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Abstract: This paper investigated the mechanical performance of an electrostatically tunable microbeams-
based resonators. The resonator was designed based on two initially-curved microbeams that are
electrostatically coupled, offering the potential for improved performance compared to single-beam
based resonators. Analytical models and simulation tools were developed to optimize the resonator
design dimensions and to predict its performance, including its fundamental frequency and mo-
tional characteristics. The results show that the electrostatically-coupled resonator exhibits multiple
nonlinear phenomena including mode veering and snap-through motion. A coexistence of two
stable branches of solutions for a straight beam case was even obtained due to the direct effect of the
coupling electrostatic force with the other curved beam. Indeed, the results are promising for the
better performance of coupled resonators compared to single-beam resonators and offer a platform
for future MEMS applications including mode-localized based micro-sensors.

Keywords: MEMS; electrostatically-coupled resonator; bi-stable; mode veering; mode crossing

1. Introduction

Micro-electromechanical systems (MEMS) resonators have emerged as a crucial compo-
nent in a variety of technological applications, including wireless communication systems,
biosensors and frequency resonators [1–3]. The earliest MEMS resonators were made of
simple cantilever beams but, since then, many other types of MEMS resonators have been
developed. These include various types of vibrating structures, such as clamped-clamped
beams, ring resonators and torsional resonators [4,5]. One type of MEMS resonator that has
garnered significant attention is the initially-curved microbeams resonator. Unlike straight
beams, they can provide higher quality factors and lower motional resistances [6–8]. A
curved beam can be obtained by buckling a straight beam under axial load (pre-stress)
or via initial (stress-free) fabrication [9]. The existence of bistability in curved beams is a
function of their dimensions and initial rise [10,11].

Analytical conditions for the existence of bistability in curved beams under elec-
trostatic excitation and axial loads were derived by [12,13]. The performance of these
micro-structures is affected by several design parameters including their mid-point initial
rise, beam thickness, applied axial load, internal residual stress and excitation force. The
designed dimensions and fabrication technique of the initially-curved microbeams have to
be addressed carefully to ensure the existence of the snap-through motion.

These benefits have made them attractive for use in high-performance resonant struc-
tures making them more advantageous over their straight beam counterparts [14–17]. They
have been extensively studied in recent years, investigating various aspects of their design,
fabrication and performance. One important aspect of initially-curved microbeams res-
onators is their mechanical behavior. Indeed, these micro-structures can exhibit complex
modes of vibration due to their initially-curved geometry, which can significantly impact
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their performance. Several studies have focused on developing analytical models and sim-
ulation tools to better understand the behavior of these resonators, including investigating
the effects of curvature, length and thickness on their fundamental frequency and quality
factor [18–22]. Coupled microbeams-based resonators have emerged as a promising type of
MEMS resonator in recent years, offering several advantages over single beam resonators.
In these resonators, two or more microbeams are coupled together, allowing for enhanced
performance through the interaction between the beams. They have been used in a variety
of applications, such as resonant sensors, filters and oscillators.

Using the concept of coupled resonators in MEMS sensors has attracted many re-
searchers. For example, Ramezany et al. [23] introduced a proof-of-concept for a fre-
quency modulated output MEMS sensor utilizing electrostatic coupling force between two
clamped-clamped resonators. Li et al. [24] studied the exploitation of bifurcation jumping
behavior in electrically-coupled microbeam resonators that overcomes the limitations of
traditional methods based on frequency shift measurements to enhance the sensitivity. A
skewed electrodes array has been utilized to improve the robustness of mass sensors in a
parametrically-excited, mode-localized coupled resonator [25,26].

Karabalin et al. [27] presented an array of two nanoresonators that were coupled by a
force and independently excited around their fundamental frequencies. They found that the
linear and weakly nonlinear responses of a nanoresonator could be altered by the excitation
of the other nanoresonators. Additionally, when two resonators were strongly excited in
their nonlinear domain, the response curves became more complex. Baguet et al. [28] inves-
tigated the mass-sensing capability of an array of a few identical electrostatically-actuated
microbeams in order to introduce a new class of MEMS-based coupled resonators. Rabeni-
manana et al. [29] studied the veering phenomena and the nonlinear dynamic response of
mechanically-coupled MEMS resonators considering different actuation mechanisms.

Furthermore, several research papers have examined the possibility of mode local-
ization in coupled MEMS structures [30,31]. Indeed, this phenomenon is defined as the
confinement of vibration energy to one of the members of the coupled system in response
to an external perturbation. This process can be accompanied by another closely related
process called the eigenvalue curve veering [32]. This mode veering occurs when two
linearly-coupled frequencies of the system approach each other and then deviate away
as one of the system control parameter is varied. Recently, the veering phenomenon
was examined as a main consequence of the mode localization phenomenon for coupled
MEMS structures.

As a consequence, such intrinsic modes localization was correspondingly found to
likely arise due to the presence of certain intrinsic nonlinearities within an array of coupled
resonators [31,33]. As a result, a mass sensor based on the mode localization phenomenon
was first proposed for two weakly mechanically-coupled cantilever beams [34]. Since
then, different sensors assuming weakly-coupled MEMS structures have been investigated
based on the mode localization process for mass sensors [35], force sensors [36], charge
sensors [37] and accelerometers [38].

Overall, the research on coupled microbeams-based resonators has demonstrated their
potential for use in a wide range of MEMS applications. Further advancements in their
design and fabrication techniques could lead to improved performance and expanded
applications for these resonators. Nevertheless, there is still a lack of comprehensive
theoretical studies on mode localization based on coupled structures, especially when the
coupling is due to the actuating electrostatic forcing. Consequently, the main objective of
this paper is to investigate the design and examine the performance of MEMS electrically-
coupled initially-curved microbeams resonators.

As shortcomings in the previous studies, tuning the mechanically coupled resonators
and re-arranging the electrodes distribution required intensive optimization and higher
actuation voltage. Therefore, the proposed coupled resonator design was based on two
initially-curved microbeams that are electrostatically coupled through a single full electrode
offering the potential for improved performance compared to single or multi-beams res-
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onators. This study focused on the development of analytical models and simulation tools
to optimize the coupled resonator parameters and to predict its performance, including
its fundamental frequency and motional resistance. A reduced-order model was estab-
lished and then eigenvalues of the two coupled systems were analyzed under different
bias voltage values. The effect of the bias voltages and the initial curvatures of the coupled
microbeams on the nonlinear behavior was thoroughly demonstrated.

Indeed, the performance of the initially-curved coupled resonator was analyzed with
a focus on its mechanical properties, to demonstrate the feasibility of using it as MEMS sen-
sors. The rest of the manuscript is comprised of the following sections. Section 2 introduces
the coupled microbeam design, model, geometrical properties and operational mechanism.
Section 3 presents the static and eigenvalue problem theoretical results along with a results
discussion. Finally, Section 4 summarizes the work and suggests a few conclusions.

2. Device Geometrical Properties and Operational Mechanism

The coupled resonator consisted of two thin-beams both designed to be initially curved
up (+ve configuration) or down (−ve configuration) and denoted as an upper and a lower
beam, respectively. They are actuated by a single side-wall electrode as shown in Figure 1.
The beams had a length of `b = 1000 µm and a width of b = 30 µm. They both assumed a
thickness of h = 2 µm while their mid-point rises were varied from [−2.5:2] µm depending
on an assumed initial outline. They were assumed to have a uniform cross-sectional area
of A and an area moment of inertia I. The capacitor gap measured from the center line
of each beam was set to dl = 10 µm, for the lower resonator and to du = 10 µm, for the
upper resonator. The device was assumed to be made of single crystal silicon with material
properties and dimensions listed in Table 1.

The sensor operational mechanism assumed several nonlinear dynamic phenomena
including snap-through, mode localization, hybridization and veering. This allowed the
detection of any small perturbation in the vibration mode of the coupled resonators using
different sensing scenarios. We noted that the selectivity and sensitivity are totally depen-
dent on the coupling term between the resonators’ geometrical parameters, mechanical and
material properties and the electrostatic coupling force. To operate the proposed design
as mass sensors, we expected that any small perturbation in the target added mass would
lead to veering, crossover and/or snap-through phenomena and, therefore, a change in the
vibration mode.

Table 1. Coupled resonator material properties and dimensions.

Description Value

Density (ρ) 2330 kg/m3

Young’s Modulus (E) 129 GPa
Dielectric constant of the air (ε) 8.854 ×10−12 F/m
Resonators’ length (`b) 1000 µm
Resonators’ width (b) 30 µm
Resonators’ thickness (h) 2 µm
Capacitor gap (du and dl) 10 µm
Upper resonator mid-point rise (bu◦) −2:2 µm
Lower resonator mid-point rise (bl◦) −2.5:2 µm
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Figure 1. Schematics showing the proposed sensor and the electrical connection for (a) two resonators
curved-up (+ve configuration) representing the first design, (b) upper resonator curved-up (+ve
configuration) and the lower resonator curved-down (−ve configuration) representing the second
design and (c) both resonators curved-down (−ve configuration) representing the third design.

The proposed design can also be operated depending on the vibrating mode of the
microbeams including symmetric and anti-symmetric modes, respectively. Assuming
a small perturbation to the total mass on one of the two beams and tuning the static
component of the actuated force reduces the fundamental frequency. As a result, the
coupled resonators vibrates at the lowest vibration mode following the weaker energy
channel. This causes an interesting phenomenon well-known as mode-localization. In
fact, this process confines the system’s fundamental frequency on the first resonator for the
first mode and on the second one for the second mode; in turn, enhancing the electrostatic
coupling term between the two beams and optimizing their geometric dimensions leading
to high-class sensitive MEMS devices.

2.1. Mathematical Modeling

Following the procedure developed by [39–41] and Newton’s second law associated
with the Euler Bernoulli’s beam theory, we wrote the equations of the motion describing
the transverse deflections in the absence of the electrostatic fringing filed of the lower
micro-resonator as follows:

ρA ˆ̈wl + ĉ ˆ̇wl + EIŵ′′′′l =
EA
2`b

[
ŵ′′l

∫ `b

0
(ŵ′2l − 2ŵ′l)x̂

]
+

εbV2
l

2(dl − ŵl ± ŵl◦)2

− εbV2
u

2(du + ŵl ± ŵl◦ − ŵu ± ŵu◦)2

(1)
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where the two beams are assumed to be uniform and isotropic. The initial shape of the
lower-beam was laid out to follow the expression

ŵl◦ =
bl◦
2dl

[1− cos(2πx̂)]

while the upper-beam was laid out to follow the expression

ŵu◦ =
bu◦
2du

[1− cos(2πx̂)]

and the associated boundary conditions at the two supports are

ŵl(0, t̂) = 0 , ŵ′l(0, t̂) = 0 , ŵl(`b, t̂) = 0 , ŵ′l(`b, t̂) = 0 (2)

The equations of motion describing the transverse deflections of the upper micro-
resonator can be also written as

ρA ˆ̈wu + ĉ ˆ̇wu + EIŵ′′′′u =
EA
2`b

[
(ŵ′′u − ŵ′′u◦)

∫ `b

0
(ŵ′2u − 2ŵ′u◦ŵ

′
u)dx̂

]
+

εbV2
u

2(du + ŵl ± ŵl◦ − ŵu ± ŵu◦)2

(3)

with associated boundary conditions listed as

ŵu(0, t̂) = 0 , ŵ′u(0, t̂) = 0 , ŵu(`b, t̂) = 0 , ŵ′u(`b, t̂) = 0, (4)

where A is the beam cross-sectional area, ρ denotes the mass density and I represents
the moment of inertia, which is equal to bh3

12 . Equation (1) shows that the lower resonator
is electrostatically coupled with the upper resonator through the forcing component Vu.
Indeed, it confirms that, as the lower beam is electrostatically excited, the upper beam will
respond to it resulting in rich static and dynamic behavior. We noted that the strength of
the coupling force is dependent on the excitation level applied by the side-wall electrode.
On the other hand, changing the value of the electrostatic force coupling term could
lead to several excitation scenarios of the coupled resonator as will be discussed in the
following sections. Note that the (±) sign appears in Equations (1) and (3), referring to the
initial curvatures of the coupled resonator as shown in Figure 1.

2.2. Normalization Equations of Motions

Next, we normalized the transverse equations of motion governing the coupled resonator
response, Equations (1) and (3), to reduce the numerical error and to accelerate the compu-
tational time [42]. For convenience, we introduced the following nondimensional variables:

wl =
ŵl
dl

, wu =
ŵu

du
, x =

x̂
`b

, t =
t̂
T

(5)

where T =
√

ρbh`4
b/EI and it is a time scale parameter. Substituting Equation (5) into

Equations (1)–(4) yields to the nondimensional equation of motion that governs the trans-
verse deflection of the lower resonator, which can be written as:

ẅl + cẇl + EIw′′′′l =α1

[
w′′l

∫ 1

0
(w′2l − 2w′l)dx

]
+

α2V2
l

(1− wl ± wl◦)2

− α2V2
u

( du
dl
+ wl ± wl◦ − wu ± wu◦)2

(6)
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and its associated boundary conditions are, respectively,

wl(0, t) = 0 , w′l(0, t) = 0 , wl(1, t) = 0 , w′l(1, t) = 0 (7)

and nondimensional equation of motion that governs the transverse deflection of the upper
resonator is

ẅu + cẇu + EIw′′′′u =α1(w′′u − w′′u◦)
[ ∫ 1

0
(w′2u − 2w′u◦w

′
u)dx

]
+

α2V2
u

( du
dl
+ wl ± wl◦ − wu ± wu◦)2

(8)

with associated boundary conditions listed as

wu(0, t) = 0 , w′u(0, t) = 0 , wu(1, t) = 0 , w′u(1, t) = 0 (9)

where the nondimensional coefficients appear in Equations (6) and (8), and are defined in
Table 2.

Table 2. Nondimensional coefficients appear in the equations of motion.

Description Expression

Viscous damping coefficient (c) c = ĉ`4
b

EIT

Mid-plane stretching coefficient (α1) α1 = 6
(

dl
h

)2

Electrostatic force coefficient (α2) α2 = 6
(

ε`4
b

Eh3d3
l

)
2.3. Reduced-Order Model

A reduced-order model (ROM) based on a Galerkin method is utilized to solve the
nondimensional equations of motion, (6) and (8). This technique discretizes the equation
of motion in terms of a finite number of degrees-of-freedom describing the amplitude of
mode shapes that satisfy the boundary conditions. In this case, we chose straight beam
mode shapes φi(x) as basis functions in a Galerkin expansion.

Then, we solve for the mid-point static deflection of the coupled resonator as a function
of the static voltages ldc and udc. This is carried out by eliminating the time derivatives
from the equations of motion, Equations (6) and (8). It results in a static equation for the
lower resonator, which is electrostatically coupled with the upper resonator through udc
voltage as follows:

w′′′′ls = α1

[
w′′ls

∫ 1

0
(w′′ls − 2w′ls)dx

]
+

α2ldc2

(1− wls ± wl◦)2 −
α2udc2

( du
dl
+ wls ± wl◦ − wus ± wu◦)2 (10)

and it is subjected to the following boundary conditions:

wls(0, t) = 0 , w′ls(0, t) = 0 , wls(1, t) = 0 , w′ls(1, t) = 0 (11)

Similarly, the equation describing the static equilibria of the upper beam under the
effect of the upper static voltage can be written as:

w′′′′us = α1(w′′us − w′′u◦)
[ ∫ 1

0
(w′′us − 2w′u◦w

′
us)dx

]
+

α2udc2

( du
dl
+ wls ± wl◦ − wus ± wu◦)2 (12)

and it is subjected to the following boundary conditions:

wus(0, t) = 0 , w′us(0, t) = 0 , wus(1, t) = 0 , w′us(1, t) = 0 (13)
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Then, we descretize the static deflections of the two microbeams in terms of the
Galerkin expansion as:

wls =
N

∑
i=1

φi(x)qli ; i = 1, . . . , N

wus =
N

∑
i=1

φi(x)qui ; i = 1, . . . , N

(14)

where qli are modal coordinates for the lower beam and qui are modal coordinates for the
upper beam. Substituting these transformation forms into Equations (10)–(13), multiplying
both sides of Equation (10) by [(1 − wls ± wl◦)

2 × ( du
dl

+ wls ± wl◦ − wus ± wu◦)2] and

multiplying both sides of Equation (12) by ( du
dl
+ wls ±wl◦ −wus ±wu◦)2 avoids numerical

errors in the response near the singularity. Then, multiplying the resulting equations by the
mode shapes φj and carrying out the integration over the beam span results in N algebraic
equations describing the equilibrium position for the lower beam as:

∫ 1

0
φj

[(
(1−

N

∑
i=1

φiqli ± wl◦)
2(

du

dl
+

N

∑
i=1

φiqli ± wl◦ −
N

∑
i=1

φiqui ± wu◦)
2
) ( N

∑
i=1

φiv
i qli

− α1(
N

∑
i=1

φ
′′
i qli)

∫ 1

0

(
(

N

∑
i=1

φ
′
iqli)

2 − 2
N

∑
i=1

φ
′
iqli

)
dx
)
+

α2ldc2

(1−
N
∑

i=1
φ
′′
i qli ± wl◦)2

− α2udc2

( du
dl
+

N
∑

i=1
φiqli ± wl◦ −

N
∑

i=1
φiqui ± wu◦)2

]
= 0

(15)

and for the upper beam as

∫ 1

0
φj

[
(

du

dl
+

N

∑
i=1

φiqli ± wl◦ −
N

∑
i=1

φiqui ± wu◦)
2
( N

∑
i=1

φiv
i qui − α1(

N

∑
i=1

φ
′′
i qui − w′′u◦)

∫ 1

0

(
(

N

∑
i=1

φ
′
iqui)

2 − 2w′u◦
N

∑
i=1

φ
′
iqui

)
dx
)
+

α2udc2

( du
dl
+

N
∑

i=1
φiqli ± wl◦ −

N
∑

i=1
φiqui ± wu◦)2

]
= 0

(16)

These equations are then solved for qli and qui as functions of the static voltage to obtain
the static deflections of the lower and upper resonators. We acquire the coupled resonator
small vibrations problem by resolving its deflection into a static component ws(x) and a
dynamic component wd(x, t) for the two beams as follows:

wl = wls(x) + wld(x, t)

wu = wus(x) + wud(x, t)
(17)

Substituting Equation (17) into Equations (15) and (16), dropping the damping coeffi-
cients, expanding the right hand-side term around the dynamic component using a Taylor
series, dropping the high order terms and retaining only up to the linear term in wld and
wud to obtain the forced eigenvalue problem. Here, the two microbeams oscillate around
their respective static equilibria. Then, a similar procedure to that used in the static analysis
can be carried out to develop the reduced-order model of the eigenvalue problem.

3. Results and Discussions

In this section, we analytically investigated the static deflections and the eigenvalues
of the coupled resonator under static voltage waveforms for the three proposed scenarios
discussed in Section 2. The actuation signal varies on the upper resonator while the lower
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resonator remains un-actuated or biased with 40 (V). For this particular case study, our main
objective was to understand how the coupled resonator behaves and interacts statically as
its initial curvatures and actuation levels are varied. In addition, we tracked the change in
their fundamental frequencies that could possibly lead to nonlinear phenomena including
snap-through, veering, mode localization or mode crossing as the control parameters vary
across the two microbeams. This provides insight into the usability of such a design as a
mass sensor.

3.1. Static Analysis

The static deflections of the lower and upper resonators mid-points wls(0.5) and
wus(0.5) excited by a distributed electrostatic force were computed through simultane-
ously solving the coupled Equations (15) and (16) using three symmetric modes (φ1, φ3
and φ5) and one anti-symmetric (φ2) mode in the Galerkin’s expansion. According to
Younis et al. [42], at least three symmetric modes are required for satisfactory model con-
vergence. Using two modes in the model results in quantitative errors, especially when the
beam undergoes large deflection. In the below, we considered five different configurations
in terms of initial curvatures, curved-up or down, varied the excitation signal along the
upper beam and maintained a constant voltage for the lower beam.

Table 3 summarizes the mid-point rise of each beam under study. This was a manda-
tory step towards initiating a general design procedure to ensure promising static and
dynamic behavior for the electrostatically-coupled MEMS resonator and to determine
the minimum threshold for the initial curvature and other geometric parameters. These
provide details about the existing of mode veering and snap-through motion as well the
effect of the mid-point rise.

Table 3. Mid-point rise for each design in µm.

Design 1 Design 2 Design 3 Design 4 Design 5

bl◦ 0 0 2 −2 −2.5
bu◦ 1 2 2 0 2

Assuming a straight lower beam and 1 (µm) mid-point rise for the upper beam leads
to a single stable equilibrium for both beams as the upper static voltage varies and the
lower static voltage remains un-actuated, shown with green lines (—) and, when biased
with 40 V, displayed with magenta lines (—), respectively, in Figure 2a. The figure shows
that the upper beam deflection increases in the (+ve) positive direction and moves away
from the center line as the voltage increases and vice versa for the lower beam deflection.

We observed one stable branch of solution for each beam as it terminates and loses
its stability through a saddle-node bifurcation. At this point, the stable branch meets
the unstable branch of solutions and, therefore, the beams come into contact with the
side-wall electrode. We note that this level of mid-point rise is not sufficient to activate
snap-through motion. To further investigate the effect of the initial rise, we considered
a curved-up upper beam with 2 µm mid-point rise while maintaining a straight beam
configuration for the lower beam, which represents design 2 as listed in Table 3. This, in
fact, results in two stable branches of solutions as the upper static voltage udc increases
and is illustrated in Figure 2b. It happens that even the lower beam remains in the straight
position and is un-actuated or biased with 40 (V).

The reason for the existence of the bi-stability is that the upper beam has a larger
length than the actual length between the two supports. In addition, due to the electrostatic
force coupling term appearing in Equation (10), the upper microbeam has a direct effect
on the static response of the lower beam through udc. This also leads to the coexistence
of two stable branches of solutions for the lower beam, shown as a green line (—) for the
un-actuated case and as a magenta line (—) for the case of 40 (V).
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(a) Design 1 (b) Design 2

Figure 2. The beam mid-point deflections of the lower beam wls(0.5) and of the upper beam wus(0.5)
as a function of the upper static voltage (udc) using three-symmetric and one anti-symmetric modes
in the ROM and a lower voltage set to zero marked as green lines (—) and 40 (V) marked as magenta
lines (—) for: (a) straight lower beam and 1 (µm) upper beam mid-point rise and (b) straight lower
beam and 2 (µm) upper beam mid-point rise. The stable static equilibria of the two beams are marked
with solid lines while the unstable static equilibria are marked with dashed gray lines (- - -).

Figure 2b also shows two stable and unstable branches of solutions before and after
the snap-through motion. We note that varying the upper beam voltage while maintaining
a constant static voltage along the lower beam shows that the mid-point deflection of
the lower beam (wls) decreases, (−ve) negative direction, as the upper voltage increases
along the first branch of stable equilibria, corresponding to the beam initial curvature
configuration. Additionally, the upper beam deflection increases until the udc voltage
reaches 42.95 (V), where the two microbeams jump to a second equilibrium commensurate
to the initial counter-curvature through a saddle-node bifurcation.

At this point, the stable branch meets the first unstable branch of the solution. This
jump is a basic characteristic of the snap-through mechanism. Further increasing in the
actuation voltage leads to more deflection along the second stable branch until it terminates
in a second saddle-node bifurcation bounding as the pull-in instability. Beyond this point,
there is no physical existing solution because the two beams collapse. The figure also shows
that the two beams start deflecting from a zero position for the un-actuated lower beam.

It is worth noting that decreasing the actuation upper voltage after jumping to the
second stable configuration results in a second snap-through bifurcation named snap-back.
However, it occurs at a lower voltage corresponding to 41.41 (V) compared to the snap-
through threshold. The resulting gap between these two points is characterized as a narrow
hysteresis region, which may not be suitable for MEMS based sensors. On the other hand, a
similar behavior is observed when the lower static voltage ldc sets to 40 (V). However, the
lower beam starts deflecting from a new position corresponding to 1.8 (µm) and requires
more voltage to reach the snap-through point. This is expected because the dc voltage
changes the beam’s curvature and as a result it becomes stiffer.

Setting the initial curvature of the two beams equal to 2 (µm) results in a similar static
behavior to that of design 2, as shown in Figure 3a. However, the snap-through, snap-back
and pull-in points occur at lower voltages. We note that the static stable deflection of the
lower beam is small before and after the snap-through, compared to that of the upper beam.
This is true for the lower beam that remains un-actuated or biased with 40 (V) because it is
curved towards the side-wall electrode. In fact, this arrangement requires a lower voltage
to pull it down and to reach the bifurcation points. For these dimensions, we found two
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stable branches of solutions indicating that the selected parameters are sufficient enough to
activate the snap-through motion.

(a) Design 3 (b) Design 4

(c) Design 5

Figure 3. The beam mid-point deflections of the lower beam wls(0.5) and of the upper beam wus(0.5)
as a function of the upper static voltage using three-symmetric and one anti-symmetric mode in the
ROM and a lower voltage set to zero marked as green lines (—) and 40 (V) marked as magenta lines
(—) for: (a) design 3 with 2 (µm) upper and lower beams mid-points rise, (b) design 4 with straight
upper beam and −2 (µm) lower beam mid-point rise and (c) design 5 with −2.5 (µm) lower and
2 (µm) upper beams mid-points rise. The stable static equilibria of the two beams are marked with
solid lines while the unstable static equilibria are marked with dashed gray lines (- - -).

Alternatively, the lower beam deflects more than the upper beam when it curves down,
while the upper beam is set to the straight configuration. This results in a gap measured
from the lower beam mid-point to the side-wall electrode larger than that of design 3.
Setting the lower static voltage to zero, the static deflections of the two beams move away
from the center line and in opposite directions as clearly shown in Figure 3b and marked
as green lines (—). We also note that the design under these actuation conditions has a
snap-through behavior with two stable branches of solutions.

However, the snap-through mechanism does not exist anymore as the lower beam
static voltage is set to 40 (V). It means that the two beams move directly to the pull-in
voltage before they snap toward the second equilibria and are marked as magenta lines
(—) in Figure 3b. On the other hand, the second stable branches of solutions can be reached
if the two beams start as deflected from a pre-defined counter-curvature position.

Curving down the lower beam mid-point rise to bl◦ = −2.5 (µm) while maintaining
the initial mid-point rise of the upper beam equal to bu◦ = 2 (µm) results in a complex static
response as shown in Figure 3c. This confirms that, for these kinds of beam dimensions,
the snap-through motion is not reachable specifically when the lower beam is biased with
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40 (V), marked with magenta lines (—) for the two beams’ deflections. Indeed, to activate
the snap-through motion statically, the ratio between the beam mid-point rise, length,
width and thickness has to be within a certain value. This value should guarantee a dual
energy well, which results in a bi-stable structure-based structure.

3.2. Fundamental Frequencies under Electrostatic Force

Subsequently, we investigated the impact of the static voltage on the fundamental
frequencies of the coupled resonator designed with a different mid-point rise similar to
that studied in the static part. Towards this, we substituted the static results obtained by
employing an ROM with three symmetric and one anti-symmetric mode into the coupled
linear eigenvalue problem and then solved for the corresponding eigenvalues.

The first three fundamental frequencies ( fi) were calculated using the ROM and
they correspond to the first and second in-plane symmetric modes and the first in-plane
anti-symmetric mode, respectively. Two actuation scenarios were utilized. The first one
considered the case when the voltage was directly applied to the upper beam while the
lower beam remained un-actuated and the second case was similar to that of the first case;
however, the lower beam was biased with 40 (V).

Considering the first actuation case and the initial parameters of design 1 in Table 3,
the first symmetric fundamental frequency, f1 = 17.50 (kHz) at udc = 0 (V), of the lower
beam is found to decrease simultaneously as the upper voltage udc is increased. We note
that the lower beam frequency goes to zero at the pull-in voltage when the lower beam
voltage sets to zero, as outlined with a solid blue line (—). This is mainly because of the
initial rise of the upper beam mid-point is not high enough to activate snap-through motion.

On the other hand, the upper beam fundamental frequency, f1 = 20.37 (kHz) at
udc = 0 (V), decreases until it reaches a zone when its value is closed to that of the lower
beam indicating a veering phenomenon. Then, it increases drastically as the upper static
voltage increases and is marked as a solid orange line (—) in Figure 4a. A manifestation of
such a frequency approach is known in the literature as the frequency veering phenomenon.
This is a classical behavior of the veering phenomenon where two modes are approaching
each other and then veer away as the control parameters change. We found that a frequency
gap of 1.05 (kHz) occurs at udc = 19.7 (V).

(a) Design 1 (b) Design 2

Figure 4. The variation of the fundamental frequencies ( f1, f2 and f3) of the lower beam and the
upper beam as a function of the upper static voltage using three-symmetric and one anti-symmetric
modes in the ROM and a lower voltage set to zero for: (a) design 1 made of a straight lower beam
and 1 (µm) upper beam mid-point rise and (b) design 2 made of a straight lower beam and 2 (µm)
upper beam mid-point rise.
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Replicating the previous analysis with a 40 (V)-biased lower beam results in a similar
behavior without any indication of the veering phenomenon. An exact behavior has been
found for the second (f2) and third (f3) eigenvalues, respectively. However, the veering
zone starts to develop at a higher voltage for each frequency compared to that of the first
in-plane symmetric mode. The results corresponding to this case study are marked as
symbols in Figure 4a. It is also worth noting that the higher eigenvalues do not approach
zero because the geometric nonlinearities overcomes the electrostatic force nonlinearities
and the coupled resonator has only one stable equilibrium considering these dimensions.

On the other hand, increasing the upper beam mid-point rise to 2 (µm) results in
an interesting nonlinear behavior characterized by snap-through motion as shown in
Figure 4b for the two beams. While the lower beam remains un-actuated, we found that
the fundamental frequency continuously drops along the first stable equilibria as the upper
voltage increases until it reaches zero at the snap-through threshold, marked as a solid
blue line (—). Then, it increases along the second stable branch of equilibria when the
upper beam jumps and changes its initial configuration to the counter-curvature and then
decreases as the voltage approaches the pull-in voltage.

Decreasing the voltage below the snap-through point results in a further reduction in
the fundamental frequency until it reaches zero and then regains stability when jumping-
back to its initial configuration at a point called snap-back. Between these two thresholds, a
hysteresis region is developed. In addition, a similar behavior is observed for the upper
resonator denoted by a solid orange line (—). However, its fundamental frequency is higher
than that of the first design at the zero voltage due to its initial imperfection.

Figure 4b illustrates that the higher frequencies developed an exact variation trends
compared to that of the first mode. We note that due to the electrostatic coupling term, the
lower beam has two stable branches of solutions even it is initially designed as a straight
beam. We also found that the veering occurs only between the symmetric modes of the
two beams as they approach each other and veer away as the control parameters changes.
However, this is not the case for the anti-symmetric mode as the two branches move away
from each other regardless to the value of the control parameter, which in this case is the
upper voltage (udc).

Additionally, in the neighborhood of the veering zone, we have found that the mini-
mum frequency gap between the two frequencies of the first symmetric mode is approxi-
mately ∆ f = 2.1 kHz and occurs at a voltage of udc = 32.7 (V) and for the second symmetric
mode is approximately ∆ f = 0.81 kHz and occurs at a voltage of udc = 24.64 (V), respec-
tively. Considering the second actuation case leads to a similar behavior; however, the
lower beam fundamental frequencies are higher than those when it is un-actuated. This is
expected because the beam is biased in this case and it is stiffer compared to the first case.

Curving up the mid-points of the two beams with 2 (µm) leads to a complex situation.
For example, when the lower beam is un-actuated and the upper beam voltage is set to
zero, the fundamental frequencies start from the same value, corresponding to 26.89 (kHz).
This confirms that the design under these assumptions is symmetric. It is clearly shown in
Figure 5a that varying the upper voltage shows that the frequency corresponding to the
upper beam decreases until it reaches zero at the snap-through and is marked as orange
(—) in the figure. We note that the frequency of the lower beam increases even if its voltage
is set to zero. No insight about the veering nor crossing behavior has been observed.

However, biasing the lower beam with 40 (V) changes the behavior of the coupled
resonator. We found that the lower fundamental frequency at zero upper voltage is less
than that when it is un-actuated. This is expected because the beam is closer to the side-wall
electrode and it becomes easy to pull it down. Then, increasing the upper static voltage
leads to a further reduction in the upper beam fundamental frequency and an increase in
the lower fundamental frequency.
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(a) Design 3 (b) Design 4

Figure 5. The variation of the fundamental frequencies ( f1, f2 and f3) of the lower beam and the
upper beam as a function of the upper static voltage using three-symmetric and one anti-symmetric
mode in the ROM and a lower voltage set to zero for: (a) design 3 made of 2 (µm) lower and upper
beams mid-points rise and (b) design 4 made of a straight upper beam and a −2 (µm) lower beam
mid-point rise.

Tracking these two branches of solutions results in a veering phenomenon as the
two frequencies approach each other. Then, they move away as the control parameter
increases and reaches the snap-through point. We note that this scenario is repeatable for
the higher frequencies as shown in Figure 5a. Indeed, the design with these dimensions
is a suitable candidate to activate the snap-through, which can be used to design a high
sensitive coupled resonator.

On the other hand, a noticeable change in the stability comportment is observed for
a design with a −2 (µm) lower beam mid-point rise and a straight upper beam. These
dimensions correspond to design 4. We found that the resonator developed a snap-through
behavior when the lower beam is un-actuated as shown in Figure 5b. This is not the case
when the lower beam is biased. The system here goes directly to the pull-in region before it
snaps towards the second equilibrium. This indicates that the snap-through region is not
directly accessible. However, to activate the bi-stability mechanism, the resonator can be
operated from a pre-deflected shape corresponding to the second equilibrium.

Alternatively, curving up the upper beam and curving down the lower beam with
two different initial rises results only in a single equilibrium. This confirms that the
device with this arrangement, design 5, is not suitable and sufficient to activate any snap-
through motion.

4. Conclusions

This work investigated the structural nonlinear behavior of electrostatically-coupled
initially curved micro-beams. The static and eigenvalue problems were numerically com-
puted and solved. The results showed that, with proper tuning of the coupling DC loads
and the respective arches’ initial curvatures, one can alter the overall structural stability of
the resonator from having a one-stable state to two-stable states with snap-through/snap-
back hysteretic capabilities. Variation of the eigenfrequencies also showed the potential of
obtaining frequency veering states potentially of interest for the design of mode-localized-
based MEMS sensors/harvesters. The proposed electrically-coupled and geometrically
tunable design has potential characteristics that could fit several MEMS applications rang-
ing from mode-localized mass/gas sensors, micro energy harvesters, and dual-state micro-
resonators. Future work will include the examination of the mode-localization capabilities
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of the design through carrying out a dynamic analysis to further examine its suitability for
MEMS sensing applications.
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