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Abstract: Because of their nonvolatile nature and simple structure, the interest in MRAM devices
has been steadily growing in recent years. Reliable simulation tools, capable of handling complex
geometries composed of multiple materials, provide valuable help in improving the design of MRAM
cells. In this work, we describe a solver based on the finite element implementation of the Landau–
Lifshitz–Gilbert equation coupled to the spin and charge drift-diffusion formalism. The torque acting
in all layers from different contributions is computed from a unified expression. In consequence of
the versatility of the finite element implementation, the solver is applied to switching simulations
of recently proposed structures based on spin-transfer torque, with a double reference layer or an
elongated and composite free layer, and of a structure combining spin-transfer and spin-orbit torques.

Keywords: finite element method; micromagnetics; spin and charge drift-diffusion; MRAM

1. Introduction

As the scaling of conventional CMOS technology shows signs of saturation, due to
the increase in standby power consumption and leakage currents, the employment of
nonvolatile memory components which do not require the memory bits to be refreshed
becomes increasingly appealing [1]. One of the most promising candidates as a nonvolatile
replacement is magnetoresistive random access memory (MRAM). It possesses a simple
structure and is directly compatible with CMOS back-end of line processes. It has shown
to be promising for several applications, for example in stand-alone memories and in the
embedded automotive and Internet of Things fields, and is expected to replace charge-
based devices in frame buffer memory and slow SRAM [2–5]. Moreover, MRAM devices
have shown to be interesting for cryogenic applications, especially for employment in
quantum computing systems [6–8].

The core of an MRAM cell is the magnetic tunnel junction (MTJ), a stack of two
ferromagnetic (FM) layers separated by an oxide layer. The properties of the two FM layers
are such that the magnetization in one of them, the reference layer (RL), is fixed, while in
the other one, the free layer (FL), it can be switched between the two stable parallel (P) and
anti-parallel (AP) states. The resistance of the stack can be employed to store the binary
information, as it is higher in the AP state. The percentage difference between the resistance
of the two stable states is labeled the tunneling magnetoresistance ratio (TMR).

The writing process in modern devices is performed by relying on spin-transfer torque
(STT), spin-orbit torque (SOT), or a combination of both of them. In STT switching, the torque
is generated by a current flowing through the MTJ. The electrons are polarized by the RL and
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transfer their polarization to the FL magnetization, providing the torque [9–11]. Examples
of structures based on STT are reported in Figure 1a–c. In SOT switching, the torque is
generated by passing the current through a heavy metal line (HM) below the FL. The spin
Hall effect (SHE) produces a spin current orthogonal to the charge one, which is absorbed
by the FL magnetization, providing the torque [12,13]. An example of a three-terminal
structure combining STT and SOT is shown in Figure 1d.

The design of modern MRAM cells can be supported by the development of reliable
simulation tools. The magnetization dynamics are described by the Landau–Lifshitz–
Gilbert (LLG) equation, which must be supplied with a term describing the spin torque.
The drift-diffusion formalism offers a way of computing different torque contributions
in all the ferromagnetic layers from a unified expression [14–16]. The finite element (FE)
method, being able to handle structures with several domains of different materials and
complex geometries, represents an optimal choice for computing a numerical solution to
the micromagnetic equations in modern MRAM cells. In this work, we present an FE-based
implementation of the LLG equation coupled with the drift-diffusion formalism, extended
to include the charge and torque properties expected in MTJs. The solver was developed by
employing the open-source C++ FE library MFEM [17,18], and is applied to the simulation
of recently proposed structures based both on STT and SOT switching. The source code is
available as an open-source repository [19].

Figure 1. Four examples of multi-layer MRAM cell design: (a) standard STT-MRAM with single
MTJ; (b) double RL STT-MRAM, where the second RL provides additional torque to reduce the
critical voltage required for switching [20]; (c) ultra-scaled STT-MRAM, where the FM layers are
elongated and additional oxide layers are added to improve scalability and benefit from the shape
anisotropy [21]; (d) SOT-assisted STT-MRAM, where the switching process is kick-started by an initial
current pulse in the HM [22].

2. Micromagnetic Modeling

The LLG equation for the description of the magnetization dynamics was first derived
by Landau and Lifshitz in 1935 [23] and reworked by Gilbert in a more treatable form in
1955 [24]. With the inclusion of the spin torque TS, it takes the form

∂m
∂t

= −|γ|µ0 m×Heff + α m× ∂m
∂t

+
1

MS
TS (1)

where m = M/MS is the unit vector in the direction of the local magnetization, MS is the
saturation magnetization, γ is the gyromagnetic ratio, and µ0 is the vacuum permeability.
Heff is an effective magnetic field including the contributions of an externally applied field,
the exchange coupling, the anisotropy field, and the demagnetizing field. The effects of
temperature, which can be included by an additional effective field contribution describing
thermal fluctuations [25], are not considered for the switching results presented in this
work. The main effect of their inclusion would be to reduce the incubation time necessary
for the switching process, while the behavior would remain qualitatively similar. While the
external field Hext can be simply added as an input parameter, the other contributions are
intrinsic to the ferromagnets and must be computed from material parameters.

The exchange coupling can be modeled through a field which tends to keep the mag-
netization vectors aligned throughout the magnetic domain, described by the expression
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Hexc =
2Aexc

µ0MS
∇2m , (2)

where Aexc is the exchange coefficient.
Modern MRAM cells utilize MTJs with magnetization perpendicular to the stack, by

virtue of both interface and shape anisotropy contributions [21]. While the latter is taken
into account by the demagnetizing field, the former can be included as a uniaxial anisotropy
field with the expression

Hani =
2Kani

µ0MS
(a ·m)a , (3)

where a is a unit vector in the direction perpendicular to the stack and Kani is the anisotropy
coefficient, which can be computed from the interface anisotropy Kint as Kani = Kint/dFM,
where dFM is the thickness of the ferromagnetic layer under consideration.

The demagnetizing field can be computed from the scalar magnetic potential um as

Hdemag = −∇um (4)

um is obtained through the solution of the Poisson equation

−∇2um = −MS∇ ·m , (5)

with the constraint of um decaying to zero as O(1/|x|2) outside the magnetic domain and
the boundary condition [∇um · n] = −MS m · n, where n is the unit vector normal to the
boundary and [. . .] denotes a discontinuity across the boundary.

In the presence of a single thin FL, the torque acting on the magnetization can be
described by simplified expressions [26–29], derived by Slonczewski [9,11]. A more general
form of the torque term, which allows an arbitrary number of ferromagnetic and non-
magnetic layers to be dealt with, can be obtained by computing the non-equilibrium
spin accumulation in the structure under study through the solution of spin and charge
transport equations.

Spin and Charge Transport

The torque term TS entering (1) can be computed from the spin accumulation through
the following expression [16,30–32]:

TS = −De
m× S

λ2
J
− De

m× (m× S)
λ2

ϕ
(6)

The first term describes the precession around the exchange field and is characterized by
the exchange length λJ , and the second term describes the dephasing process of the spins of
the transiting electrons, and is characterized by the dephasing length λϕ. De is the electron
diffusion coefficient. The spin accumulation S describes the deviation of the polarization of
the conducting electrons from the equilibrium configuration created by a charge current
density JC, in units of the transported magnetic moment (A/m). Thus, by definition, S is
non-zero only when an electric current is flowing through the system [33]. A solution for S
in all non-magnetic and ferromagnetic layers of an MRAM cell can be obtained by means
of the spin and charge drift-diffusion formalism.

Spin and charge drift-diffusion equations in multilayer structures with arbitrary mag-
netization orientation were reported by S. Zhang, P. Levy, and A. Fert [34], with both the
precession and decay of the transverse spin accumulation components governed by the
exchange length λJ. Another possible mechanism for the absorption of the transverse
components is the dephasing process [32,35]. The behavior of the spin accumulation with
both precessional and dephasing terms was described in terms of the Continuous Random
Matrix Theory (CRMT) in [35], and the equivalence of the CMRT and the spin and charge
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drift-diffusion formalism was shown. The resulting equations for spin and charge currents
are [14,16]:

JC = σE +
e

µB
βDDe(∇S)Tm , (7)

J̃S = −µB

e
βσm⊗ (σE)− De∇S , (8)

where J̃S is the spin current tensor, JC is the charge current density, µB is the Bohr mag-
neton, e is the elementary charge, σ is the conductivity, and ⊗ is the outer product.
βσ =

(
σ↑ − σ↓

)
/
(
σ↑ + σ↓

)
and βD =

(
D↑e − D↓e

)
/
(

D↑e + D↓e
)

are the conductivity and

diffusion polarization parameters, respectively, with σ↑, D↑e (σ↓, D↓e ) the conductivity and
diffusion coefficient for the majority (minority) electrons. ∇S is the vector gradient of S,
with components (∇S)ij = ∂Si

/
∂xj , and the term (∇S)Tm is a vector with components(

(∇S)Tm
)

i
= ∑j

(
∂Sj
/

∂xi
)
mj. The spin current can be expressed in terms of the charge

current by inserting (7) into (8):

J̃S = −µB
e

βσm⊗
(

JC −
e

µB
βDDe(∇S)Tm

)
− De∇S (9)

The equation of motion for the spin accumulation is given by

∂S
∂t

= −∇ · J̃S − De
S

λ2
s f
− TS , (10)

where λsf is the spin-flip length and ∇ · J̃S is the divergence of J̃S, with components(
∇ · J̃S

)
i = ∑j ∂JS,ij

/
∂xj . As the typical time scale for the magnetization motion is three

orders of magnitude larger than the spin accumulation one [34], it is sufficient to consider
a steady-state expression for the spin accumulation. This assumption was numerically
verified in [36]. With ∂S

/
∂t = 0, the equation describing the spin accumulation becomes

−∇ · J̃S − De
S

λ2
s f
− TS = 0 (11)

3. Finite Element Implementation

The presented set of equations allows the magnetization dynamics of structures con-
taining an arbitrary number of layers of different materials to be described. The FE method,
a numerical approach for the computation of approximate solutions to partial differential
equations, is naturally able to handle meshes with complex geometries and several do-
mains of different materials [37,38], and was therefore employed for the implementation
of a solver capable of handling charge, spin accumulation, and the magnetization dynam-
ics. The implementation was carried out by employing the open-source C++ FE library
MFEM [17,18].

The first schemes for a FE implementation of the LLG equation, which considered
only the contribution of the exchange coupling, were proposed in [39,40]. A new FE
algorithm, referred to as the tangent plane integrator scheme, was introduced in [41] and
later generalized in [42,43] to include the contributions of the demagnetizing and anisotropy
fields. The unconditional convergence of an algorithm coupling the LLG equation with a
FE implementation of the spin and charge drift-diffusion formalism was proven in [44], and
the scheme was later successfully applied to metallic spin valves in [14]. We report here
an extension of the scheme to MTJs, which includes the spin dephasing contribution and
allows both the TMR effect and the expected torque properties to be reproduced [45,46].
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3.1. Charge Current Solution

For the computation of the charge current entering (9), the Laplace equation is solved:

−∇ · (σ∇V) = 0 (12)

JC = −σ∇V (13)

where V is the electric potential. Dirichlet conditions are applied to prescribe the voltage at
the contacts, and the Neumann condition σ∇V · n = 0 is assumed on external boundaries
not containing an electrode, with n the unit vector normal to the boundary. In order to
be able to reproduce the TMR effect, the tunnel barrier is treated as a poor conductor
whose local conductivity depends on the relative magnetization orientation in the RL and
FL [45,46]:

σTB = σ0(1 + PFL PRLmRL ·mFL) (14)

where PRL and PFL are the Slonczewski polarization parameters [11,47], σ0 = (σP + σAP)/2
is the angle independent portion of the conductivity, σP(AP) is the conductivity in the
parallel (anti-parallel) state, and mRL(FL) is the magnetization of the RL(FL) close to the
interface. PRL and PFL are related to the TMR by Julliere’s formula [48]:

TMR =
RAP − RP

RP
=

2 PFLPRL

1− PFLPRL
(15)

where RP(AP) is the resistance in the parallel (anti-parallel) state.
In order to derive an FE representation, the equations must be written in the so-called

weak formulation. For the presented Laplace equation, by using Gauss’s theorem and
applying the Neumann boundary conditions, the weak form reduces to∫

Ω
σ∇V · ∇v dx = 0 (16)

The test function v and the solution are both assumed to belong to the Sobolev space H1, so
that both they and their weak gradients are L2-integrable [43].

In the FE approximation, in order to obtain a discretized version of (16), the original
domain Ω is divided into smaller regular elements. The discrete solution Vh is defined by
its values on the elements’ nodes:

Vh(x) =
N

∑
i=1

Vi ϕi(x) (17)

where N is the total number of nodes, Vi = Vh(xi) are the values assumed by the approxi-
mate solution at the nodes, and xi is the coordinate vector of node i. ϕi is an affine function
of the nodal basis of the mesh, characterized as

ϕi
(
xj
)
= δij (18)

Figure 2 illustrates an example of the approximation of a function u through linear basis
functions in a one-dimensional scenario.

With the given nodal basis decomposition, the original problem can thus be rewritten
as the following system of linear equations:

AV Vh = 0 (19)

where AV ∈ RN ×RN is the matrix representation of the left-hand side (LHS) of (16), and
Vh is a vector in RN composed of the nodal values of Vh. As only neighboring nodes
have overlapping basis functions, AV is a sparse matrix, with non-zero terms only around
the diagonal.
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φ2

u2

u

uh

x0 x1 x2 x3 x4 x5 x6 x7 x8

Figure 2. Representation of a continuous function u and its finite element approximation uh in a
one-dimensional setting. The basis functions for all the nodes are reported at the bottom of the graph.
The basis function and solution value associated with the node x2 are labeled ϕ2 and u2, respectively.

The weak formulation of (13) is∫
Ω

JC · v dx = −
∫

Ω
σ∇V · v dx (20)

By choosing the test function v so that its components belong to H1, noting the space
containing v as H1, this equation allows a projection to be obtained of JC in the H1 function
space [33] so that it can be readily employed for the computation of the spin accumulation.
The resulting system of linear equations is

AJ JC,h = fJ , (21)

where AJ ∈ R3N × R3N is the matrix coming from the LHS of (20) and fJ ∈ R3N is the
vector coming from the right-hand side (RHS).

The solution to both systems of equations is computed through a solver based on the
conjugate gradient method [49], designed for the numerical solution of systems of linear
equations whose matrices are positive definite, provided by the library MFEM.

In the scope of the MFEM library, only the data associated with a local element can be
accessed during the assembly of the system matrices, while the computation of (14) in the
TB requires knowledge of the magnetization vectors in the neighboring FM layers. In order
to obtain access to the magnetization values, the coefficient describing the TB conductivity
is initialized as follows:

• For each point inside the TB where the conductivity needs to be computed, referred to
as an integration point, the solver loops through the integration points of the RL and
FL elements closer to the interfaces.

• The RL and FL points near to or at the interface with coordinates closest to the TB
point are selected.

• The integration point number and element number associated with the nearest RL
and FL points are mapped to the coordinates of the TB points.

In a transient simulation, the search is carried out only during the initialization of
the solver. At every time step, the data necessary for the computation of (14) can be
accessed through the generated maps, without the need to repeat the search procedure.
The computed charge current, consistent with the TMR effect, can then be employed to
obtain a solution to the spin accumulation equation.

3.2. Spin Accumulation Solution

The weak form of Equation (11), with the spin current expressed as (9) and the spin
torque as (6), takes the form
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−De

∫
Ω

(
∇ ·

(
∇S− βσβDm⊗

(
(∇S)Tm

)))
· v dx+

+De

∫
Ω

(
S

λ2
s f

+
S×m

λ2
J

+
m× (S×m)

λ2
ϕ

)
· v dx =

µB
e

βσ

∫
ω
(∇ · (m⊗ JC)) · v dx , (22)

where v represents again a test function belonging to H1, S also belongs to H1, and ω
indicates a subdomain composed of only the ferromagnetic layers. By applying Gauss’s
theorem, the first term on the LHS of (22) becomes

De

∫
Ω

(
∇S− βσβDm⊗

(
(∇S)Tm

))
: ∇v dx+

−
∫

∂Ω
((∇S)n− βσβD(m⊗m)((∇S)n)) · v dx , (23)

where∇a : ∇b = ∑ij
(
∂ai/∂xj

)(
∂bi/∂xj

)
is the Frobenius inner product of two matrices.

By assuming the natural Neumann condition (∇S)n = 0 on all external boundaries of
the whole domain Ω, the integrals on ∂Ω are put to zero. If the contacts are longer than
the spin-flip length, the condition is equivalent to an exponential decay of S towards the
electrodes [14,16].

Gauss’s theorem can also be applied to the RHS term of (22), obtaining

−µB
e

βσ

∫
ω
(m⊗ JC) : ∇v dx+

µB
e

βσ

∫
∂Ω∩∂ω

((m⊗ JC)n) · v dx (24)

∂ω indicates the external boundaries of the magnetic subdomains, and ∂Ω ∩ ∂ω indicates
the shared external boundaries of the subdomain ω and the whole domain Ω.

3.2.1. Tunneling Spin Current

The inclusion of appropriate boundary conditions at the TB interface with the RL and
FL, together with the employment of a low diffusion coefficient inside the TB, allows the
expected properties of the torque acting in MTJs to be reproduced [46]. The additional
boundary conditions to be added to the RHS of (22) read

RHSTB = −
∫

RL|TB
JS,TB · v dx +

∫
TB|FL

JS,TB · v dx , (25)

where RL|TB(TB|FL) indicates the interface of the TB with the RL(FL). These internal
boundary conditions prescribe the difference in spin current between the FM layers and
the TB, according to the spin current polarization generated by the tunneling process. The
tunneling spin current JS,TB can be expressed as [47,50]

JS,TB = −µB
e

JC,TB · n
1 + PRL PFL mRL ·mFL

(
amx PRL mRL + amx PFL mFL+

+1/2
(

PRL Pη
RL − PFL Pη

FL

)
mRL ×mFL

)
, (26)

where Pη
RL and Pη

FL are out-of-plane polarization parameters [47], amx describes the influence
of the interface spin-mixing conductance on the transmitted in-plane spin current [50], JC,TB
is the electric current density at the interface, n is the interface normal, and mRL(FL) is the
local value of the RL(FL) magnetization at the interface.
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3.2.2. Spin Hall Effect

When a charge current flows through an HM layer with strong spin–orbit coupling, it
generates a spin current perpendicular to it, carrying a spin polarization perpendicular to
the direction of both spin and charge currents [12]. This process is known as the spin Hall
effect (SHE). If the FL is deposited right above the HM, this spin current can be employed
to provide the torque necessary for switching.

In order to reproduce the SHE, the following term must be added to the spin current
expression (9) [12,16]:

J̃S,SHE = −θSHA
µB

e
ε JC (27)

where θSHA is the spin Hall angle, and ε is the rank-3 unit antisymmetric tensor [16]. With
the boundary condition

(∇S)n = −θSHA
De

σ

µB

e
(ε JC)n (28)

the weak formulation with the updated spin current expression is the same as (22) with the
addition of the following RHS term:

RHSSHE = −
∫

HM
θSHA

µB

e
( ε JC) : ∇v dx (29)

The integral is performed only over the HM layer.

3.2.3. Complete Weak Formulation

The complete weak formulation of the spin accumulation equation takes the form

De

∫
Ω

(
∇S− βσβDm⊗

(
(∇S)Tm

))
: ∇v dx+

+De

∫
Ω

(
S

λ2
s f

+
S×m

λ2
J

+
m× (S×m)

λ2
ϕ

)
· v dx =

−µB
e

βσ

∫
ω
(m⊗ JC) : ∇v dx+

µB
e

βσ

∫
∂Ω∩∂ω

((m⊗ JC)n) · v dx+

−
∫

RL|TB
JS,TB · v dx +

∫
TB|FL

JS,TB · v−
∫

HM
θSHA

µB

e
(ε JC) : ∇v dx (30)

where S is the spin accumulation, m is the unit magnetization vector, JC is the charge current
density, JS,TB is the tunneling spin current (26), De is the electron diffusion coefficient, βσ

and βD are polarization parameters, λsf is the spin-flip length, λJ is the exchange length,
λϕ is the dephasing length, and θSHA is the spin Hall angle. The system of linear equations
to be solved in the FE implementation of (30) is

AS Sh = fS , (31)

where AS ∈ R3N × R3N is the matrix coming from the LHS of (30) and fS ∈ R3N is the
vector coming from the RHS. The solution of this system of equations is computed through
a solver based on the generalized minimal residual (GMRES) method [51], provided by
the library MFEM. The GMRES method is designed for indefinite non-symmetric systems
of linear equations, as is the case for (31) due to the presence of the cross-product terms
in (30). Material parameters that can change between the different subdomains are treated
as piecewise constant coefficients.

As is the case for (14), the inclusion of the additional boundary conditions (25) in the
MFEM implementation demands special care. The computation of the boundary terms
requires knowledge of the magnetization vector on the opposite interfaces. In order to
obtain access to these values, the coefficient describing the boundary integral is initialized
as follows:
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• For each integration point on the RL|TB interface requiring the computation of
the tunneling spin current, the solver loops through the integration points of the
TB|FL interface.

• The TB|FL point with coordinates closest to the RL|TB one is selected.
• The integration point number and the element number associated with the found

TB|FL point are mapped to the coordinates of the RL|TB one.
• The mapping procedure is repeated for the TB|FL interface.

In a transient simulation, the search is carried out only during the initialization of the
solver. At every time step, the data necessary for the computation of (26) can be accessed
through the generated maps, without the need to repeat the search procedure.

3.3. Magnetization Dynamics Solution

In the tangent plane scheme, the quantity being solved for is the magnetization
derivative ∂m

/
∂t = v, with the constraint m · v = 0. By cross-multiplying (1) with m,

using the product rule a× (b× c) = (c · a)b− (a · b)c and the constraint |m| = 1, the LLG
equation can be rewritten in a form employed to derive a weak formulation for the tangent
plane scheme:

α
∂m
∂t

+ m× ∂m
∂t

= |γ|µ0 Heff +
De

MSλ2
J

S +
De

MSλ2
ϕ

m× S+

−|γ|µ0(m ·Heff)m−
De

MSλ2
J
(m · S)m (32)

The magnetization is taken to belong to H1, while the solution v and the test functions w are
restricted to a space of vectors orthogonal to the magnetization, UT =

{
w ∈ H1 |m ·w = 0

}
.

The weak formulation of (32) is then∫
ω
(αv + m× v) ·w dx = |γ|µ0

∫
ω

(
Hext + Hexc + Hani + Hdemag

)
·wdx+

+
De

MS

∫
ω

(
S
λ2

J
+

m× S
λ2

ϕ

)
·w dx , (33)

where the last two terms on the RHS of (32) are not present, as their scalar product with the
test functions, belonging to the tangent space UT, is zero. By using Gauss’s theorem, the
weak form of expression (2) for the exchange contribution can be written as

2Aexc

µ0MS

∫
ω
∇2m ·w dx = − 2Aexc

µ0MS

∫
ω
∇m : ∇w dx +

2Aexc

µ0MS

∫
∂ω

((∇m)n) ·w dx (34)

The natural Neumann condition (∇m)n = 0 is assumed on ∂ω, so that the boundary
integral on the RHS is put to zero.

With the given weak formulation, the time derivative v at a certain time tk is obtained
by setting [33]

mk+1 = mk + θδtv , (35)

where δt indicates the time step and θ is a parameter ranging from 0 to 1. A value of 0 leads
to a fully explicit scheme, while a value of 1 gives a fully implicit one. The value of θ can
differ between each effective field contribution. In the implementation reported here, only
the exchange field contribution is treated implicitly with θ = 1, as this leads to a better
stability of the scheme [52]. The weak formulation employed by the FE solver to compute
the magnetization dynamics is then expressed as
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∫
ω

(
αv + mk × v

)
·w dx +

2Aexc|γ|
MS

δt
∫

ω
∇v : ∇wdx =

−2Aexc|γ|
MS

∫
ω
∇mk : ∇w dx + γ0

∫
ω

(
Hext + Hani + Hdemag

)
·wdx+

+
De

MS

∫
ω

(
Sk

λ2
J
+

mk × Sk

λ2
ϕ

)
·w dx , (36)

mk+1 =
mk + δt v∣∣mk + δt v

∣∣ , (37)

with the initial condition m(0) = m0. Equation (37) is evaluated nodewise. The additional
tangent plane constraint m ·w = 0 leads to the following saddle point problem [53]:(

AM CT
M

CM 0

)(
vh
λ

)
=

(
fM

0

)
(38)

where AM ∈ R3N × R3N is the matrix coming from the LHS of (36), fM ∈ R3N is the
vector coming from its RHS, λ is a scalar field, and CM ∈ RN × R3N implements the
constraint. A solution of (38) is computed at each time step through a solver based on the
GMRES method.

3.4. Demagnetizing Field

The demagnetizing field contribution needs to be computed from the magnetic po-
tential as (4), which in turn is obtained from (5). A direct FE implementation of the latter
requires a large computational domain surrounding the magnetic material in order to
ensure the proper decay properties of the computed potential. There have been various
solutions proposed to solve this open-boundary problem [54–57], with the truncation of
the external domain surrounding the magnetic one at a certain distance being the most
straightforward. This approach, however, decreases computational efficiency, as it requires
the inclusion of additional degrees of freedom.

High accuracy and reduced computational costs can be achieved by employing a hy-
brid approach, combining the FE method with the boundary element method (FEM-BEM),
allowing um to be computed only in the magnetic subdomains [58]. The potential is first
split into two parts:

um = um,1 + um,2 (39)

um,1 satisfies (5) inside the magnetic subdomain, with the boundary condition
∇um,1 · n = MS m · n, and is zero outside of it. um,2 satisfies the Laplace equation

∇2um,2 = 0 , (40)

with the boundary conditions [∇um,2 · n] = 0 and [um,2] = um,1, where [. . .] denotes a
discontinuity across the boundary. By having um,2 → 0 for |x| → ∞, potential theory leads
to the following relation between um,1 and um,2 [59]:

um,2 =
∫

∂ω
um,1

∂

∂n
1

|x′ − x| dx′ (41)

The decomposition allows um,1 to be computed by solving (5) only in the disconnected
magnetic layers. The boundary value of um,2 is obtained by solving (41), and is then used as
a Dirichlet condition for (40), which is also computed only inside the magnetized portions
of the structure.
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The weak formulation of (5), after applying Gauss’s theorem and the boundary condi-
tion, results in ∫

ω
∇um,1 · ∇v dx = MS

∫
ω

m · ∇v dx , (42)

while that of (40) is ∫
ω
∇um,2 · ∇v dx = 0 (43)

Both the magnetic potential and the test functions belong to H1. The FE implementation
results in a system of equations analogous to the one employed for the charge potential.

A BEM approach is employed to discretize (41) on the magnetic boundary, resulting
in the following matrix-vector multiplication:

ubdr
m,2 = BM ubdr

m,1 (44)

The matrix BM belongs to RNbdr ×RNbdr and ubdr
m,1, ubdr

m,2 belong to RNbdr , with Nbdr being
the number of boundary nodes of the magnetic subdomains. Even though BM is a dense
matrix, the employment of matrix compression algorithms [60] can significantly reduce
the memory demands [58]. The matrix compression algorithms and BEM functionalities
are implemented by employing the H2Lib library [61]. The demagnetizing field is finally
computed as the gradient of the magnetic potential um by using the same projection
approach employed for the charge current in (20).

An example of the magnetic potential and field computed in a structure with three
disconnected ferromagnetic layers is shown in Figure 3. Without interaction between the
layers, the potential would only vary linearly along the magnetization direction. When
applying the described FEM-BEM approach, the interactions are taken into account and the
magnetic potential in each layer is shifted due to the stray field contributions of the neigh-
boring ferromagnetic segments. The presented implementation allows the demagnetizing
field acting in structures containing multiple ferromagnetic layers, as is typical of modern
MRAM cells, to be readily computed.

Figure 3. Magnetic potential (left) and demagnetizing field (right) computed in a structure with
three disconnected ferromagnetic layers. The magnetization orientation in each layer is indicated by
the arrows. The color coding indicates the value of the magnetic potential.

4. Device Simulation

Recently proposed devices are composed of several layers of ferromagnetic materials,
non-magnetic spacers, and tunnel barriers, in order to reduce switching currents and cell
size. Due to the capability of computing the torque acting in all layers from a unified
expression, the presented FE solver is suitable for the simulation of such structures. The
following sections report the results of switching simulations performed in the structures
of Figure 1. The parameters employed are presented in Table 1. They are consistent with
CoFeB and MgO for the FM layers and TB layers, respectively. The low values of λJ and λϕ

are employed to have complete absorption of the transverse spin accumulation components
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near the TB interface [46]. The results reported in this paper were obtained by employing
tetrahedral elements.

Table 1. Material parameters.

LLG parameters Value

Saturation magnetization (Ms) 0.81× 106 A/m
Exchange constant (Aexc) 2.0× 10−11 J/m
Interface anisotropy (Kint) 1.29× 10−3 J/m2

Gilbert damping constant (α) 0.02

Drift-diffusion parameters Value

Conductivity polarization, βσ 0.52
Diffusion polarization, βD 0.7
FM diffusion coefficient, De,FM 10−3 m2/s
NM diffusion coefficient, De,NM 10−2 m2/s
HM diffusion coefficient, De,HM 1.1× 10−3 m2/s
TB diffusion coefficient, DS 2.0× 10−8 m2/s
FM conductivity σFM 4.0× 106 S/m
NM conductivity σNM 5.0× 106 S/m
HM conductivity σHM 7.0× 106 S/m
FM spin-flip length, λs f ,FM 10 nm
NM spin-flip length, λs f ,NM 10 nm
HM spin-flip length, λs f ,HM 1.4 nm
Spin exchange length, λJ 0.8 nm
Spin dephasing length, λϕ 0.4 nm
Spin Hall angle, θSHA 0.19

TB resistance standard and double RL STT-MTJ Value

Resistance parallel (RP) 4.3× 103 kΩ
Resistance anti-parallel (RAP) 9.1× 103 kΩ

TB resistance ultra-scaled STT-MTJ Value

Resistance parallel (RP) 4.1× 105 kΩ
Resistance anti-parallel (RAP) 7.5× 105 kΩ

TB resistance SOT-assisted STT-MTJ Value

Resistance parallel (RP) 1.4× 104 kΩ
Resistance anti-parallel (RAP) 4.2× 104 kΩ

4.1. Double RL STT-MRAM

In order to reduce the critical current required for switching, an additional RL (RL2)
can be deposited on top of the FL [20] (cf. Figure 1b). When RL2 is anti-parallel to the first
RL (RL1), the torque coming from the two becomes additive, and the switching is made
faster [62]. To not compromise the TMR and data read, the second RL is separated from the
FL by a non-magnetic metallic spacer (NMS).

We employed the presented solver to perform an AP to P switching simulation of both
a regular MTJ with single RL (SMTJ) and the double RL MTJ (DSMTJ). The structure used
for the DSMTJ simulation, with a diameter of 40 nm, is reported in Figure 4a. Long NM
contacts were employed to allow the spin accumulation to completely decay inside them.
The total number of nodes in the mesh was 7338. The magnetization reversal of the FL
in both the SMTJ and DSMTJ is reported in Figure 4. A voltage of 1.0 V was applied. We
note that the switching of the DSMTJ, presenting more oscillations in the z-component, is
less smooth than the one of the SMTJ. This is due to the additional torque and stray field
contributions from the second RL, which cause the magnetization to switch less uniformly
and to produce the observed non-smooth trajectory of its average components. The results
show a substantial reduction in switching time for the same applied voltage in the DSMTJ,
in good agreement with the experimental results reported in [20].
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Figure 4. (a) Structure for an MRAM cell with the addition of a second RL (RL2), separated from the
FL by a non-magnetic metallic spacer (NMS). The RL1, RL2, and TB are 1 nm thick, the FL is 1.7 nm
thick, and the NM contacts are 50 nm thick. (b) Magnetization reversal of the FL from AP to P for an
MRAM cell with a single MTJ (SMTJ, dotted line) and the one with a double RL (DSMTJ, solid line).

4.2. Ultra-Scaled STT-MRAM

The stability of the FL can be increased by adding additional MgO tunneling layers,
because of the perpendicular anisotropy provided by their interfaces with CoFeB. Moreover,
employing elongated layers with small diameters allows additional stability to be gained
from the contribution of the shape anisotropy [21] (cf. Figure 1c). Because of the reduced
FL diameter, the scalability of this kind of device is also improved.

We employed the FE solver to investigate the switching behavior of such ultra-scaled
MRAM cells. The structure used for the simulation is reported in Figure 5a. The cell had
a diameter of 2.3 nm, and the total number of nodes was 9634. The FL was capped by a
second TB, and further split into two sections, FL1 and FL2, by a third TB. The applied
bias voltage was 1.5 V. The magnetization reversal from AP to P computed in this mesh is
reported in Figure 5b, where clear steps in the trajectory can be observed. This is caused by
the fact that while the static magnetic coupling between the two segments increases the
overall stability of the FL and allows them to respond coherently to an applied external
field, during STT switching the torque contributions coming from the different TBs make
the segments switch one at a time. At the beginning of the process, the torques acting
from RL and FL2 on FL1 are additive, causing it to switch first and fast. Then, the torque
acting from FL1 on FL2 makes it switch as well, at a slower pace. The observed behavior
can help explain the reduction in critical switching current observed for a quad-interface
device in [63].

4.3. SOT Assisted STT-MRAM

Including the SHE in the model allows for the proper treatment of SOT. By interfacing
the FL with an HM layer, and running a second current through it, it is possible to assist the
STT switching by bringing the magnetization in-plane with SOTs in the starting phase [64]
(cf. Figure 1d). With SOT, the incubation time needed for the FL to break its colinearity
with the RL is avoided, reducing the overall switching time at the cost of a larger footprint.

We applied the presented solver to the switching simulation of an MRAM cell relying
on both STT and SOT. The structure used for the simulation is reported in Figure 6a. The
diameter of the MTJ is 40 nm, and the total number of nodes is 15,058. A bias voltage of
2.0 V was used for the STT current and one of 0.3 V for the SOT current. The parameters
employed for the HM are consistent with Pt, with a spin Hall angle of 0.19 [65]. The SOT
current is only applied for the first 0.2 ns of the simulation. As expected, the magnetization
is quickly brought in-plane by the SOT contribution. When the SOT current is turned off,
the switching is completed by the STT contribution.
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Figure 5. (a) Structure for an elongated MRAM cell with FL composed of two sections (FL1 and FL2),
separated by a TB. The RL, FL1, and FL2 are 5 nm thick, all the TBs are 0.9 nm thick, and the NM
contacts are 50 thick. (b) Magnetization reversal of the FL from AP to P for the elongated cell.

(a)

0.0 0.5 1.0 1.5 2.0
1.0

0.5

0.0

0.5

1.0

 mx

 my

 mz

m

t (ns)
(b)

Figure 6. (a) Structure reproducing an SOT + STT-based MRAM cell. The MTJ stack is deposited on
top of a heavy metal line (HM). The RL and TB are 1 nm thick, the FL is 2 nm thick, the top NM contact
is 50 nm thick, and the HM layer is 4 nm thick, 50 nm wide and 100 nm long. (b) Magnetization
reversal of the FL from AP to P for the SOT + STT cell.

5. Conclusions

We presented the derivation of a finite element solution to the weak formulation
of the LLG equation coupled with the spin and charge drift-diffusion formalism. The
treatment of the tunneling layers as poor conductors, whose local conductivity depends
on the relative magnetization orientation in the ferromagnetic layers, and the addition
of appropriate boundary conditions at the tunnel barriers’ interfaces, can account for
the properties of both resistance and torque expected in MTJs. The addition of terms
accounting for the SHE to the spin equation allows us to also reproduce the contribution of
spin-orbit torques. The demagnetizing field is computed by employing a hybrid FEM-BEM
approach. The presented solver was successfully used to perform switching simulations
of recently proposed structures composed of several ferromagnetic, tunneling and non-
magnetic layers, as well as heavy metal lines for the generation of spin-orbit torques,
supporting its employment to help investigate and predict the switching performance of
newly introduced devices.
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MRAM Magnetoresistive random access memory
CMOS Complementary metal-oxide semiconductor
SRAM Static random access memory
MTJ Magnetic tunnel junction
FM Ferromagnetic
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FL Free layer
TB Tunnel barrier
NMS Non-magnetic spacer
HM Heavy metal
P Parallel
AP Anti-parallel
TMR Tunneling magnetoresistance ratio
STT Spin-transfer torque
SOT Spin-orbit torque
SHE Spin Hall effect
LLG Landau–Lifshitz–Gilbert
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