4].

The liquids flow in the fabricated microchannels without breaking continuity in the
continuous-flow microchips and they have evolved rapidly in the last decades [5]. How-
ever, some inherent issues (such as Taylor dispersion, solute–surface interactions, and
cross-contamination) limit the further development of this type of microfluidics [6]. Droplet
microfluidics is a type of technique that utilizes immiscible multiphase flow to generate
and manipulate discrete droplets in the micro-size channels [7]. Microfluidic devices can
produce discrete droplets at frequencies ranging from a few Hz to thousands of Hz. Each
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droplet is viewed as a microreactor encapsulating biochemical reactants, cells, nanoparticles,
nucleic acids, or other components, and individually manipulated [8,9] For biological and
chemical analysis, droplet reactors offer significant advantages of miniaturization and inde-
pendence that represent the benefits of low consumption and low cross-contamination [10].
On the one hand, the miniaturization of the reactor makes single-cell or molecular analysis
possible [11,12]. On the other hand, small droplets have a large surface area-to-volume
ratio, which facilitates heat and mass transfer and accelerates the reaction rate [13]. The
large number of uniform droplets generated by the microfluidic platform provides the pos-
sibility of parallel processing, paving the way for high-throughput analysis and enabling
high-throughput screening under a variety of experimental conditions [14,15].

In the 1990s, many researchers explored the application of micro-electromechanical
systems (MEMS) technology in the fields of biology, chemistry, and biomedicine, which
lead to the generation of microfluidics. It is a versatile platform that integrates sample
preparation, reaction, separation, and detection on a micron-scale chip [16]. In conclusion,
building biochemical systems on the surface of a solid chip produced via MEMS tech-
nology enabled the fast and accurate processing and detection of proteins [17], cells [18],
nucleic acids [19], metabolites [20], and other specific targets. Normally, the fabrication of
microchips primarily relies on the microchip design, optical materials, and MEMS tech-
nologies. The purpose of the microchip determines the whole microchip design, such as
the channel shape, channel size, position of valves, detection zone, micro-pumps, method
of detection, chip size, etc.

In addition, the properties of fluids in microchannels cannot be ignored during the
microchip design. The Reynolds number (Re) reflects the ratio of inertial forces to viscous
forces [21]. Within the microscale channels, the Reynolds number is usually less than 1
and the fluidic behavior is mainly influenced by the viscosity rather than inertia, which
means the fluid flow is essentially laminar [22], and this specific feature is usually used
in the generation of concentration gradients [23–25], macroscopically, polymer microrods,
Janus droplets, etc. [26,27]. The Peclet number (Pe) represents the ratio between advection
and diffusion. When the Peclet number is relatively large, the diffusion effect is weak, and
the mixing becomes very difficult at this moment [28], which means the time for complete
mixture should be very long even if the diffusion distance is short. This is critical for
some reactions and measurements that have to be finished in milliseconds. This is the
reason why some sinuous microchannels are required when designing microchips [29,30],
which helps induce chaotic advection and accelerate fluid mixing. In addition, fabricating
interconnected microchannel networks plays a key role in the construction of microchips
where MEMS (photolithography) processes and optical materials are used to generate
micron-size channels in silicon and other substrates [31].

The advent of LOCs miniaturizes benchtop laboratory equipment into portable tools
for point-of-care (POC) diagnostics, while achieving orders-of-magnitude reductions in
hardware costs and sample usage [32]. Although existing discrete devices have the ability
to reduce the sizes of physical equipment, reasonable integration of microelectronics and
integrated circuit techniques will further miniaturize microchips and effectively improve
their performance [33]. When integrated circuits (ICs) are inserted into microfluidic plat-
forms, a complementary metal-oxide semiconductor (CMOS) is able to distinguish and
gather the weak changes of electrical signals (current, voltage, or electromagnetic wave)
that are generated in some biochemical reactions and promotes the implementation of
real-time quantitative analysis [34]. The integration of microfluidics and CMOS not only
contributes to the portability of clinic equipment, but also helps perform rapid diagnostics
for patients in non-laboratory and non-specialist conditions [35].

As per the description above, CMOS and MEMS techniques have contributed to the
development of microfluidics [35]. In return, microfluidics as an emerging discipline also
provides some creative ideas for the development of traditional semiconductor technol-
ogy. The miniaturization of electronic devices and circuits causes the phenomenon of
self-heating, which restricts in the performance and reliability of microelectronic electrical
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systems [36]. To solve this problem, microchannels have attracted the attention of engineers,

and manifold microchannel cooling systems were produced by putting microfluidic and
electronic devices on the same semiconductor substrate, which greatly reduced the temper-
ature of the semiconductor and the energy consumption for cooling electronic devices [37].
In summary, microfluidics and semiconductors naturally complement each other.

How to collect and process the huge data from droplet microchips is another tricky
challenge for researchers [38]. Intelligent microfluidics is beginning to receive increasing
attention from researchers as an emerging interdisciplinary research field that combines mi-
crofluidics with machine learning (ML), taking full advantage of the high throughput and
controllability of microfluidics while introducing the powerful data processing capabilities
of ML. In recent years, the possibility of combining machine learning and microfluidics has
been verified in successfully solving biomedical and biotechnological issues [39]. By select-
ing appropriate training models and proper training, ML has proven to be a powerful tool
for rapid and accurate feature extraction, classification, prediction, and optimization of the
large amount of data generated in microfluidic systems [40]. Compared with traditionally
manual analysis, intelligent microfluidics requires less human intervention, dynamically
improving computer-aided prediction performance from large amounts of data.

Although microfluidics has been successfully applied in many fields until now there
should be great potential to be exploited with the development of technology. Miniatur-
ization, integration, and intelligence will probably provide a larger stage for microfluidic
techniques. In this review, we first introduce some classical electrochemical biosensors and
applications after integrating them with microfluidic devices. In the next part, wearable
microfluidics is discussed, which includes multiple technologies such as sensors, flexible
electronics, mobile communication, and other necessary elements for various purposes.
Smart microfluidics with artificial intelligence technologies is investigated in the last sec-
tion. This review gives some useful hints to researchers who are interested in microfluidic
miniaturization, integration, and intelligence.

2. Integrated Microfluidic Systems

Integrated microfluidic system have the specific characteristics of integrating multiple
analytical processes in a signal device [41]. The external physical techniques (such as optical,
electrical, acoustic, and magnetic fields) that are introduced into microchips help make the
integrated microfluidic system become a powerful platform for biomedical analysis [42].
Specifically, the combination of microfluidics and various electrochemical biosensors has
also attracted researchers’ interests, which is viewed as an ideal way to implement the next
generation of highly integrated and miniaturized LOC systems. Therefore, this chapter will
briefly introduce the combination of external fields and microfluidic systems and finally
focus on presenting the integrated electrochemical microfluidics.

2.1. Microfluidics Integrated with External Techniques
2.1.1. Magnetic Fields and Microfluidics

The integration of microchips and magnetics has been demonstrated in many fields.
Magnetic materials have been used as valves to control the status of fluids, and magnetic
particles have been employed for mixing fluid streams. The most conventional application
of magnetics in microfluidics is to separate target cells from suspensions [43,44].

Masumi Yamaha et al. presented a type of cell-sorting microfluidic system based on
size and surface markers. This simple system sorted cells with high precision via combining
the hydrodynamic filtration (HDF) scheme and magnetophoresis. As shown in Figure 1a,
cells were first aligned onto the low sidewall in the main channel and then sorted into each
separation lane (up to six) based on different sizes in the HDF scheme. Then the magnets
were perpendicularly added to the separation lanes and sorted the similar-sized cells with
different numbers of markers (up to four in each separation lane). In this microchip, the
cells conjugated with more immunomagnetic beads would get closer to the magnet than
those with fewer beads, thus achieving the second-round screening [45].
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Karabacak et al. redesigned CTC-iChip to isolate circulating tumor cells (CTCs) from
the whole blood with the assistance of magnetic force, and CD66 was used as a leukocyte
marker in this system. As shown in Figure 1b, two independent chips with different
modules were integrated to achieve screening CTCs. In the CTC-Chip-1, the white blood
cells (WBCs) and tumor cells were separated from the whole blood based on the size with
continuous deterministic lateral displacement (DLD). In the CTC-Chip-2, inertial focusing
was used to position these cells in the microchannel precisely and the tumor cells were
isolated through microfluidic magnetophoresis. This system achieved an average of 3.8 g-
log depletion of WBCs with a sample processing rate of 8 mL/h, and the yield of rare
cancer cells was 97 ± 2.7% [46].

2.1.2. Acoustic Fields and Microfluidics

Microfluidics with acoustics is a powerful tool for manipulating particles and cells in
biomedical applications. The devices have the properties of versatility, biocompatibility,
precision, flexibility, compactness, and cost-effectiveness [47]. Generally, acoustic waves
can be classified into two types: surface acoustic waves (SAWs) and bulk acoustic waves
(BAWs) [48].

SAWs are often generated within piezoelectric materials, which can be exploited to
screen particles or cells in a micro-system [49]. Lee et al. proposed putting four different
modules in a microchip that utilized acoustic and electric fields to sort particles and cells.
This device broke through the limitation of previous microchips, which sorted targets
based on individual cell or particle properties. Moreover, label-free cells significantly
simplified the process of sample preparation. As shown in Figure 1c, a deterministic lateral
displacement (DLD) array in a direct current (DC) field first separated the analytes on the
volume and surface charge difference. Then, a bipolar electrode (BPE) well aligned the
particles into a particle beam in the microchannel for subsequent acoustic separation based
on the compressibility and density. In parallel, a dielectrophoresis (DEP) force from BPE
was used to separate non-viable and viable cells depending on the dielectric properties,
and the viable cells were trapped on the BEP edges with a positive DEP force while the
non-viable cells were repelled towards the center of the channels and washed away [50].

Ivo et al. not only applied the BAW acoustophoresis to manipulate particles and
cells, but they also used BAW to merge droplets. As shown in Figure 1d, the T-junction
and flow-focusing geometries stably generated water-in-oil droplets, and the piezoelectric
transducer adhered to the underside of the channel transformed the voltage into mechanical
vibration for sample manipulation. In the aspect of droplet fusion, BAW acoustophoresis
focus-aligned two adjacent droplets on the centerline of the channel and induced two
droplets to merge. BAW acoustophoresis sorted target droplets at an extremely high speed
via turning on/off the transducer. They also successfully transferred the droplets from a
current continuous phase to the another one using acoustophoresis, which contributed to
cell washing and medium change [51].

2.1.3. Electric Fields and Microfluidics

The integration of electric fields and microfluidics has existed for a long time, such
as on-line electrophoresis, dielectrophoresis, electroosmosis, and electric impedance anal-
ysis [52]. The electric field has been regarded as one of the most popular and efficient
nonmechanical pumping and separation mechanisms in microchips [53]. However, the
electric current generated from the electric field may result in Joule heating, which might
lead to irreversible thermal damage to the cells [54].

An aqueous two-phase system (ATPS) was built and used as a liquid filter by one
group. The target cells and polystyrene (PS) particles were selectively separated at the
liquid–liquid interface with an external electric field. The factors affecting the particles on
the ATPS interface were the strength of the electric pulse, particle size, zeta potential, and
hydrophobicity of the particle [55].
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A trans-membrane voltage (TMV) generated from a nearby electric field will temporar-
ily change the permeability of a cellular membrane and the extracellular components will
flow into the cells through the cell membrane, which is known as electroporation. Therefore,
the reversibility of electroporation provides an effective treatment option for tumors. As
shown in Figure 1e, the integration of electroporation and microfluidics provided a plat-
form for the rapid and precise identification of bacterial strains. The electric field strength
for electroporation of different types of bacterial strains were demonstrated in this paper:
Escherichia coli BL21 (3.65 ± 0.09 kV/cm), Corynebacterium glutamicum (5.20 ± 0.20 kV/cm),
and Mycobacterium smegmatis (5.56 ± 0.08 kV/cm) [56].

2.1.4. Optical Fields and Microfluidics

Due to the prominent advantages of optics-based detection, including non-invasiveness,
easy integration, rapid response, and high sensitivity, many optical detection methods have
been incorporated into microfluidic devices, such as fluorescence, absorbance, colorimetry,
chemiluminescence, and scattering [57]. Among them, fluorescence detection is still the
most widely used because of its high sensitivity, high selectivity for cellular and molecular
sensing, and low backgrounds [58].

The integration of microchips and optical systems can also efficiently and precisely
sort targets. Fluorescent-dyed particles were excited with an integrated optical waveguide
network within microchannels. A diode-bar optical-trapping scheme guided the particles
across the waveguide/microchannels and selectively separated the particles based on their
fluorescent intensity [59].

In addition to fluorescent detection, absorbance spectroscopy is the most straight-
forward detection method in separation science. However, this method is significantly
constrained by the length of the optical path, which affects the sensitivity of the analy-
sis [60]. The Easley group combined the lock-in technique and absorbance detection to
improve the LOD of analytes in droplet microfluidics (Figure 1f). Ultimately, a detection
limit of 3.0 × 10−4 absorbance units or 500 nM bromophenol blue (29 fmol) was achieved
with an optical microscope and a standard, single-depth (27 µm) microchip [61].

2.2. Introduction of Electrochemical Biosensors

Electrochemical biosensors use electrodes as conversion elements and fixation carriers
and fix biological recognition elements (such as proteins, antibodies, enzymes, nucleic
acids, cells, etc.) as sensitive elements on the electrodes. The specific recognition between
biomolecules generates catalytic or binding activities between the target analyte and the bio-
logical recognition element on the electrode, and the final binding reaction is converted into
a detectable electrical signal (such as current, potential, resistance, or impedance) through
the electrode, which is proportional to the analyte concentration, thus achieving qualitative
or quantitative detection of the target analyte [62]. Electrochemical biosensors have the
advantages of high sensitivity, portability, low cost, simplicity, and easy operation [63].
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ution 3.0 Unported Licence). (e) Microfluidic device to determine the critical electric field required 

Figure 1. External fields in integrated microfluidic devices. (a) Schematic of magnetophoresis-
integrated hydrodynamic filtration system. (Reprinted with permission from Ref. [45], copyright 2013
American Chemical Society). (b) Schematic of CTC-iChip. (Reprinted with permission from Ref. [46],
copyright 2014 Nature Publishing Group). (c) Schematic diagram of an integrated microfluidic system
designed to achieve multitarget separation. (Reprinted with permission from Ref. [50], copyright
2021 American Chemical Society). (d) Sketch of the microfluidic as well as the front and back side of
the microchip. (Reprinted with permission from Ref. [51] under a Creative Commons Attribution
3.0 Unported Licence). (e) Microfluidic device to determine the critical electric field required for
bacterial electroporation. (Reprinted with permission from Ref. [56], copyright 2016 The Author(s)).
(f) The microchannel layout for alternately generating signal and reference droplets. (Reprinted with
permission from Ref. [61], copyright 2012 American Chemical Society).
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Electrochemistry typically uses the three-electrode system: a working electrode (WE)
where oxidation or reduction reactions occur and are measured; a reference electrode (RE)
that gives a known potential to the redox reactions that happen and precisely controls
the potential on the WE; as well as a counter electrode (CE) that forms a series circuit
with the WE and acts as a conductor of electricity [64]. Although electrochemical sensors
have many benefits, as mentioned, traditional electrochemical detection consumes large
volumes of reagents and requires bulky potentiostats, macroelectrodes, and other large
equipment [65]. The main components of electrochemical biosensors are electrodes, which
are suitable for miniaturization, batch microfabrication, and integration with other com-
ponents on a single microchip. The applications of electrochemical sensors in biological
and chemical detection in microfluidic systems has many benefits, including a low volume
of reagents, less detection time, high signal-to-noise ratio, and low consumption of metal
materials [66]. To adapt to the microchip size, micrometer-scale “microelectrodes” and
“ultramicroelectrodes” have been developed recently and become popular in microfluidics.
The synergistic integration of electrochemical sensors and microchips in a signal platform
helps researchers discover unknown bioanalysis phenomena. The specific properties of
liquid metals (simple fabrication, easy integration, stretchability, reconfigurability, low
power consumption, etc.) yield advantages in their integration with microfluidics. For
example, some liquid metals can be used as electrodes for microchips because of their
high conductivity and fluidity [67]. Kong et al. proposed a novel technique for fabricating
three-dimensional (3D) multilayer liquid-metal microcoils together with the microfluidic
network through the lamination of dry adhesive sheets, which is beneficial for cleaning up
the microfluidic chips and avoiding cross-contamination when reusing the microcoils. A
nuclear magnetic resonance (NMR)-based biosensing system integrated with microcoils
was successfully applied to aid the diagnosis of anemia [68].

The applications of electrochemical sensors in microchips offer tremendous advan-
tages for facilitating the evolution of modern micro-total analysis systems (µTAS), such
as inherent miniaturization, low power requirements, low limit of detection (LOD), and
compatibility with advanced micromachining systems [69]. The development of LOC or
µTAS mainly relies on semiconductor microfabrication technologies, but the MEMS and
microelectronic IC fabrication technologies determine the advancement of micro/nano
fabrication technologies. Therefore, the MEMS and IC fabrication have huge effects on the
electrochemistry-based LOC and µTAS. There are some challenges, though the concept
of sensor–fluid integration has been proposed for long time. The mismatch of footprint
between the microfluidic device and the CMOS chip is one of the stumbling blocks, and the
other difficult points are the direct contact between the sample fluid and the electrodes and
the topographical conflict between the electrical interconnect and the microfluidic channels.
Huang et al. proposed an integrated system of CMOS microchip and electrochemical
sensors. This platform contained microfluidics, electrode arrays, and CMOS ICs, which
introduced both silicon substrate carriers to expand the surface area beyond the CMOS
chip and resolved topological conflicts between electrical interconnects and microfluidic
channels. This system brings the electrochemical advantages to help the general public
without compromising accuracy and reliability [70]. Therefore, electro-microchips have
become one of the most popular research directions in µTAS.

2.3. The Protocols and Applications of Electrochemical Microfluidics

Microfluidics-based electrochemical biosensors, as a new application area, may be an
ideal answer for developing next-generation portable analysis systems [71]. At present,
many academic studies have reported various electrochemical analysis protocols in mi-
crofluidics. According to the detection principles, five types of common electrochemical
detection techniques and the relative applications in microchips are presented here.
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2.3.1. Amperometry

Amperometry is a kind of electrochemical analysis where a constant potential is
applied to the WE and the RE, and the current generated by the oxidation or reduction
of electroactive substances at the working electrode is directly monitored, with a linear
relationship between the magnitude of the current and the concentration of the analyte.

Early microfluidics-based amperometry detection systems were mainly used for elec-
trophoretic separation and detection. Woolley et al. developed an integrated platform that
contained microfluidic devices, capillary electrophoresis, and amperometry detection for
the first time [72]. Currently, microfluidic amperometry sensors (MAS) are widely used in
medical diagnostics and health care. The MAS invented by Kaur et al. achieved highly sen-
sitive measurement of cholesterol with an LOD of 0.10 mM over a wide concentration range,
and the device had the potential to be added to POC diagnostic devices via inserting the
electronic circuits [73]. For the first time, Senel et al. proposed a novel MAS for quantifying
dopamine (DA) levels in cerebrospinal fluid (CSF) and plasma in a Parkinson’s disease (PD)
mouse model. The microelectrode was surrounded by a ~4 × 4 mm2 micro-chamber and
the total volume of the PDMS micro-chambers is 2.4 µL (Figure 2a). The electrochemical
oxidation of DA on gold microelectrodes was monitored via the amperometry method at
the potential of 0.2 V, and the results demonstrated that this MAS device had the ability
to analyze the DA in the range of 0.1–1000 nM. A 50 µm electrode spacing significantly
reduced the Ohmic drop and improved the reliability of the analysis [74].

Digital microfluidics (DMF) is a special microfluidic technology with amperometry
analysis that enables the manipulation of discrete droplets containing samples and reagents
on a flat surface. Specifically, the discrete droplets are manipulated “digitally” on a two-
dimensional array of identical unit electrodes. Compared with droplet-based microchips,
DMF mixes reagents more uniformly and does not require micro-pumps and microvalves,
which greatly simplifies the design and manufacture of the equipment. The absence of
microchannels reduces cross-contamination and eliminates dead volume. In addition,
because each droplet can be controlled independently, these systems are also dynamically
reconfigurable, allowing droplet manipulation to be performed at any location on the array,
allowing a variety of processes to be performed simultaneously in a simple and compact
design while performing a set of bioassays [75].

DMF couples a complicated sampling process and electrochemical biosensors well.
The similar fabrication methods and the ease of integrating electro-sensors and DMF
that have an electrode array make the electrochemical sensing mechanism highly com-
patible with the DMF platform. Wheeler’s team presented the first digital microfluidic
electro-immunoassay in a digital microfluidic device by means of electrodeposition with-
out external electrodes, which was used for successfully measuring thyroid stimulating
hormones [76]. Later, Wheeler’s team proposed DMF devices coupled with nanostructured
microelectrodes (NMEs) for out-of-lab distributed diagnostics with etching sensing elec-
trodes (each consisting of three Au-NEMs, one CE, and one RE), a DMF counter-electrode,
five apertures on the sensing electrodes, and a hydrophobic coating in four steps on the
top plate of an Indium tin oxide (ITO)-coated slide (Figure 2b). A rubella virus (RV) IgG
immunoassay was developed based on this system and analyzed via current change, and
the detection limit of this RV assay was 100 times lower than the immunological threshold
set by the World Health Organization [77].

2.3.2. Voltammetry

Voltammetry is the most common method of electrochemical analysis, where a po-
tential is supplied between the WE and RE, and the changes in current are also measured.
The difference is that the potential changes dynamically over a set range of sweeps in
voltammetry and the current response is usually proportional to the concentration of the an-
alyte. There are also various types of voltammetry, such as polarography, differential pulse
voltammetry, linear sweep voltammetry, cyclic voltammetry, etc., based on the methods of
changing electric potential [71].
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TK Dhiman et al. fabricated an electrochemical nanochip based on CeO2 −Nps, which
was used for ochratoxin A (OTA) analysis. OTA in the concentration range of 350 pg·mL−1

to ng·mL−1 was detected using differential pulse voltammetry (DPV) on a CeO2 − Nps-
based immuno-electrode. The immuno-electrode was immobilized with OTA antibodies
and BSA, and the OTA solution flowed through the BSA/Anti − OTA/CeO2/OTA elec-
trodes with a syringe pump. The specific bond between antibodies and antigens generated
changes in the charge on the electrode surface and resulted in a rise of the current peak
in the DPV. The micro-size channels of the microchip had superiority in detecting the
weak signals of immunoassays compared to conventional electrochemical electrodes [78].
Wheeler et al. proposed the two-plate DMF platform containing droplet manipulation
and on-line voltammetric analysis with electrochemical electrodes surrounding four-DMF
electrodes (Figure 2c). The LOD of acetaminophen reached 76 µM with a 4% mean RSD
using linear scanning voltammetry in this system [79].

In recent years, carbon-based nanomaterials have been used in electrochemical detec-
tors due to their excellent electrical conductivity, structural flexibility, high strength, and
other outstanding properties. However, it is still controversial whether there are more suit-
able materials for fabricating electrochemical sensors compared to graphene and its parent
graphite. The effects of several different materials (graphite oxide (GO), chemically reduced
graphene oxide (CRGO), graphene oxide (GO’), electrochemically reduced graphene oxide
(ERGO), and glassy carbon (GC)) on the electron transfer between hemoglobin in solution
and solid electrodes were explored and compared in this work. The electrochemistry of
hemoglobin in solution was investigated via cyclic voltammetry and differential pulse
voltammetry. The results differed from previous studies in that carbon nanomaterials did
not significantly enhance the electron transfer, and the bare glassy carbon remained an
appropriate electrode material for electrochemical sensing [80].

Cyclic voltammetry (CV) is the most popular method in voltammetry-based detection.
In CV, the potential of a triangular waveform is scanned between two values at a fixed
rate and the scan is divided into two parts: a negative scan and a positive scan. During
the negative scan, the potential gradually decreases and the electroactive analytes in the
electrode are reduced (reduction wave). For the positive scan, the potential gradually
increases, and the reduction products are oxidized in the electrode (oxidation wave).
The current–voltage curve is called a cyclic voltammogram [81]. Typically, CV is used
to measure electrode reaction parameters, determine reaction mechanisms, and observe
possible reactions over the entire potential scan range. For a new electrochemical system,
CV, also known as “electrochemical spectroscopy,” is generally considered the first priority
for evaluation [82]. In addition, CV is used to characterize the performance of different
materials or electrodes with different surface modifications [83].

In addition, cyclic voltammetry has been applied for the quantitative analysis of
samples. For example, Srikanth et al. developed a microfluidic platform without any
biological modification of the electrodes and used CV to study the variation of bacteria
concentrations overtime [84]. For integration with DMF, K.C. et al. coupled a three-
electrode-based electrochemical system and an electrowetting on dielectric (EWOD) digital
microfluidic device to detect iodide droplets via cyclic voltammetry and successfully
quantified iodide, which demonstrated that the combination of EWOD microfluidics and
electrochemical sensors could achieved a rapid and accurate analysis of targets with a small
volume of reagents [85]. Later, Yu et al. proposed an EWOD digital microchip by installing
a microfluidic module on the bottom board and a three-microelectrode system on the top
board (Figure 2d). A fully automated analysis of ferrocenemethanol (FcM) and dopamine
(DA) was finished with cyclic voltammetry with a high sensitivity of 2145 nA/µM/cm2 and
a low detection limit of 0.42 µM in the concentration range between 1.0 and 50.0 µM [86].
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2.3.3. Potentiometry

In the potentiometric-detection technique, the charge potential accumulation between
the WE and the RE is measured under zero-current conditions. In other words, the analysis
of the target analyte is achieved using the potential change between the ion-selective
electrode (ISE) and the reference electrode [87]. The potential sensor usually consists of
a reference electrode and an indicator electrode. The potential of the indicator electrode
varies proportionally to the logarithm of the ion activity, so the potential stability and
reliability are key parts of this analytical method.

For any ion-selective electrode (ISE), the most important parameters are the slope,
LOD, selectivity, and response time. The slope provides information about the charge
interactions between the target compound and the membrane. The sensitivity of the ISE
is given by the LOD and the response time is defined as the time it takes for the sensor to
reach 95% of the expected response when the analysis occurs [88].

A microchip with an all-solid-state potential biosensor array was developed by
Liao et al. Three Pt/Cr electrodes were fabricated on a glass substrate through the electron-
beam evaporation process. The electrodes were further modified with iridium oxide, cal-
cium ion-selective and potassium ion-selective membranes, respectively. The reference elec-
trodes were formed by depositing and patterning Ag/Au/Cr and processing with electron
beam evaporation. The detection sensitivity of pH, Ca

2+, and K+are 62.62 ± 2.5 mV pH−1,

53.76 mV ± 3 mV-log
[
K+
]−1,, and 25.77 mV ± 2 mV-log

[
Ca

2+
]−1

in this potentiometric
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method, respectively [89]. Gallardo-Gonzalez et al. report a creative microchip that con-
sisted of a microfluidic device and electrochemical microelectrodes for in situ and real-time
measurements of ammonium in flowing water (Figure 3a). In the control experiment, the
WE worked as an ammonium-selective electrode, and the performance of this system was
evaluated via the potentiometric analysis of the target. The results showed the sensitivity
of the system, and the detection limit was 55 mV/decade and 4 × 10−5 M, and the whole
response time was between 10 and 12 S. In addition, the robustness results also showed
that this micro-system remained after being immersed in sewage for at least 15 min [90].

Farzbod et al. achieved the installation of potassium-selective sensor arrays on digital
microfluidics for the first time (Figure 3b). In this equipment, the AgCl layer of the RE
quickly was dissolved in the sample solution and then the silver-plated solution and
hydrochloric acid are sequentially driven onto the sensing electrode on this DMF platform.
The potentiometric detection of potassium ions in eight different concentrations of KCl
solution is performed in this system, and it takes about 250 s for the EMF (electromotive
force) to finish each measurement. The slope of the average EMF data was 58 mV/log,
which demonstrates that the electrochemical sensor can be well-integrated with the digital
microfluidic platform [91].

Polymer-membrane-based ISE has become the most popular wearable sensor for
monitoring the electrolytes in sweat. Many wearable devices do not require a dedicated
microchip because sweat can directly flow into the reaction chambers attached on the skin
and trigger the biochemical reactions. Sempionatto et al. proposed a potential-sensor-based
wearable device that included sensors for detecting K+ and Na

+ on the top layer of PDMS,
four 2 mm diameter reservoirs, and four channels connected to the detection chamber. This
microchip platform with flexible electronics achieved real-time transmission of wireless
data to mobile devices and exhibited a selective potential response to K+ and Na

+ [92].
Alizadeh et al. reported another wearable device for detecting K+ and Na

+, where both
the solid ISE and the RE were fabricated on a PET substrate, and then conductive carbon
and dielectric insulation layers were printed on the substrate. Finally, a contact transducer
layer was electrodeposited on the exposed carbon layer [93].

2.3.4. Conductometry

The conductivity sensor is a miniature two-electrode device for measuring the conduc-
tivity of a thin electrolyte layer near the electrode surface. The principle of conductivity-
based detection is that the changes in the charge concentrations should lead to a change in
the conductivity of the sending layer. Currently, conductivity-based detection is considered
one of the simplest electrochemical analytical method in microfluidic devices [94].

Lee et al. proposed a single site-specific polyaniline (PANI) nanowire biosensor to
quantify cardiac biomarkers with benefits of high sensitivity, good reproducibility, and
high specificity. The electrodes were lithographed and deposited on the silicon substrate
with electron beams, and the nanochannels were also lithographed on the PMMA between
two electrodes. Finally, the microfluidic channels were adhered to the functionalized PANI
nanowires [95]. Venzac et al. reported a microfluidic device analyzing short DNA sequences
of Staphylococcus aureus via a conductometric method. Figure 3c shows a schematic diagram
of the detection system where the conductivity changes were detected from the planar and
sample solution. Then, the raw signal was processed using a discrete wavelet to extract the
information of conductivity change, and the slow baseline change and electronic noise were
eliminated here. Compared to conventional conductivity assays, electrohydrodynamic
aggregation-based conductivity assays are more sensitive to small changes in the DNA
concentration in the sample solution [96].

Wu et al. reported a digital microfluidic platform for on-chip in situ monitoring of
the spore-germination process within Bacillus atrophyticus via a conductivity method. The
manufacturing process of the chip is as follows: chromium and gold layers were deposited
on the glass by sputtering, and then patterned electrodes were etched and patterned. At
selected time points, on-chip and off-chip experiments were performed, and no statistically
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significant differences were found between the germination rates. However, the on-chip
conductivity method sacrifices a little detection sensitivity [97].

2.3.5. Electrochemical Impedance Spectroscopy (EIS)

Electrochemical impedance spectroscopy (EIS) is one of the most important electro-
chemical techniques, and the first publication about EIS dates back to 1975 [98]. Elec-
trochemical impedance spectroscopy originates from the frequency-response analysis in
electrical engineering. The basic principle of EIS is using a small-amplitude sinusoidal
potential wave as the excitation signal to actively perturb the electrochemical steady-state
system and measuring the change in the ratio of the AC potential to the response (current)
signal (i.e., impedance of the system). In contrast to other conventional electrochemical
methods, EIS is a steady-state technique that uses small-signal analysis to detect signal
relaxation over a very wide frequency range, so EIS is able to study intrinsic material
properties or specific processes that may affect the conductance, resistance, or capacitance
of an electrochemical system [99].

EIS biosensors have many advantages, such as easy operation, fast response, miniatur-
ization capabilities, low cost, sensitivity to analytes, and simplification in integration with
microfluidics [100]. Ben-Yoav et al. proposed a microfluidics-based electrochemical sensor
that consisted of a patterned electrode chip and a double-layer valve. This EIS-based mi-
crochip was used to detect the hybridization between single-strand DNA probes and their
complementary ssDNA targets. This device provided programmability and automation for
the high-throughput analysis of DNA hybridization and the LOD was 1 nM [101]. Wang
et al. proposed a microfluidic device combined with electric impedance flow cytometry
(IFC) and EIS for analyzing the electrical properties of single cells (Figure 3d). The IFC and
EIS coplanar electrodes were inserted in the main channel and below the capture point,
respectively. There are two types of microchannels in this system, a main channel for cells
to pass through and side channels for cell trapping. In addition, the flow resistance of
the main channel was smaller than that of the side channel. In this platform, the first cell
will be trapped in the first capture reservoir, and then the remaining cells must flow in the
main channel. In the next cycle, the second cell will be captured, and so on. EIS obtained
full impedance spectra containing rich characteristic information of cells, and IFC quickly
collected several representative frequency-dependent impedance data points [102]. Three
types of cancer cells were analyzed in this platform.

In another study, a system consisting of EIS and DMF for the dynamic analysis
of peripheral blood mononuclear cells (PBMC) was introduced. Thin-film transistors
(TFTs) and pixel electrodes were integrated in the electrode backplane for independently
controlling each pixel electrode in this system. The top ITO plate was modified by etching
sixteen 2 mm×2 mm interdigital electrode arrays (Figure 3e). The interdigital electrode
arrays combined with EIS enabled the detection of analytes encapsulated in droplets [103].
Liu et al. installed an EIS-based biosensor into a DMF platform for the analysis of peripheral
blood mononuclear cell (PBMC) abundance. A gold layer was deposited on an ITO
substrate with electron-beam physical vapor deposition, peeled, etched to create IDEs,
and finally coated with anti-45 on the gold IDEs to manufacture a biometric layer. The
detection of different concentrations of PBMCs in dynamic and static cell culture modes
was compared in this system, and the results showed that the dynamic mode had a higher
sensitivity than the PBMCs in the static condition [104].

2.4. Conclusions

A variety of active manipulation methods for samples have been widely integrated
with microfluidics until now, such as magnetic, acoustic, electrical, and optical fields.
This chapter briefly introduced these techniques and their biomedical applications and
presented more information about the combination of electrochemistry and microchips.
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Figure 3. Microfluidics-based potentiometry and conductometry detection systems. (a) Microflu-
idic chip for electrochemical analysis in an aquatic environment. (Reprinted with permission
from Ref. [90], copyright 2019 Elsevier). (b) On-chip ion-selective electrode calibration procedure.
(Reprinted with permission from Ref. [91], copyright 2018 Elsevier). (c) Schematic of the system for
small DNA sequence detection of Staphylococcus aureus. (Reprinted with permission from Ref. [96],
copyright 2017 Royal Society of Chemistry). (d) Fabrication process of DMF chip for in situ detection
of endospore germination. (Reprinted with permission from Ref. [102], copyright 2019 American
Chemical Society). (e) Schematic of sensing electrodes on AM-DMF chip. (Reprinted with permission
from Ref. [103], copyright 2022 IOP Publishing, Ltd.).

Both electrochemical biosensors and microfluidics have their specific benefits, so the
rational integration of these two analytical devices will create greater functional platforms.
In this synthetic system, microfluidics provides portability, enables additional sample
preparation capabilities [105], and reduces the consumption of reagents. Electrochemical
sensors are particularly well-suited for combination with microchips because they are the
least constrained by the requirements of device miniaturization and scale-up manufacturing
compared to other analytical modules [106].
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Miniaturizing and integrating several laboratory apparatus in a small facility is viewed
as a powerful analytical method with higher efficiency, faster analysis, and lower reagent
consumption [107]. Considering the ease of integration of electrochemistry and the minia-
turization of microfluidics, the coupling of electrochemical sensors and microfluidics
should be an ideal high-throughput and cost-effective platform that can support sample
manipulation, detection, and analysis [108]. Therefore, the integration of microfluidics
and electrochemical biosensors is conceived as an effective strategy to facilitate µTAS for
next-generation LOC platforms.

3. Wearable Microfluidics
3.1. Introduction

With the development of flexible electronics, materials science, wireless communi-
cation, and other related technologies, wearable devices are gradually emerging in the
fields of medicine, biology, chemistry, sports, the military, etc. Traditional wearable devices
(e.g., smart watches) are used to detect human physical indexes, such as the heart rate,
body temperature, and motion tracking [109]. However, some biomarkers in body fluids
better display health status than those physical signals, which requires a new generation
of wearable devices that have the ability to discover biochemical information at a deeper
molecular level [110]. The accumulation of experience of life science and medical research
on microfluidics has decisive effects on the emergence of wearable equipment, which
mainly integrates various electronic modules, membranes, microchannels, reservoirs, and
biochemical sensors.

Microfluidics is an ideal technique that is well-suited for the development of wearable
devices. First, microchips are usually fabricated with soft and stretchable materials that can
be easily bent and folded without compromising their properties, such as PDMS, acrylics,
and hydrogels [111]. Second, microchannels are beneficial to transport and manipulate a
small volume of fluid, which may weaken patients’ pain and facilitate the collection of body
fluids [112]. In addition, MEMS-based micro-systems can be combined well with flexible
electronic modules, patterned electrodes, and sensor modules for biomarker monitoring.

Wearable microfluidics provides efficient platforms for the real-time, continuous, non-
invasive monitoring of human bio-signals. The addition of big data and the accumulation
of personal medical data into wearable devices will help implement further predictions
and complex diagnostics [113].

3.2. General Functions

In the light of the requirements, microfluidics can take a more important role in
wearable devices, including sample collection, storage, analysis, signal transmission, etc.

3.2.1. Sample Collection

Smooth and efficient sample collection is an important step for the usage of wearable
devices and normally consists of three types of methods: invasive, minimally invasive, and
non-invasive collection. Sample collection can also be divided into two aspects based on
the way the force acts: capillary force and osmotic property.

Capillary Force

The capillary effect has been applied to collect and store body fluids in wearable
devices without the assistance of peripheral devices. Ma et al. built a wearable device that
collected sweat through capillary absorption in biocompatible tubes and the collected sweat
was spontaneously transported to hydrophilic microfluidic channels to form a continuous
flow [114]. Rogers et al. described a soft microfluidic device adhered to skin that used
capillary action and the natural pressure to capture and guide sweat through microfluidic
channels and a network of reservoirs [115]. Paper-based analytical devices (PADs) are
characterized by their low cost, portability, biocompatibility, miniaturization, point-of-care
detection, etc. compared to conventional methods [116]. Wearable devices demonstrate
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the flexible and real-time biosensor concept, while paper-based diagnostic cards represent
the state of the art in terms of integration and functionality. Moreover, PADs provide an
alternative platform for spontaneous sample and reagent transport through the capillary
force, which avoids purchasing external pumps [117]. Toonder et al. invented a flexible
microchip in which the wicking paper absorbed sweat when the device was placed on the
skin and then the microchannels and cavities were filled with sweat (Figure 4a) [118]. Yang
et al. reported a wearable contact lens that spontaneously delivered tears to microfluidic
channels and reservoirs via capillary forces [119].
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Osmotic Property

Osmotic pressure is also an effective method for sample collection in microfluidic
devices. Velev et al. added thin hydrogel discs that were equilibrated in saline or glycerol
on the microchip, and these hydrogel discs were attached to a permeable membrane. In
this system, the difference in the solute concentration between the hydrogel and sample
generated an osmotic drive for fluid entry into the device (Figure 4b) [120]. Later, the same
team integrated hydrogel discs and paper-based microfluidics (Figure 4c), and the hydrogel
discs directly contacted with the round ends of the paper and the skin. Due to high-pressure
penetration, the hydrogel automatically extracted sweat containing biomarkers from the
skin surface and then utilized the capillary force to transport the mixed solution from the
rectangular paper tape to the evaporation pad for expelling [121].

3.2.2. Sample Transmission

After the sample is successfully gathered, the collected liquid sample flows into the
detection area through the microfluidic channels. Sometimes, the sample solution has to be
directed to a designated reservoir or the reservoirs need to be filled sequentially. Rogers
et al. reported a flexible microfluidics with superabsorbent polymer (SAP) active valves
and hydrophobic passive valves. The sweat entered the device from the adhesive layer
first, and then the sweat filled the reservoir containing the assays due to the existence of the
hydrophobic passive valve in the right channels. Once the reservoir was full of sweat, the
sweat would flow to the lower layer, which caused the expansion of the SAP material that
closed the corresponding inlets and outlets and forced the excess sweat to flow into the
next triple reservoir (Figure 4d) [122]. The same lab designed and installed capillary burst
valves (CVB) in their skin microchips to achieve precise and continuous sampling. Those
four chronologically marked valves were different in their channel widths and dispersion
angles, and their burst pressures (BP) also increased gradually in sequence, which guided
the sweat sample flowing into the channels and filled the micro-reservoirs (Figure 4e) [123].
They also applied a similar CVB in another soft microchip where sweat first passed into the
inlet area and the micro-reservoirs, and finally the sweat solution was removed through
a capillary burst valve. Different valves have different dispersion angles and BPs, which
enable precise control of the flowing path of the sample solution [124].

3.2.3. Sample Analysis

Wearable microfluidic platforms select a detection system based on various require-
ments, and several analytical mechanisms have emerged in recent years, such as optical,
electrochemical, and mechanical detection. The operational stability, suitability, sensitivity,
selectivity, reliability, and power are key factors to be considered when choosing the optimal
method for sample analysis.

Colorimetric Detection

The most widely used optics-based detection method in wearable devices is col-
orimetric detection with some attractive features of cheapness, simplicity, rapidity, and
semi-quantitative assessment of biomarkers. It relies on the measurable color changes of
the reagents to quantify the concentration of the target analytes [125].

Colorimetric detection enables the simple and rapid quantitative assessment of the
instantaneous rate, total loss volume, pH, and multiple biomarkers of sweat. The microflu-
idic system developed by Rogers’s lab had five separate channels and cobalt chloride was
embedded in the circular serpentine channel as a colorimetric indicator. Once exposed to
the sweat samples, the color would change from dark blue to light purple, which generated
information about the amount of sweating. Other channels with four colorimetric reaction
areas in the center had the ability to measure chloride, glucose, lactate, and pH. After
the cylindrical chamber was filled with sweat, obvious color changes occurred within 1
min (Figure 5a), and finally the corresponding quantitative analysis was performed using
UV-Vis spectroscopy and optical graphics [115]. Later, Rogers’s group made further im-



Micromachines 2023, 14, 972 17 of 36

provements by forming a color reference through a series of in vitro simulation experiments
and printed a layer of color reference on the top of the wearable device. What is more, the
colorimetric response of each target chemical in sweat over a typical concentration range
provided the spectral information for the color reference markers (Figure 5b) [123].

Electrochemical Detection

However, when colorimetric detection is used for point-of-care bio-fluid analysis,
they bring out some limitations, such as the inability to obtain a continuous response,
the significant influence of sweat turbidity, and the essential requirement of advanced
equipment for acquiring high-quality digital pictures for quantitative analysis [126].

Electrochemical biosensors play important roles in wearable systems due to their
portability, rapid detection, low power consumption, low cost, and high specificity. These
wearable electrochemical sensors promise new opportunities in future medical diagnostics,
health care, and more. A variety of electrochemical-sensing principles have been introduced
in the previous chapter. In wearable systems, the electrochemical modes of potentiometric
and current measurements are mainly used. J.W. et al. showed the first example of con-
tinuously monitoring lactate levels in sweat with an epidermal electrochemical biosensor,
which demonstrated the real-time kinetics of lactate during exercise. The epidermal sensor
consisted of three electrodes and had a high sensitivity with a correlation coefficient of
0.996 in the linear dynamic range. In the practical experiments, the temporal dynamics
of lactate during prolonged cycling were recorded using amperometry, and the resulting
curve reflected the changes in lactate as the exercise intensity changed [127].

Gao et al. developed a fully integrated wearable sensor array coupled with an amper-
ometry glucose/lactate sensor, and the sensitivities of glucose and lactate were 2.35 nA/µM
and 220 nA/mM, respectively. The potentiometric sensors consisted of ion-selective elec-
trodes and PVB-coated reference electrodes used to measure K+ and Na

+ with sensitivities
of 61.3 mV and 64.2 mV per decade of concentration, respectively [128].

3.2.4. Signal Transformation

The integration of wearable devices and mobile communication technologies for real-
time health monitoring, data processing, and storage has become a research/industrial
interest. All the collected signals need to be processed, noise-filtered, data-transmitted, cali-
brated, and read out [110]. Specifically, Bluetooth and NFC as two conventional proximity
communication techniques have been widely used in smart devices.

Bluetooth

Bluetooth is a wireless technique that enables the exchange of data between devices
over a short distance, and it is widely used in consumer electronics. With the help of the
MCU’s built-in 10-bit ADC conversion module and its serial communication capability,
Gao et al. successfully transmitted data from five sensors (glucose, lactose, temperature,
K+, and Na

+) to a Bluetooth transceiver. After pairing with Bluetooth, the Bluetooth
transceiver transmitted the data to mobile phones for real-time display and storage in
the cloud (Figure 5c) [128]. Wang et al. described a wearable sensor for monitoring the
dynamics of sodium in sweat. With the help of a miniature wearable wireless transceiver,
this device relayed data to a PC via Bluetooth in the form of a serial data stream at 1 s
intervals [129].

NFC

In addition to Bluetooth, near-field communication (NFC) is another important tool
for signal processing in wearable microfluids. NFC utilizes short-range radio signals to
transmit information between two devices, which are typically limited to the centimeter
scale. It is not necessary to charge the power-transmission components within the sending
equipment, and, inversely, it requires power from the receiving device to complete the
measurements and data collection.
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four biomarkers in sweat. (Reprinted with permission from Ref. [115], copyright 2016 American
Association for the Advancement of Science). (b) Colorimetric sensing microfluidic platform filled
with staining solution. (Reprinted with permission from Ref. [123], copyright 2019 American Chemical
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Spring Nature). (d) System block diagram of a wearable sensing patch for sweat analysis. (Reprinted
with permission from Ref. [130], copyright 2021 Elsevier).

Zhang et al. coupled an NFC wireless patch system with flexible electrochemical
detectors (Figure 5d). The two-electrode-based electrochemical system acted as a battery
to provide power for the NFC chip and a smartphone was used as a radio frequency (RF)
power source to wirelessly activate the NFC system. The ADC module in the NFC read
and converted the output of the K+ sensor, and the programmable gain amplifier (PGA)
provided a gain of 2.8 times for the analog output voltage. Finally, the potential value could
be used to display the K+ concentration after it was read and calibrated on the mobile
app [130]. Rogers’s lab installed ultra-thin NFC electronics on top of a microfluidic device
that could automatically launch image capture and analysis software when a cell phone
was in close proximity [115]. In another type of wearable microfluid, the NFC system
was also powered by collecting and transmitting RF. After power-up, the ADC module in
the NFC system converted the analog data of the electrodes embedded in the microfluid
into digital data, and the data were transmitted back to the phone through the same RF
antenna [131].

3.3. Applications
3.3.1. Sample Analysis

Although blood is the most popular biological fluid in clinical diagnostics, it is not
suitable for continuous monitoring. Currently, researchers are focused on using wearable
microfluidics to quantify biomarkers in body fluids. Sweat, tears, and saliva are more at-



Micromachines 2023, 14, 972 19 of 36

tractive samples for biomarker analysis in wearable device because they offer non-invasive
sample collection and the ability of in situ monitoring [132].

Sweat

Sweat is a fluid containing many biomarkers, such as electrolytes, metabolites, trace
elements, and macromolecules, that can provide important information related to human
health and physiological status [133]. It is generated inside small glands in human skin
and can be collected non-invasively at convenient locations on the body, which makes it
an ideal analyte for continuous monitoring. It is wise to place the wearable sensors near
the site of sweat production for rapid detection prior to analyte biodegradation [109]. The
development of materials science, biochemical sensors, and flexible electronics have laid
the foundation for novel wearable platforms for sweat detection at the skin interface, which
enables the continuous or intermittent assessment of the biomolecular composition and
dynamics of sweat without external devices [134].

Sweat glucose is metabolically related to blood glucose, and real-time monitoring
of blood glucose is critical to understanding diabetes progression and disease manage-
ment [135]. Sweat lactate is a byproduct of the local metabolism of sweat glands that reflects
the status of oxidative metabolism and tissue viability. A variety of wearable microfluidics
have been developed that can continuously monitor the glucose and lactate levels in real
time. Rogers’s team invented a wearable microchip that could simultaneously monitor the
sweat rate, pH, lactate, glucose, and chloride (Figure 6a), which consisted of a disposable
soft microfluidic network and a reusable thin NFC module. In the glucose sensor, glucose
oxidase was dispersed directly in the Nafion and improved the interaction between the
glucose and enzymes, which supported the detection of micromolar glucose. In the lactate
sensor, the current generated from anodic and cathodic responses were proportional to the
lactate concentration [136].

Excessive loss of sodium and potassium in sweat may lead to hyponatremia, hy-
pokalemia, muscle cramps, or dehydration. J San Nah et al. developed a wearable
immunosensor with microfluidics and electrochemical sensors for the detection of cor-
tisol biomarkers in sweat based on a Ti3C2TxMxene − loadedLBG3D network of the LOD
achieved as low as 3.88 pM with a relative standard deviation of 2.8% for four different
sweat samples [137].

Zhang et al. developed a wireless, battery-free, fully integrated wearable system that
used a novel Ti3C2Tx − MWXNTs network to real-time quantify K+ in human sweat. The
sensitivity of this device was 63 mV/dec, which was amplified to be 173 mV/dec with an
NFC amplifier module [130].

Urea and creatinine, related to kidney function, also exist in sweat. Rogers et al.
developed a wearable system with capillary burst valves that measured the concentrations
of urea and creatinine in sweat (Figure 6b), and the creatinine and urea concentrations in
sweat were successfully determined with a simple colorimetric reaction [138].

Tears

Tears are a promising fluid for protein, lipid, metabolite, and glucose detection. The
biomarkers in tears are diffused directly from the blood, so there is a strong relationship
between the biomarker concentrations of tears and blood [139]. However, tear sampling
or continuous monitoring is probably uncomfortable and may present a risk of irritation.
Capillary micropipettes and swabs are conventional methods for tear sampling. The eye
usually reacts in proximity to external objects and some unwanted contact can cause
irritation, which cause some difficulty for tear sampling. On the other hand, irritation to
the eyes may lead to lower biomarker concentrations in the tear sample [140].

Contact-lens-based wearable devices are an effective solution to address the problem
of tear collection. Yang et al. developed a flexible contact lens that spontaneously delivered
tears to different microchannels and reservoirs via capillary forces. The inner lens cavity
was embedded with a chemical substrate for a colorimetric reaction that could respond
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to three biomarkers of glucose, chloride, and urea in tears [119]. Kim et al. developed a
transparent and stretchable contact lens that allowed sensitive monitoring of the glucose
and intraocular pressure in tears (Figure 6c). This method was demonstrated using in vitro
detection of glucose in rabbit eyes and intraocular pressure in bovine eyes [141].

Similar wearable device can be combined with glasses in daily life. Wang et al. encap-
sulated electrochemical detectors in a microfluidic chamber and the micro-chamber was
then inserted into the glasses’ nasal pad for monitoring some biomarkers such as alcohol,
glucose, and vitamins in tears (Figure 6d). This design avoids the discomfort of placing the
device directly in the eye and the potential for infection and vision impairment [142].

Saliva

In recent years, saliva has gained popularity as a diagnostic fluid and is a substitute
for blood. The saliva is easily gathered and contains biomarkers of several diseases, such
as cardiovascular disease, oral and breast cancer, and the human immunodeficiency virus.
However, few studies about wearable oral biosensors have been conducted because the
abundance of salivary proteins may cause biological contamination [139]. Moreover, the
point-of-care saliva sample provides limited physiological insight due to the highly variable
composition of last-meal saliva. Despite these challenges, oral biosensing platforms may
provide an attractive and painless way to obtain dynamic chemical information from
saliva [140]

Lucas et al. made a wearable device for monitoring glucose and nitrite in saliva via
3D-printing technology (Figure 6e). This device prevented any contact between the mouth
and reagents and reduced the risk of contamination and the invalidation of reagents. After
optimization, the detection limits of glucose and nitrite were 27 µmolL−1 and 7 µmolL−1,
respectively. In the paper, they also found that higher concentrations of glucose and nitrite
were detected in saliva from patients with diabetes and periodontitis, as expected [143].

3.3.2. Drug Delivery

Despite the widespread use of drug patches, the efficacy of drug release over time
remains a challenge. Wearable microfluidics offers new opportunities for drug delivery.
Wearable microfluidics combined with microneedle arrays or microsensors enable accurate,
efficient, and safe drug delivery [144].

Lee et al. developed a wearable patch for sweat-based diabetes monitoring and
feedback therapy. The patch consisted of a sweat-control component, a sensing component,
and a therapeutic component (Figure 6f). The microneedle released the drug into the
bloodstream, and the microneedle was coated with a thermosensitive PCM that melts at a
temperature of 41–42 ◦C to prevent the microneedle from dissolving when it touched water
and effectively prevent the drug from being released prematurely when the temperature
does not reach the thermal-response temperature. The multi-channel thermal actuator
would control the rate of drug release in a stepwise manner. The system effectively
delivered the glucose-lowering drug metformin to mice and rapidly lowered their blood
glucose levels [145].

Di et al. made a tensile-strain-triggered wearable device for drug delivery that con-
sisted of a stretchable elastomer and a microgel reservoir. A layer with a microneedle array
was attached to the stretchable elastomer. When the elastomer membrane was strained by
stretching, the microgel reservoir containing the drug nanoparticles induced compression
and released the drug, and the drug further diffused from the microgel reservoir into the
microneedles for transdermal delivery. Not only could this method be used for the delivery
of anti-infective drugs or painkillers, but they also have successfully used the device to
deliver insulin to mice for controlling their blood glucose levels [146].



Micromachines 2023, 14, 972 21 of 36

Micromachines 2023, 14, x  22 of 37 
 

 

Di et al. made a tensile-strain-triggered wearable device for drug delivery that con-
sisted of a stretchable elastomer and a microgel reservoir. A layer with a microneedle ar-
ray was a ached to the stretchable elastomer. When the elastomer membrane was strained 
by stretching, the microgel reservoir containing the drug nanoparticles induced compres-
sion and released the drug, and the drug further diffused from the microgel reservoir into 
the microneedles for transdermal delivery. Not only could this method be used for the 
delivery of anti-infective drugs or painkillers, but they also have successfully used the 
device to deliver insulin to mice for controlling their blood glucose levels [146]. 

 
Figure 6. The applications of wearable microfluidics. (a) Wearable device for sweat analysis. (Re-
printed with permission from Ref. [136] under the Creative Commons A ribution 4.0 International 
(CC BY-NC 4.0) License). (b) Soft microfluidic system for sweat analysis. (Reprinted with permis-
sion from Ref. [138], copyright 2019 Royal Society of Chemistry). (c) Contact lenses for detecting 
glucose in tears. (Reprinted with permission from Ref. [141] under the Creative Commons A ribu-
tion 4.0 International (CC BY 4.0) License). (d) Schematics of the fluidic device and wireless elec-
tronics integrated into the eyeglass platform. Where, (a) corresponds to the baseline; (b) current 
change due to the captured tear; (c) the measured alcohol signal and (d) drying of the device. (Re-
printed with permission from Ref. [142], copyright 2019 Elsevier). (e) Microfluidic devices for saliva 
diagnostics. (Reprinted with permission from Ref. [143], copyright 2019 Spring Nature). (f) Sche-
matic drawings of the diabetes patch, which is composed of the sweat-control, sensing, and therapy 
components. (Reprinted with permission from Ref. [145], copyright 2016 Spring Nature). 

Figure 6. The applications of wearable microfluidics. (a) Wearable device for sweat analysis.
(Reprinted with permission from Ref. [136] under the Creative Commons Attribution 4.0 International
(CC BY-NC 4.0) License). (b) Soft microfluidic system for sweat analysis. (Reprinted with permission
from Ref. [138], copyright 2019 Royal Society of Chemistry). (c) Contact lenses for detecting glucose
in tears. (Reprinted with permission from Ref. [141] under the Creative Commons Attribution 4.0
International (CC BY 4.0) License). (d) Schematics of the fluidic device and wireless electronics
integrated into the eyeglass platform. Where, (a) corresponds to the baseline; (b) current change due
to the captured tear; (c) the measured alcohol signal and (d) drying of the device. (Reprinted with
permission from Ref. [142], copyright 2019 Elsevier). (e) Microfluidic devices for saliva diagnostics.
(Reprinted with permission from Ref. [143], copyright 2019 Spring Nature). (f) Schematic drawings
of the diabetes patch, which is composed of the sweat-control, sensing, and therapy components.
(Reprinted with permission from Ref. [145], copyright 2016 Spring Nature).

3.4. Conclusions

Since the emergence of mobile devices and smartphones, wearable biosensors have
gained tremendous interest and promise to be one of the major advances in wearable
health technology. Unlike previously reported wearable devices, wearable microfluidics
primarily track physical activity and vital signs and allow real-time rapid detection of
accessible biomarkers in the human body, as well as enabling large-scale data collection
about an individual’s dynamic health status at the molecular level [139]. However, it is
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worth mentioning that wearable microfluidics are still in the early stage of development,
and most of them are still in the laboratory research stage. Several challenges remain to be
solved before large-scale commercialization, such as biocompatibility, biosafety, etc. [147].
On the other hand, the reasonable integration of various components is critical for creating
fully functional wearable devices, and the seamless integration of multiple functions into
miniaturized components is imperative [112]. It is undeniable that the complementary
convergence of microfluidics, flexible materials, biochemistry, and the Internet of Things
will promote the continued development of wearable microfluidics.

These developments will transfer biomarker measurements from the central laboratory
to the body with the advantages of quickness, reliability, and cheapness [148] Especially in
the face of an epidemic, wearable microfluidics are expected to play an important role in
monitoring health, physical and mental status, and telemedicine.

4. Artificial Intelligence
4.1. Introduction

The concept of artificial intelligence (AI) was first introduced in the 1950s [149]. As a
branch of computer science, artificial intelligence is the simulation of human intelligence
processes with machines, especially computer systems. It enables computers to simulate
human behavior and reproduce or even surpass human decisions to solve complex prob-
lems independently or with less human intervention [150]. Artificial intelligence (AI) has
been a relatively obscure field with limited utility for more than half a century. However,
the development of big data and the increased computing power of computers have helped
AI become a powerful engine driving the development of all disciplines today [151].

Machine learning (ML), a part of AI, is the core of artificial intelligence [152]. Machine
learning (ML) algorithms build a model based on sample data, known as training data,
in order to make predictions or decisions without being explicitly programmed to do
so. Therefore, the key components of ML are data, algorithms (models), and arithmetic
(computing power). Especially in tasks related to high-dimensional data such as classifica-
tion, regression, and clustering, ML shows good utility and can help produce reliable and
repeatable decisions by learning from previous computations and extracting patterns from
massive databases [150].

Deep learning (DL) is a relatively new concept that was proposed by Hinton et al.
in 2006. A subset of ML, it is viewed as one of the cutting-edge and core technologies of
AI [153]. Neural networks are the most important component of DL algorithms. Just as
the human brain consists of a network of neurons, a typical neural network also comprises
many simple and interconnected neurons that identify hidden correlations and patterns
in raw data, then classify and continuously improve them [154]. Unlike basic ML models,
algorithms with DL models can automatically extract features through their own neural
networks, reducing the requirement of time and labor for constructing feature extractors
for each problem [154].

The applications of DL use a layered algorithmic structure called an artificial neural
network (ANN), where the leftmost layer is the input layer, the rightmost layer is the
output layer, and the middle layer is the hidden layer, whose values are unobservable in the
training set. The more hidden layers exist between the input and output layers, the deeper
the DL is. Typically, ANNs with two or more hidden layers are called deep neural networks
(DNNs), and building complex ‘multilayer DNNs’ allows data to be transferred between
different nodes (e.g., neurons) in a highly connected manner [155]. In many applications,
DL models perform much better than ML models and traditional data-analysis methods
and push AI to a higher level. As usual, DL requires much more data than ML (typically, at
least 100,000 samples for common image recognition), and it will show better performance
than ML as the amount of data increases.

The important step of AI development is data preparation and collection. Coinci-
dentally, microfluidic technologies can generate highly informative graphics in a high-
throughput, cost-effective, and automatic way. Moreover, effective image analysis is
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regarded as a challenge to most microfluidic experiments. Considering that ML/DL’s
powerful analysis of structured data (sequences, images, videos, etc.) can predict com-
plex outputs with unprecedented accuracy, the combination of traditional ML/DL and
microfluidics should have the potential to address some previously unsolvable problems.

4.2. Machine Learning in Microfluidics
4.2.1. Traditional Machine Learning and Microfluidics

ML methods are classified into supervised learning and unsupervised learning based
on whether the input data are labeled or not [156]. In supervised learning, it is essential to
understand the relationship between the input and output based on the existing dataset and
then train the data to obtain the optimal model. In other words, the supplied training data
should have both features and labels in supervised learning, and the machine can find the
connection between features and labels by itself through training. Finally, it can determine
the labels when facing the data without labels. Conventional supervised learning tasks
contain classification and regression, and typical algorithms consist of SVM, KNN, linear
regression/logistic regression, decision tree, random forest, etc. [149].

In many practical applications, there is not a large amount of labeled data to be used
and it is very difficult to label the data, as it requires a large amount of manual work.
Therefore, unsupervised learning will become more important in the long run [157]. As
opposed to supervised learning, unsupervised learning looks more like self-learning, and
the machine must classify the data without any prior information. The computer will find
patterns and associations once it determines they fit well with the raw data, which often
produces unexpected results. A typical example in unsupervised learning is clustering. The
purpose of clustering is to group similar things together, and the type of the class does not
matter much [149]. Thus, an unsupervised learning algorithm does not necessarily have an
explicit result.

The reinforcement learning (RL) approach is a trial-and-error method that allows a
model to learn using feedback from its own behaviors. It is the closest attempt to model the
human learning experience because it can learn not only from data, but also from trial and
error [149]. In RL, the computer receives “positive feedback” when it correctly understands
or classifies data, and “negative feedback” when it fails. By “rewarding” good behaviors
and “punishing” bad behaviors, this learning method reinforces the former one.

Supervised Learning

Among the biological applications of intelligent microfluidics, cell classification, in-
cluding its derivatives (such as cell screening, sorting, counting, etc.), is the most popular
research interest and requires processing large amounts of image data. Supervised learning
should have the ability to powerfully process the data collected from microfluidics.

Supervised learning of conventional ML improves the accuracy and efficiency of cell
classification, as well as reducing the labor. Guo et al. proposed to use an optofluidic
time-stretch quantitative-phase microscope and glass microfluidic devices to screen cells.
This microchip mainly consisted of four independent microchannels, an orifice layer, and a
channel layer. A sequence minimum optimization algorithm was used to train a support
vector machine (SVM), which was applied to characterize a heterogeneous population of
Euglena gracilis under both nitrogen-sufficient and nitrogen-deficient culture conditions.
SVM achieved a high-throughput fluorescence-free labeling screening of cells with an error
of 2.15% [158].

In the same group, Jiang et al. utilized a similar microfluidic chip-based optofluidic
time-stretch microscope combined with ML for detecting platelets in blood. They fabricated
a hydrodynamically focused microchip that enabled identifying and sorting the flowing
blood cells. The simplest linear classification based on a standard logistic regression
model (LR) was used to classify cells from the clear images provided by the microscope,
and over 100 features were extracted. An average specificity and sensitivity of 96.6%
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was achieved in the distinguishment of aggregated platelets, individual platelets, and
leukocytes (Figure 7a) [159].

Singh et al. introduced an inline digital holographic microscope coupling with ML
for the detection of tumor cells in blood. A collimated laser beam was used to illuminate a
sample containing flowing cells in a transparent microchannel, and the forward scattered
light from the cells interfered with the non-scattered light to produce a two-dimensional
hologram. The hologram was then magnified with the microscope and imaged on a CCD.
The micro-size channels (width: 1000 µm, height: 350 µm) maximized the accuracy and
precision of imaging. Three features, D (cell size), I_max (intensity of a single brightest
pixel (2 × 2 µm2) in a given cell image), and I_mean (average intensity of a region centered
on the brightest pixel (6 × 6 µm2)), were extracted from a dataset consisting of erythrocytes,
peripheral blood mononuclear cells (PBMC), and tumor cell lines to develop a classifier
based on the classification and regression tree (CART) algorithm (Figure 7b). The tumor
cells were identified with a false positive rate of 0.001% [160].

Xu et al. collected SERS spectra of two breast cancer cell lines and normal cell lines
on a dynamic liquid surface-enhanced Raman scattering (SERS) platform incorporating
a microchip, and the SERS spectra were used as a training set for ML. A hose used as
a fluidic microchannel was embedded into a 3D-printed recess and a T-connector was
used to connect the hose and the pump (Figure 7c). In addition, the classification model
for spectrum analysis was built based on the K-nearest neighbors (KNN) algorithm. The
sensitivity and specificity of identifying the three types of cells was higher than 83.3% and
91.7%, respectively. In addition, the accuracy of cell identification was 92.8%, 94.4% and
95%, respectively [161].

In addition to cell classification, the combination of supervised learning and microflu-
idics has been applied to biomarker detection. Manak et al. introduced an ML-assisted
micro-device to quantify live-cell phenotypic biomarkers with a single-cell resolution and
helped standardize the measurement of biomarkers. The dataset was divided into training
and test sets at a ratio of 7:3, and the biomarker rankings were trained with a random forest
classifier based on the accuracy of adverse pathology prediction. After establishing the best
biomarker ranking, the remaining 30% of the dataset in the sample was classified at the
cellular level and sample level to determine its possibility of specific adverse pathology for
the risk-stratification prediction of cancer patients [162].

Unsupervised Learning

Wang et al. developed an analytical platform with unsupervised learning algorithms
for monitoring the biomarkers secreted from single cells. They designed two types of
microfluidic chips for single -cell printing and array-containing captured-antibody mi-
croprinting, respectively. The secretion data of more than 5000 individual tumor cells
were analyzed with the K-means algorithm. Different K values were tested from large
to small until all the subgroups were distinguishable from each other, which eventually
led to an identification accuracy of 95.0% for tumor cell classification (Figure 7d) [163].
Alvarez et al. proposed a new method for quantifying contaminated and filtered droplets in
single-nucleus RNA-sequencing experiments. K-means was used to cluster the droplets to
initialize the parameter α and π of EM, and then EM was applied to estimate the parameters
of the model to classify the population fragments and cell-based droplets [164].

Another traditional type of unsupervised learning is dimensionality reduction, which
looks much like compression and reduces the complexity of the data while preserving as
much relevant structure as possible. Desir et al. observed seven different flow patterns (seg-
mental plug flow, droplet flow, segmental plug flow, parallel flow, annular flow, dispersed
flow, and irregular flow) in four different biphasic systems in capillary microchannels
with laser-induced fluorescence. Using principal component analysis (PCA) to reduce
the dimensionality of the potential features of the flow patterns, six important features
were eventually identified. A decision-tree model was developed based on the six features,
which predicted the flow patterns with an accuracy of 93% (Figure 7e) [165].
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Peng et al. demonstrated a POCT system based on NMR. This group used this
device to rapidly phenotype label-free molecules with multidimensional inverse Laplace
decomposition techniques. The molecular fingerprint of a single drop of blood could be
obtained in several minutes on this platform. In this work, multiple unsupervised machine
learning algorithms (multidimensional scaling (MDS) and hierarchical clustering) were
also introduced for the image analysis of molecular fingerprints, which transformed the
complicated NMR correlation maps into user-friendly information [166].
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Reinforcement Learning

RL can provide intelligent control for microfluidics. Abe et al. investigated the applica-
tion of RL algorithms in a micro-peristaltic pump and defined the components of a Markov
decision process adapted to a micro-pump. In this algorithm, the flow obtained using
micro-valves at the state transition was defined as a reward to obtain a flow-maximizing
drive sequence. The micro-pump consisted of three diaphragms and thus, eight logical
states (000~111) existed. Figure 7f illustrates the learning system: micro-beads were placed
in the observation area and the flow rate was measured using the distance traveled by the
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micro-beads. The traveled distance was viewed as a reward function and the microcon-
troller implemented the pumping sequence based on the computer’s calculations. The final
three-phase sequence of (000) (110) (001) was obtained, and the flow rate was more than
two times higher than that based on conventional sequences [167].

Liang et al. found that RL could assist the digital microfluidic biochips (DMFBs) in
providing reliable fluid control while being able to supervise the health of the electrodes and
prevent electrode degradation. The system diagram is shown below: a CCD camera was
used to capture the droplet positions in real time and a controller connected to the DMFB
was utilized to load all bioassays for the droplet-routing task. The experimental results
demonstrated that the RL droplet router could learn degradation behavior and transmit
droplets using only healthy electrodes, even if the electrodes on the DMFB failed [168].

Microfluidic devices often require significant human intervention to ensure their oper-
ational stability in long-time experiments. Dressler et al. used two reinforcement learning
algorithms to localize the interface of unmixed phases in laminar flow and control the
droplet size in segmented flow in the microchip based on Deep Q-Networks and a model-
free scenario controller (MFEC). The experimental results indicated that both of these two
algorithms performed better than the manual work at different time scales, which highlights
the superiority of the novel control algorithms in high-throughput microfluidics [169]

4.2.2. Deep Learning and Microfluidics

The major stage of traditional ML is processing the natural data in their raw form,
but DL is particularly good at domains with large and high–dimensional data. That is the
key reason why deep neural networks are widely used in many applications that require
processing text, image, video, speech, and audio data [157].

Supervised Learning

The convolutional neural network (CNN) is one of the most–frequently used architec-
tures for image classification and its name comes from the convolution in linear operations.
The CNN consists of convolutional, nonlinear, pooling, and fully connected layers [170],
and the best parameters of each layer will be considered for meaningful output and reduc-
ing the complexity of the model. With the development of computer hardware, datasets,
and models, as well as the emergence of a series of new ideas and algorithms [171], since
the early LeNet-5 architecture, many CNN network architectures have been invented (such
as AlexNet, VGG, Inception, ResNet, Xception, etc.) that have greatly enriched the CNN
architecture system.

Lung cancer is a kind of cancer with the highest incidence and mortality rate, and early
detection is the most effective means for the treatment of lung cancer. Hashemzadeh et al.
developed a DL–based microfluidic platform for automatic and high-throughput screening
of lung cancer cells. The microfluidic device supported cells a on three–dimensional
growth platform to keep the cell population similar to the in vivo environment. The sorting
accuracy for five different lung cancer cells with the residual learning convolutional neural
network ResNet18 was 98.37% and the relative F1 score (a measure of the classification
problem) was 97.29%. In the screening of lung cancer cells and normal cells, the accuracy
reached 99.77% and the F1 score was 99.87% [172].

J.S. et al. proposed a microfluidic platform that helped simulate the flow conditions of
the spleen in the interendothelial gap (Figure 8a). DL algorithms worked to distinguish
specific types of rare hereditary hemolytic anemia by studying the deformation character-
istics of red blood cells. Microfluidic technology was used to discover the microvascular
characteristics at the cellular level, providing an opportunity to study the biomechanical
properties of red blood cells. Each region of interest (ROI) was extracted from the video and
was converted into a feature vector by the AlexNET DL network based on CNN architecture.
In this DL, the irrelevant image features were eliminated through an unsupervised and
automatic feature-selection procedure and a support vector machine (SVM) classifier with
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a linear kernel was applied to construct the classification model. The average efficiency of
this platform was 91% and the accuracy of screening RHHA subtypes was 82% [173].

The performance of three different DL architectures—baseline CNN (two convo-
lutional layers), SimpleNet (13 convolutional layers), and CapsNet—was compared in
classifying microfluidic trap images (Figure 8b). The training dataset was augmented
through a series of affine transformations, which expanded the training set and improved
the performance of the convolutional and capsular networks. These three architectures had
different advantages and disadvantages in the recognition of different biological classes.
The model integrating these three models exhibited higher overall accuracy than the in-
dividual models or models combining two or more by combining the advantages of each
model and assigning different prediction weights to those models [174].

Lee et al. presented an image-activation-based sorting technique based on a fast DL
model under the Tensor RT framework that determined the sorting or not within 3 ms. The
microfluidic device was divided into three parts, a flow-focusing zone, a detection zone,
and a sorting zone, and there were an actuation channel, a waste channel, and a collection
channel in the sorting zone. Since the waste channel was wider than the collection channel,
the focused beads/cells flowed into this channel when there was no actuation signal. The
beads/cells were guided into the collection channel when there was an actuation signal.
The multifunctional I/O device generated a voltage pulse 2.5 ms before the target beads
or cells reached the sorting line, and the piezoelectric pulse was amplified to cause the
piezoelectric actuator to push water from the syringe into the actuation channel, which
sorted the target beads or cells into the collection channel. ResNet18 was selected as the DL
model for classification, and the sorting rates were 98.0%, 95.1%, and 94.2% for 15 µm and
10 µm beads, HL-60 and Jurkat cells, and HL-60 and K562 cells, respectively [175].

RNNs are another popular type of neural network with “memory” that can remem-
ber previous information and apply it to the current output computation for processing
sequential or time-series data. Honrado et al. designed a new microchip with two detec-
tion zones that provided two electric fields: one had a uniform height along the channel
and non-uniform width along the channel, and the other one had a uniform width along
the channel and non-uniform height along the channel. The combination of these two
types of electric fields helped eliminate the effect of position ambiguity. Since the signal
of the impedance data stream was a time-series, a modified RNN network (LSTM) was
used to process the data, predicting the cell size, velocity, and cross-sectional position at
2500 cells/second [176].

Unsupervised Learning

Autoencoder (AE) is a popular unsupervised DL algorithm. Kobayashi et al. con-
ducted image recognition of the drug sensitivity of leukocytes via extreme-flux flow cytom-
etry coupled with deep convolutional self-encoders. The small height and narrow width
of the channels in the microchip ensured a precise focus and high flow rate for imaging.
The combination of a narrow imaging region and wide non-imaging parts avoids the risk
of high pressure caused by high-speed flow. The self-encoder extracted features from the
cell images and transformed them into a 4,608-dimensional latent space (Figure 8c). The
maximum mean difference (MMD) and HSIC could capture dose-dependent morpholog-
ical changes occurring in drug-sensitive cells, whether cultured cells or primary blood
cells [177].

Constantinou et al. developed a self-learning microfluidic platform for single-cell
imaging and classification based on a Y-shaped channel and a variational autoencoder
(VAE). The encoder was composed of six 3 × 3 ReLU activation convolution kernels, and
the decoder was composed of transposed convolutions in the reverse order of the encoder.
The encoder mapped the image into a ten-dimensional point in the latent space; each
dimension corresponded to an individual feature, and the decoder generated images from
these points. Eventually, an SVM classifier was applied in the latent space for few-shot
classification with an accuracy of 88% (Figure 8d) [178].
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Commons Attribution 4.0 International (CC BY 4.0) License). (b) Architectures of three models.
(Reprinted with permission from Ref. [174] under the Creative Commons Attribution 4.0 International
(CC BY 4.0) License). (c) Schematic of the feature analysis and round-robin training and testing.
(Reprinted with permission from Ref. [177], copyright 2019 Royal Society of Chemistry). (d) VAE
architecture for unsupervised learning and result of few–short classification accuracy. (Reprinted
with permission from Ref. [178] under the Creative Commons Attribution 4.0 International (CC BY
4.0) License).

Other unsupervised DL algorithms, such as deep belief networks (DBNs), are also
used in microfluidics. DBNs stack multiple independent unsupervised networks (e.g., AE,
RBM) and use the hidden layer of each network as the input to the next layer. The DBN
algorithm designed by Gopakumar et al. could extract features and sort the localized cell
lines without clear segmentation and obvious features. The specific steps are as follows:
First, a rectangular bounding box containing the cells are found for rough segmentation,
and then the background is subtracted for simple preprocessing. Finally, the bounding box
is identified to locate non-repeating cells to format a dataset. Constructing DBN with a
restricted Boltzmann machine (RBM) improved the classification accuracy and response
rate [179].

4.3. Conclusions

ML and DL will have a profound impact on our lives, and all of industry will be
changed by the effects of AI. The main focus of Industry 4.0 is technology-driven au-
tomation and intelligence in various fields such as smart healthcare, smart cities, and
smart business [180]. The combination of microfluidics with ML and DL is an especially
innovative approach that should have huge effects on smart healthcare.

The main advantage of droplet-based microfluidics is its high multiplexing capabil-
ity, which means that it can enable thousands of reactions to react simultaneously and
independently, which also introduces the requirement for big-data processing. In recent
years, the potential of ML and DL has been explored in microfluidics for biomedical and
biotechnological applications. ML has proven to be a useful tool in feature extraction,
classification, prediction, and optimization for the large amount of data generated by
microfluidic systems [181]. Essentially, the large amount of data collected from highly par-
allelized microfluidic systems represents an ideal biotechnological application for current
DL algorithms [38] The combination of microchips and AI will be automatic and micro-total
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analysis systems that can effectively solve some tough issues and are capable of predicting
results with extremely high accuracy [39]

5. Conclusions

In the past decades, microfluidics has shown great promise in enhancing biotechnol-
ogy applications with small sample volumes, short reaction times, high sensitivity, and
high throughput [182]. Microfluidics has the potential of becoming a practical technol-
ogy that will help daily human life, although there are some challenges. There are four
main components in microfluidics, including microchip design and fabrication, micro-
electronics, sample detection, and data analysis [1]. The success of microelectronics and
computer miniaturization has inspired the miniaturization, integration, and intelligence
of microfluidics. We are about to enter a special age when everything is connecting by
integrating energy, electronics, communication, computers, and sensors. The emergence
and improvement of intelligent microfluidics requires advanced materials, electrochemistry,
biochemistry, microelectronics, AI, and some other technologies. Intelligent microfluidic
systems will provide a powerful platform for biomedical analysis.

Wearable microfluidics is a popular field that contains several types of techniques:
microfluidics, biosensors, soft materials, microelectronics, and AI. Wearable microfluidics
will be an important tool in medical diagnosis, despite some challenges in data collection,
processing, communication, security, and biocompatibility [183]. Wearable electronic
devices and digital health based on big-data analytics and ML have great potential to
provide real-time diagnostic information to patients.

A combined platform consisting of microfluidics and advanced machine learning
tools is inevitable. It will take full advantage of the high throughput and small-volume
of microfluidics, as well as the automation and powerful data-processing capabilities of
ML [181]. ML not only innovates microfluidic equipment, but also addresses some tough
issues in traditional biology and life sciences. ML technology has been shown in facilitating
the implementation of AI in microfluidic devices for cell sorting, manipulation, biomolec-
ular analysis, DNA/RNA sequencing, and other biomedical applications. Therefore, we
believe that intelligent microfluidics will play a more and more important role in research
and industrial fields in the future.
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