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Abstract: With the rapid development of artificial intelligence, the electronic system has fallen short of
providing the needed computation speed. It is believed that silicon-based optoelectronic computation
may be a solution, where Mach–Zehnder interferometer (MZI)-based matrix computation is the key
due to its advantages of simple implementation and easy integration on a silicon wafer, but one of the
concerns is the precision of the MZI method in the actual computation. This paper will identify the
main hardware error sources of MZI-based matrix computation, summarize the available hardware
error correction methods from the perspective of the entire MZI meshes and a single MZI device, and
propose a new architecture that will largely improve the precision of MZI-based matrix computation
without increasing the size of the MZI’s mesh, which may lead to a fast and accurate optoelectronic
computing system.

Keywords: hardware error correction; matrix computation; Mach–Zehnder interferometer

1. Introduction

Benefiting from the era of big data, the rapid growth of the Internet provides sufficient
training datasets for functioning artificial intelligence (AI), which has also become a hot spot
in the current technological revolution. However, artificial intelligence has conventionally
relied on electronic processors, with its computing power being greatly determined by
transistor numbers and capabilities; managing the massive amount of data necessitates
additional computing resources. In the post-Moore era, the increasing transistor numbers
can no longer keep up with the computing power demand of artificial intelligence, and
electronic computation is therefore stuck in a bottleneck [1–3]. On the other hand, photons
are bosons, which have the advantages of a higher transmission speed and can work well
with electrons through the Einstein coefficients, which is conducive to the realization of
ultra-high-speed optoelectronic computing. Consequently, more and more researchers are
beginning to focus on optoelectronic computing [4–9].

The fabrication techniques for silicon photonics are advancing rapidly, enabling the
creation of large-scale and complicated circuits and paving the way for low-loss and low-
cost optoelectronic devices [10]. These devices can be produced using complementary
metal–oxide–semiconductor (CMOS) fabs [11]. As a result, silicon-based optoelectronic
computation has emerged as a prominent area of research [3]. At present, optoelectronic
matrix computation mainly includes three implementation methods [12]: multi-plane light
conversion (MPLC), the Mach–Zehnder interferometer method (MZI), and wavelength divi-
sion multiplexing (WDM). The Mach–Zehnder interferometer method is simple and easy to
integrate. It is one of the best choices to implement optoelectronic matrix computation [13].

The optoelectronic matrix computation implemented by the Mach–Zehnder interferome-
ter is a kind of analog computation, in which computational precision is the most important
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and should be treated with special attention. However, the performance of silicon photonic
devices is sensitive to the influence of environmental disturbances [14–17], fabrication [15,18],
and device aging [15,19], including MZI devices. Particularly, the hardware errors generated
by fabrication are the focus of research [20,21], which result in deviations between the matrix
implemented by MZI and the actual needed matrix. The hardware errors involve beam
splitter errors [20], phase errors [22], and errors caused by optical loss differences [23]. The
hardware errors will accumulate with the increase of the scale of the MZI meshes, which
limits the implementation of large-scale matrix computation based on MZI meshes. In order
to overcome this limitation of hardware error, especially beam splitter error, researchers have
proposed different MZI meshes or different MZI devices with higher precision.

In this paper, the Mach–Zehnder interferometer method of achieving optoelectronic
matrix computation is introduced in Section 2. The origins of the hardware error of the
Mach–Zehnder interferometer are analyzed in Section 3, followed by a synthesis of the
studies of MZI hardware error correction in Section 4. Finally, a feasible approach to
mitigate the MZI hardware error is proposed in Section 5.

2. Methods

In 1994, Reck et al. [24] proposed one type of triangular mesh based on the Mach–
Zehnder interferometer and demonstrated that the unitary matrix transformation of
any finite dimension could be implemented by MZI devices. They decomposed the N-
dimensional unitary matrix into a series of two-dimensional unitary matrices, which were
presented as a triangular mesh formed by the arrangement of MZIs, as shown in Figure 1.

Figure 1. Triangular mesh.

A common Mach–Zehnder interferometer consists of an external phase shifter (ϕ),
an internal phase shifter (θ), and two 50:50 beam splitters (directional couplers (DC)) or
multimode interference couplers (MMI)), as shown in Figure 2.

Figure 2. The common MZI.

For an MZI device, transmission matrix S is

S = C4P3C2P1 (1)

where P1 and P3 are the transmission matrices of the external phase shifter and the internal
phase shifter, respectively; C2 and C4 are the transmission matrices of the beam splitter
on the left side of the MZI and the beam splitter on the right side of the MZI, respectively.
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Among them, the left and right beam splitters are considered as ideal 50:50 beam splitters.
Hence, MZI transmission matrix S can be written as [25]

S =

[
1/
√

2 i/
√

2
i/
√

2 1/
√

2

][
eiθ 0
0 1

][
1/
√

2 i/
√

2
i/
√

2 1/
√

2

][
eiϕ 0
0 1

]
(2)

S = ieiθ/2
[

eiϕsinθ/2 cosθ/2
eiϕcosθ/2 −sinθ/2

]
(3)

where ϕ and θ are phases produced by the external phase shifter and the internal phase shifter,
respectively. Obviously, we can produce different phases through these two phase shifters to
implement two-dimensional unitary matrices with different elements. For an N-dimensional
unitary matrix, the MZI’s transmission matrix can be generalized as Tn,m (θ, ϕ):

Tn,m(θ,ϕ) =



1 0 · · · · · · 0 0
0 1 0 0

. . .
... eiϕsinθ/2 cosθ/2

...
... eiϕcosθ/2 −sinθ/2

...
. . .

0 0 1 0
0 0 · · · · · · 0 1


(4)

where n and m represent the transmission matrix of the MZI between the nth and mth
input ports of the signal entering the mesh. The dimension of an N-dimensional unitary
matrix, U(N), can be reduced by right multiplying Tn,m (θ, ϕ), namely,

U(N)TN,N−1TN,N−2 · · · TN,1 =

[
U(N − 1) 0

0 1

]
(5)

The N-dimensional unitary matrix’s dimension can be continued to be reduced ac-
cording to the above dimensionality reduction method, and finally, a diagonal matrix, D,
with elements of modulo 1 is obtained.

Let
R(N) = TN,N−1TN,N−2 · · · TN,1 (6)

U(N)R(N)R(N − 1)R(2) =



1 · · · 0
. . .

... 1
...

. . .
0 · · · 1


= D (7)

It can be seen from the previous theoretical derivation that the final implementation of
the N-dimensional unitary matrix will be a triangular mesh with N-1 MZIs in the N row and
N-2 MZIs in the N-1 row. Based on the above theory, in 2017, Shen et al. [26] experimentally
demonstrated a cascaded mesh of 56 programmable MZIs with this triangular mesh, which
improved the computational speed and power efficiency compared with that of traditional
electronic processors.

3. Hardware Error

The N-dimensional unitary matrix implemented by MZI meshes has some deviations
from the needed matrix in actual computation. On the one hand, the triangular mesh of
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the Reck design leads to an inconsistent optical loss of each output, and the larger mesh
is, the greater the optical loss difference of each output, and the higher the total losses.
On the other hand, more importantly, the beam splitter in MZI cannot implement the
ideal 50:50 beam splitter due to the hardware error generated by the fabrication and the
non-uniformity of the material, which leads to the deviation of the transmission matrix and
affects the final computation.

The non-ideal 50:50 beam splitter transmission matrix can be expressed as follows:[
cosϕ isinϕ
isinϕ cosϕ

]
(8)

where, when ϕ = π/4, it is the ideal 50:50 beam splitter; ϕ will generally deviate from π/4
for the non-ideal 50:50 beam splitter, which leads to the deviation of the MZI transmission
matrix. For the transmission matrix of the beam splitter on the left side of the MZI and the
beam splitter on the right side of the MZI, ϕ can be expressed as ϕ1 and ϕ2, respectively,
and then MZI transmission matrix S′ can be expressed as

S′ =
[

cosϕ2 isinϕ2
isinϕ2 cosϕ2

][
eiθ 0
0 1

][
cosϕ1 isinϕ1
isinϕ1 cosϕ1

][
eiϕ 0
0 1

]
(9)

S′ = ieiθ/2

eiϕ
(

cos(ϕ1 − ϕ2)sin(θ/2)−
icos(ϕ1 + ϕ2)cos(θ/2)

) (
sin(ϕ1 + ϕ2)cos(θ/2)+
isin(ϕ1 − ϕ2)sin(θ/2)

)
eiϕ
(

sin(ϕ1 + ϕ2)cos(θ/2)−
isin(ϕ1 − ϕ2)sin(θ/2)

)
−
(

cos(ϕ1 − ϕ2)sin(θ/2)+
icos(ϕ1 + ϕ2)cos(θ/2)

)
 (10)

Obviously, the MZI’s transmission matrix changes because of two non-ideal beam
splitters, which is inconsistent with the transmission matrix in the ideal case, which leads to
the deviation between the N-dimensional unitary matrix implemented by the MZI meshes
and the theoretical one.

4. Error Correction

In terms of the hardware error in the N-dimensional unitary matrix transformation
implemented by the MZI meshes introduced in Section 3, researchers have made a lot of
effort. This section will introduce the main hardware error correction methods for (1) the
entire MZI meshes and (2) a single MZI device.

4.1. The Entire MZI Meshes
4.1.1. Rectangular Mesh

In 2016, Clements et al. [23] proposed a rectangular mesh, which was an improvement
of the triangular mesh of Reck, as shown in Figure 3. Compared to the triangular mesh of
Reck, the rectangular mesh has higher symmetry and a lower optical loss difference of each
output. Additionally, the longest optical depth of the rectangular mesh is about half that of
the triangular mesh, and the total optical loss is only half that of the triangular mesh.

Figure 3. Rectangular mesh.
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The improvement of the rectangular mesh is specifically manifested in the process
of decomposition of the N-dimensional unitary matrix into a series of two-dimensional
unitary matrices. The decomposition process does not reduce the dimensions by right
multiplying Tn,m(θ, ϕ), but by both right multiplying Tn,m(θ, ϕ) and left multiplying
T−1

n,m(θ, ϕ), as shown in Figure 4 and seen in the following:

T4,5T3,4T2,3T1,2T4,5T3,4UT−1
1,2 T−1

3,4 T−1
2,3 T−1

1,2 = D (11)

that is,
U = T−1

3,4 T−1
4,5 T−1

1,2 T−1
2,3 T−1

3,4 T−1
4,5 DT1,2T2,3T3,4T1,2 (12)

Figure 4. The decomposition method of the rectangular mesh. Reprinted under the terms of the
CC-BY license [23]. Copyright 2016, Clements et al., published by Optica.

For a matrix Tn,m(θ, ϕ) and a diagonal matrix D, there are matrix T−1
n,m(θ, ϕ) and

another diagonal matrix D′, with T−1
n,m(θ, ϕ) D′ = D Tn,m(θ, ϕ), and we obtain a right-

multiplication dimensionality reduction operation similar to that in Equation (7).

U = D′T3,4T4,5T1,2T2,3T3,4T4,5T1,2T2,3T3,4T1,2 (13)

Shokraneh et al. [27] experimentally proved that due to the asymmetric distribution
of MZIs in the triangular mesh, optical loss is greater on the triangular mesh than on
the rectangular mesh in the computation process. They used a dataset that was perfectly
classifiable to assess the classification performance of the two meshes in optical neural
networks (ONN). Compared to the triangular mesh, the rectangular mesh is more phase-
error-tolerant and loss-tolerant. Thus, the rectangular mesh is commonly adopted as the
fundamental unit for constructing ONN in various research studies [28–30]. However, the
beam splitter errors will still impact the computed result of the rectangular mesh.

4.1.2. Fourier Structure

In order to solve hardware errors introduced by the non-ideal 50:50 beam splitter,
Lopez-Pastor et al. [31] presented one kind of mesh composed of Fourier transforms
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and phase masks, which can implement the unitary matrix transformation of any finite
dimension.

For an N-dimensional unitary matrix, the above Equation (13) can be written as

U = D
N/2

∏
i=1

N/2−1

∏
k=1

T2k

(
χ
(i)
k , η

(i)
k

)N/2

∏
j=1

T2j−1

(
θ
(i)
j , ϕ

(i)
j

)
, (14)

N/2−1
∏

k=1
T2k

(
χ
(i)
k , η

(i)
k

)
and

N/2
∏
j=1

T2j−1

(
θ
(i)
j , ϕ

(i)
j

)
can be decomposed by the diagonal ma-

trix, permutation matrix and circulant matrix, and the decomposition of the unitary matrix
can be obtained as follows:

U = DG

[
N/2

∏
i=1

B(i)A(i)

]
G, (15)

where A(i) and B(i) are

A(i) =
{

E, G, H, p
(

Γ
(

θ(i)
))

, E, GΓ
(

ϕ(i)
)}

F
, (16)

and,
B(i) =

{
E, p(G), H, Γ

(
χ(i)
)

, E, p
(

GΓ
(

η(i)
))}

F
, (17)

Finally, The N-dimensional unitary matrix, U(N), can be decomposed into a product
of phase masks and Fourier transforms. As shown in Figure 5, the gray rounded rectangles
represent the Fourier transforms, and the colored rectangles represent the phase-mask
diagonal matrices. Only two diagonal matrices per layer (denoted by red and yellow
rectangles) depend on the unitary matrix being implemented, while the rest (denoted by
blue rectangles) are fixed. In this structure, the MZI of each layer in the mesh is decomposed
into the form of Fourier transforms and phase masks, and the Fourier transforms can be
implemented by MMI. This mesh avoids the use of a large number of beam splitters,
reduces the source of error to a certain extent, and is more conducive to the realization of a
large-scale mesh for optoelectronic computation. However, this decomposition method is
not as simple and easy to implement as the triangular mesh and rectangular mesh methods
are. Additionally, an even-dimension unitary matrix requires 6N DFTs (the discrete Fourier
transform) and 6N + 1 controllable phase masks, and thus the size of the mesh will also
significantly increase.

Figure 5. Mesh composed of Fourier transforms and phase masks. Reprinted under the terms of the
OSA Open Access Publishing Agreement [31]. Copyright 2021, Lopez-Pastor et al., published by Opt.
Express.
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4.1.3. Redundant Rectangular Mesh

Pai et al. [32] proposed two mesh improvements. The first is adding redundant tunable
layers in the rectangular Mesh, called the redundant rectangular mesh (RRM), which can
accelerate the optimization process of the mesh to implement the unitary matrix. The
second is adding a redundant mesh composed of low-loss waveguide crossings or MZIs
with fixed cross-state phase shifts, called the permuting rectangular mesh (PRM). As shown
in Figure 6, Figure 6a is a schematic diagram of the RRM, where the green part represents the
redundant tunable layers, and Figure 6b shows the PRM, where the gray part represents the
additional low-loss waveguide crossings or MZIs with fixed cross-state phase shifts. This
method of adding additional MZIs in the mesh increases the tunable degrees of freedom
in the MZI’s mesh. For a given unitary matrix, there is a supersaturated implementation
schemes. Some unitary matrices that cannot be realized due to MZI imperfections can
be realized by new equivalent schemes brought by the extra degrees of freedom in the
redundant mesh [33].

Figure 6. (a) Redundant rectangular mesh; (b) permuting rectangular mesh. Reprinted with permis-
sion from ref. [32]. Copyright 2019, APS.

However, the redundant mesh increases the size of the MZI meshes, which inevitably
leads to an increase in the optical loss of the entire mesh. In a small mesh, the increased
optical loss is within an acceptable range, and the computational precision of the MZI
meshes is better improved.

4.2. A Single MZI Device

In addition to the above improvements in the MZI’s mesh, more researchers focus
on the improvement of a single MZI device. The improvement of a single MZI device is
mainly carried out by adding redundant phase shifters and beam splitters to improve the
tunable degrees of freedom of the MZI, so as to correct its hardware errors.

For a MZI with non-ideal beam splitters, where neither of the two beam splitters has
an ideal 50:50 beam splitter ratio, the transmission matrix is given by Equation (10). When
we input optical signal E1 from only one port of the MZI, the output optical powers Pout_1
and Pout_2 of the two output ports are

Pout_1 = |E1|2
[
cos2(ϕ1 + ϕ2)cos2(θ/2) + cos2(ϕ1 − ϕ2)sin2(θ/2)

]
, (18)

Pout_2 = |E1|2
[
sin2(ϕ1 + ϕ2)cos2(θ/2) + sin2(ϕ1 − ϕ2)sin2(θ/2)

]
, (19)

When ϕ1 + ϕ2 = π/2, Pout_1 = |E1|2cos2(ϕ1 + ϕ2)cos2(θ/2), complete extinction can
be achieved. Suzuki et al. [34] proposed a MZI architecture, replacing a beam splitter in the
common MZI with a MZI, as shown in Figure 7. They adjusted this MZI as a 50:50 beam
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splitter so that its split ratio was complementary to that of another beam splitter to meet
the above complete extinction conditions. Moreover, they demonstrated this 2 × 2 MZI
with the highest extinction ratio (50.4 dB).

Figure 7. MZI architecture with a variable splitter as the front 3-dB splitter (MZI as a beam splitter in
green frame).

Although this architecture improves the extinction ratio of the MZI and corrects its
transmission matrix to a certain extent, the correction of the transmission matrix is not
complete. When complete extinction is achieved, MZI transmission matrix S” can be
expressed as

S′′ = ieiθ/2
[

2eiϕ cos ϕ2sinϕ2sin(θ/2) (cos(θ/2) + i cos(2ϕ2)sin(θ/2))
eiϕ(cos(θ/2)− icos(2ϕ2)sin(θ/2)) −2 cos ϕ2sinϕ2sin(θ/2)

]
, (20)

It is evident that the transmission matrix of MZI undergoes a slight correction, yet
it still deviates from the ideal MZI transmission matrix’s S (Equation (3)). Consequently,
errors may still arise during matrix computations, especially when dealing with large-scale
MZI meshes.

Miller et al. [35] presented a double Mach–Zehnder interferometer (DMZI), as shown
in Figure 8. Two MZIs were used as tunable beam splitters to replace the two splitters on
the left and right of the common MZI, forming a new MZI architecture.

Figure 8. A double MZI architecture (MZI as a beam splitter in green frame).

Now, we will illustrate the error correction process of DMZI. For instance, considering
the MZI on the left, we should adjust its beam splitters to a 50:50 split. The transmission
matrix of two beam splitters in this MZI can be expressed as Pa and Pb:

Pa =

√ 1
2 − Ra i

√
1
2 + Ra

i
√

1
2 + Ra

√
1
2 − Ra

, (21)

Pb =

√ 1
2 − Rb i

√
1
2 + Rb

i
√

1
2 + Rb

√
1
2 − Rb

, (22)

where, Ra and Rb represent errors of the left beam splitter and the right beam splitter,
respectively. The transmission matrix, PL, of the MZI as a beam splitter can be expressed as

PL =

√ 1
2 − Rb i

√
1
2 + Rb

i
√

1
2 + Rb

√
1
2 − Rb

[eiθ 0
0 1

]√ 1
2 − Ra i

√
1
2 + Ra

i
√

1
2 + Ra

√
1
2 − Ra

[eiϕ 0
0 1

]
, (23)
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This can be rewritten as

PL =

[
eiθ√αbαa −

√
βbβa ieiθ√αbβa + i

√
βbαa

ieiθ√βbαa + i
√

αbβa
√

αbαa − eiθ√βbβ

]
, (24)

where, αb = 1
2 − Rb; βb = 1

2 + Rb; αa = 1
2 − Ra; βa = 1

2 + Ra. When we input optical
signals, E1, from only one port of MZI, the output optical power, Pout, of one of the two
output ports is

Pout = |E1|2
{

1
2
+ 2

[
RaRb −

√(
1
4
− R2

a

)(
1
4
− R2

b

)
× cosθ

]}
, (25)

Thus, if this MZI is used as a 50:50 beam splitter, P3 = 1
2 |E1|2; hence, from Equation (25)

RaRb =

√(
1
4
− R2

a

)(
1
4
− R2

b

)
× cosθ, (26)

considering cos2θ ≤ 1; hence, from Equation (26)

R2
aR2

b ≤
(

1
4
− R2

a

)(
1
4
− R2

b

)
, (27)

which can be derived to give

|Ra| ≤
√

1
8
' 0.35&|Rb| ≤

√
1
8
' 0.35, (28)

Therefore, the split ratios of the fabricated power from 85:15 to 15:85 can be com-
pensated by adjusting the split ratio of the two tunable beam splitters back to 50:50.
Two redundant beam splitters and two redundant phase shifters can completely correct
the transmission matrix of MZI. Wilkes et al. [36] proposed a configuration algorithm for
this DMZI, eventually achieving a 60 dB extinction ratio.

However, the size of the MZI also increases significantly. The increase in optical loss
brought about by redundant beam splitters and phase shifters is also a problem to be
considered in large-scale MZI meshes. Moreover, the transmission matrix of a real MZI as a
beam splitter is different from that of the ideal one; when the ideal MZI is used as a 50:50
beam splitter, its transmission matrix R, from Equation (3), is:

R =

[
1 1
1 −1

]
, (29)

where, x = cos(ϕ1 − ϕ2); y = cos(ϕ1 + ϕ2); s = sin(θ/2); c = cos(θ/2). The correspond-
ing output optical phase of the four elements in the matrix R can be represented on a
complex plane, as shown in Figure 9.

For a real MZI, when it is used as a 50:50 beam splitter, its transmission matrix R′,
from Equation (10), is

R′ =

[
sx− icy c

√
1− y2 + is

√
1− x2

c
√

1− y2 − is
√

1− x2 −sx− icy

]
, (30)

where, x = cos(ϕ1 − ϕ2); y = cos(ϕ1 + ϕ2); s = sin(θ/2); c = cos(θ/2). The correspond-
ing output optical phase of the four elements in the matrix R′ can be represented on a
complex plane, as shown in Figure 10.
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Figure 9. The corresponding output optical phase of the four elements in the matrix R.

Figure 10. The corresponding output optical phase of the four elements in the matrix R′.

By comparison with Figures 11 and 12, it is evident that for a MZI with a beam splitter
that is not an ideal 50:50 beam splitter, when it is used as a 50:50 beam splitter, the phase of
the output optical signal will be altered, thus ultimately impacting the interference result in
the subsequent optical path of the mesh and thus the final computed result.
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Figure 11. Three-splitter MZI.

Figure 12. MZI + crossing.

Based on the above works, Hamerly et al. [20] proposed two MZI architectures
(Figures 11 and 12). One is of a three-splitter MZI, which can correct generic errors and
achieve a full range of split ratios. To realize the full range of the split ratio, it changes the
position of “forbidden regions” caused by the error of the beam splitter, which are some unitary
matrices that cannot be implemented because of the beam splitter error. The “forbidden regions”
are displaced away from the cross state, rather than being eliminated completely. However,
similarly to the architecture proposed by Suzuki, it does not completely correct the transmission
matrix of the MZI. Furthermore, this MZI architecture does not incorporate an external phase
shifter. Therefore, when it is formed into a mesh, it cannot correct the phase error from the
previous layeR′s MZIs.

The other one is MZI + crossing, which can only correct correlated device errors.
Because the errors of the right and left beam splitters are consistent, the added cross waveg-
uide rotates the “forbidden regions” by 180◦ to achieve complete extinction. Thus, this
architecture has bandwidth tolerance. However, due to the errors of the right and left
beam splitters being usually inconsistent, this architecture only exhibits good bandwidth
tolerance but cannot correct the beam splitter error and eliminate limitations to matrix
computation. Compared to the Suzuki design and Miller design, these two MZI architec-
tures are smaller in size and do not add redundant phase shifters, but the hardware error
correction is not good enough.

Bandyopadhyay et al. [21] used redundant phase shifters to correct hardware errors
and proposed a method of adding phase shifters to two ports of the output end of an
MZI to locally correct the hardware error within an individual MZI. In this method, no
additional beam splitters are added, and the increase in the size of a single device is small,
as shown in Figure 13.

Figure 13. Bandyopadhyay et al.’s MZI architecture with a local error correction design.

For the MZI with non-ideal 50:50 beam splitters, the transmission matrix S′, from
Equation (10), can be rewritten as:
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S′
(
θ′, ϕ′

)
= ieiθ′/2

eiϕ′
(

cos(ϕ1 − ϕ2)sin(θ′/2)−
icos(ϕ1 + ϕ2)cos(θ′/2)

) (
sin(ϕ1 + ϕ2)cos(θ′/2)+
isin(ϕ1 − ϕ2)sin(θ′/2)

)
eiϕ′
(

sin(ϕ1 + ϕ2)cos(θ′/2)−
isin(ϕ1 − ϕ2)sin(θ′/2)

)
−
(

cos(ϕ1 − ϕ2)sin(θ′/2)+
icos(ϕ1 + ϕ2)cos(θ′/2)

)
, (31)

To implement a desired unitary S (Equation (3)), we should find the θ′, ϕ′ of each S′(θ′, ϕ′) = S.
The condition to each S′(θ′, ϕ′) = S produces the following expression for θ′:

θ′ =2arcsin

√
sin2(θ/2)− cos2(ϕ1 + ϕ2)

cos2(ϕ1 − ϕ2)− cos2(ϕ1 + ϕ2)
, (32)

Therefore, the beam splitter errors restrict θ to the range

2
∣∣∣ϕ1 + ϕ2 −

π

2

∣∣∣< θ <π − 2|ϕ1 − ϕ2|, (33)

Assuming that θ is in this range, the transmission matrix’s S′(θ′, ϕ′), from Equation (31),
can be rewritten as

S′′ = ieiθ′/2

[
eiϕ′ eiδa sin(θ/2) eiδb cos(θ/2)
eiϕ′ eiδc cos(θ/2) −eiδd sin(θ/2)

]
, (34)

= ieiθ′/2
[

eiδb 0
0 eiδd

][
eiϕ′ ei(δa−δb)sin(θ/2) cos(θ/2)
eiϕ′ ei(δc−δd)cos(θ/2) −sin(θ/2)

]
, (35)

= ieiθ′/2
[

eiδb 0
0 eiδd

][
ei(ϕ′+δa−δb)sin(θ/2) cos(θ/2)
ei(ϕ′+δa−δb)cos(θ/2) −sin(θ/2)

]
, (36)

where δa, δb, δc and δd are phase errors the elements of S′(θ′, ϕ′), and for the unitary matrix
requiring that δa + δd = δb + δc, we can correct those phase errors from Equation (36) to
set S′(θ′, ϕ′) as equal to S. In accordance with Equation (36), the architecture shown in
Figure 13 can be obtained. For different unitary matrices, corresponding error correction
procedures must be implemented, and the correction method is complicated. It is important
to note that this architecture can only correct the phase error. Although the transmission
matrix is corrected, θ is restricted, meaning that some matrices cannot be implemented
accurately. When θ is not in this range, there is a deviation between the desired matrix and
the actual matrix.

5. Discussion

To overcome hardware errors in MZI meshes during the implementation of matrix
computation, the primary strategies include increasing the tunable degrees of freedom of
MZI meshes. This involves adding redundant beam splitters and phase shifters. However,
incorporating a redundant mesh and improving a single MZI device may result in an
increase in the size of the MZI mesh, as shown in Table 1. Therefore, it is crucial to develop
a MZI mesh that can perform high-precision computation without increasing the device’s
size to achieve large-scale matrix computation.

In 2001, a study report [37] was conducted on tunable multimode interference couplers
(MMI). By changing the position of the four-fold images of MMI out of the phase shift
of the four fields, the split ratio of the two-fold images was controlled, which was then
realized in the InP material. In 2008, May-Arrioja et al. [38] used local electrical modulation
to control the split ratio, and in addition, changed the phase of the two-fold images [39,40]
to realize the arbitrary split ratio of the self-image. A thermally modulated MMI using
polymer materials was also introduced [41]. In 2019, Perez et al. [42] reported a thermally
modulated dual-drive directional coupler (DD-DC) and experimentally proved that it
can realize an arbitrary split ratio. The size of the tunable beam splitters proposed in these
studies is relatively large, and some beam splitters are not integrated on a silicon platform.
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However, these studies provide us with a novel perspective; by applying thermal or electrical
modulation interference to the local optical field of the static beam splitter, we can also create
a tunable beam splitter on a silicon platform without needing to increase its size.

Table 1. Characteristics of major MZI schemes.

Architecture Number of Beam
Splitters

Number of Phase
Shifts Size Hardware Error

Correction

The common MZI 2 2 1 none
Suzuki 3 3 1.5 +++
Miller 4 4 2 ++++

3-splitter MZI 3 2 1.2 ++
MZI + crossing 2 2 + 1 crossing 1.2 +

Bandyopadhyay 2 4 1.2 ++

Here, we propose a new MZI architecture, where we replace the 50:50 beam splitter in
the common MZI with a tunable DC/MMI that takes into account hardware error correction
and mesh size, as shown in Figure 14. This improves the computational precision of the
MZI’s mesh without increasing its size. By adjusting the split ratios of the tunable DC/MMI,
we can eliminate its split ratio deviations from 50:50. For instance, for a tunable MMI,
when the phase of optical fields at the position of the four-fold images in the multimode
interferometer is altered, it affects the interference results of the optical fields, culminating
in changes in the intensity of the two images at the two-fold image position. This enables
the adjustment of the beam split ratios. The tunable MMI has the theoretical capability
to adjust split ratios from 100:0 to 0:100, enabling the adjustment of any fabricated power
split ratios in the physical 2 × 2 MMI to the ideal 50:50 split. This correction completely
eliminates beam splitter errors and enables high-precision MZI-based matrix computation.

Figure 14. A new MZI architecture.

6. Conclusions

To summarize, this paper introduces the method of using a MZI’s mesh to implement
any finite dimensional unitary matrix transformation, along with an analysis of the effects of
hardware errors during matrix computation based on the MZI. Addressing MZIs’ hardware
errors is crucial to achieving large-scale matrix computation. To eliminate the hardware
error of an MZI, various improvement works have been carried out on the entire MZI
mesh and a single MZI device. It is important to note that correcting these errors can
lead to an increase in an MZI’s mesh size, which is also a significant concern. The trade-
off between hardware error correction and mesh size requires more innovative works in
artificial intelligence, materials, optics, device manufacturing and other related fields.

In this paper, a new MZI architecture is proposed which replaces the 50:50 beam
splitter in the common MZI with the tunable DC/MMI. This MZI is designed to take into
account both hardware error correction and mesh size concerns. The tunable beam splitter-
based MZI provides a new approach for more accurate large-scale matrix computation
based on the MZI’s mesh.
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