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Abstract: Piezoelectric energy transducers offer great potential for converting the vibrations of
pedestrian footsteps or cars moving on a bridge or road into electricity. However, existing piezoelectric
energy-harvesting transducers are limited by their poor durability. In this paper, to enhance this
durability, a piezoelectric energy transducer with a flexible piezoelectric sensor is fabricated in a tile
protype with indirect touch points and a protective spring. The electrical output of the proposed
transducer is examined as a function of pressure, frequency, displacement, and load resistance. The
maximum output voltage and maximum output power obtained were 6.8 V and 4.5 mW, respectively,
at a pressure of 70 kPa, a displacement of 2.5 mm, and a load resistance of 15 k(). The designed
structure limits the risk of destroying the piezoelectric sensor during operation. The harvesting
tile transducer can work properly even after 1000 cycles. Furthermore, to demonstrate its practical
applications, the tile was placed on the floor of an overpass and a walking tunnel. Consequently, it
was observed that the electrical energy harvested from the pedestrian footsteps could power an LED
light fixture. The findings suggest that the proposed tile offers promise with respect to harvesting
energy produced during transportation.

Keywords: flexible piezoelectric; piezoelectric tile transducer; electronic reliability; energy for
smart transportation

1. Introduction

Electrical energy harvested from ambient sources is critical in intelligent transport
systems for addressing the problems posed by climate change and global warming [1,2].
Renewable energy technologies for transportation can be divided into three main ap-
proaches: solar radiation harvesting, heat harvesting, and mechanical energy harvesting.
Among them, mechanical energy harvesting based on the piezoelectric effect is an impor-
tant method since electrical energy can be directly obtained from transportation operations.
Using the vibrational forces from cars moving on a bridge or road or by harnessing human
footsteps on the street, a piezoelectric transducer produces an electric charge, which can
provide a power source for traffic control, structural health monitoring, internet-of-things
devices, electric vehicles, or lighting on the street [3-14].

Structurally, a piezoelectric energy-harvesting transducer consists of a piezoelectric
active layer sandwiched between a couple of electrodes. Lead zirconate titanate (PZT)
nanofibers are widely used in the active layer because they exhibit a strong piezoelectric
response and mechanical flexibility [2], which are conducive to the creation of a high-
performance device. So far, most studies on piezoelectric harvesting transducers using
PZT nanofibers for transportation have focused on enhancing power levels [5-10]. Reli-
ability is an important factor of an electronic system that must be investigated. Recently,
several groups have mentioned this factor [5-7,10]. For example, Ammar et al. [5] used a
piezoelectric sensor composed of PZT in an energy-harvesting shoe. This device is able to
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harvest energy at low frequencies and through irregular chock-like footstep input excitation.
However, the degradation of the PZT sensor occurs rapidly in this process, limiting the
operation of the harvester to only a few cycles [5]. He et al. [6] fabricated a piezoelectric-
energy-harvesting floor structure. An amplification mechanism was designed to enhance
the force produced by a pedestrian. The maximum peak-to-peak voltage increased from
18.8 V to 51.4 V, but these results were paired with a relatively poor stability of 40 operating
cycles. On the other hand, an inspiring concept was reported by Ahn et al. [7], who de-
signed a bending-type piezoelectric structure with a displacement-amplifying mechanism.
Although this design helped to significantly limit the risk of destroying the piezoelectric
sensor, there were only 110 operating cycles recorded in the harvesting transducer device.
Overall, to bring piezoelectric harvesting transducers closer to implementation in prac-
tical applications, it is necessary to perform additional research to enhance the stability
property [4].

In this paper, we introduce a high-stability energy-harvesting tile designed and fabri-
cated based on a flexible PZT nanofiber piezoelectric sensor. Dependences of output voltage
and output power on applied pressure, load resistance, displacement, and frequency are
experimentally investigated. Thanks to the flexibility of the sensor and a mechanical design
with an indirect touch point and a protection spring, our harvesting transducer tile can
work properly even after 1000 cycles.

2. Flexible Piezoelectric Sensor

A50mm x 35mm X 0.2 mm piezoelectric sensor (provided by PZT Electronic, China)
was employed to construct the piezoelectric energy transducer reported in this study. The
piezoelectric sensor was fabricated based on the nanofibers of a poly vinylidene fluoride
(PVDF) polymer and PZT composites sandwiched between a steel bottom electrode and a
Cu thin-film top electrode (Figure 1a). The sensor’s flexibility helps enhance the mechanical-
to-electrical and endurance characteristics of the energy transducer tile. Regarding the
sensor’s operation, when external pressure is applied to the free part of the flexible piezo-
electric sensor (Figure 1b,c), it is elastically deformed. This deformation results in a flow
of electric charge. The output electrical signal of the piezoelectric sensor in response to an
applied mechanical force was tested, the results of which are presented in Video S1. It is
well known that a vibration energy transducer requires a frequency-matching procedure
that renders the natural frequency of the piezoelectric sensor equal to the frequency of the
input force [9,10]. Unfortunately, the manufacturer does not provide the corresponding
parameters; thus, they needed to be determined before the sensor could be used to fabricate
the harvesting transducer tile. We reused the model reported by H. Jabbar et al. [10], as
shown in Figure 1d.

(a)

Cu top electrode

PZT/PVDF nanofiber film

| Steel bottom electrode

@

RS((O)

@ Lg(®) _Ep(ﬁ))

Cs(m)

Figure 1. (a) Device structure of sensor; (b) photo of flexible piezoelectric sensor; (c) illustration of
the operation of the sensor; (d) equivalent circuit of sensor.
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The impedance (Z) of the sensor’s equivalent circuit is complex, consisting of a reactive
and real part, as presented in the following equations:

Z(w) = Rs(w) — jXs(w). )

|1Z(w)] = /R (w) + XE(w). )

We performed an additional experiment on the impedance measurement using QuadTech
LCR Meters, as shown in Figure 2a. The modulus of Z was calculated with Equation (2)
using the measured values of the reactive and real part at the frequency from 20 Hz to
400 Hz. As can be seen in Figure 2b and Table 1, the resonant frequency is about 75 Hz,
which will be used in our further experiments (shown in Section 4). The Z modulus values
in Table 1, ranging from 2.52 k() to 28.2 k(}, are relatively high. However, they are similar
to those reported in previous work [10].
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Figure 2. (a) Photo of impedance measurement of piezoelectric sensor. (b) Frequency dependence of
magnitude with real and imaginary parts measured using LCR.

Table 1. Frequency dependence of Z modulus.

Frequency (Hz)

20

50 70 75 100 150 200 250 300 350 400

Z (KQ)

5.40

24.20 28.00 28.20 27.26 22.00 17.87 1250 10.00 6.00 2.52

3. Piezoelectric Energy-Harvesting Transducer

The electronic circuit diagram of the energy transducer is shown in Figure 3. In order
to double the current and voltage, a structure of four piezoelectric sensor panels was
designed. Two components were connected in parallel; meanwhile, in each component,
a pair of sensors was connected in series. Here, we have not utilized many sensors due
to the problems of parasitic capacitance and device—-device capacitance occurring during
the device’s operation, which cause low responsivity [5-14]. A rectifier circuit using a
four-diode bridge device (MB6S, Fairchild, WI, USA) was attached to convert AC values
to DC values. A TP4056 (ICSTORE, Delhi, India) charging circuit was used to connect a
lithium battery and a rectifier.
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Figure 3. Electronic circuit diagram of energy transducer.

For the device’s mechanical design, we used SolidWorks 2022 to render the harvesting
transducer tile, as shown in Figure 4. The harvesting transducer was designed with
dimensions of 400 mm x 400 mm x 70 mm, which are equal to those in tiles widely used
for bridge floor construction.

Figure 4. Piezoelectric energy-harvesting transducer designed in 3D using SolidWorks 2022.

The symmetrical placement of the piezoelectric sensors was designed to maximize the
induced force applied to any location on the surface of the tile. Four springs with a height
of 60 mm, a diameter of 48 mm, and a constant of 1.32 kgf/mm were mounted at the four
corners of the frame. The designed tile had a maximum displacement of 3 mm. In addition,
to more effectively protect the sensor, indirect touch points were placed on the cover of tile.
It should be noted that our energy-harvesting transducer does not pose a risk of destroying
the piezoelectric sensor because the impact is transferred to the piezoelectric panel via
four indirect touch points and the vertical movement of the cover is limited to 3 mm via
the protection springs. For fabrication, the case, frame, and cover were carefully made
using a low-cost iron alloy material. Photos of completed piezoelectric energy-harvesting
transducer tile are shown in Figure 5.
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Figure 5. Diagrams of (a) cover and (b) base and photos of overall view (c) and inside view (d) of
piezoelectric energy-harvesting tile transducer. Each sensor in (d) was numbered corresponding to
its location designed in (b).

4. Results and Discussion

As shown in a photo in Figure 6, the piezoelectric energy-harvesting transducer
was placed inside a press machine (WEW-1000B Hydraulic Universal Testing Machine
(Chenda tester, Shandong, China) to measure the device’s pressure and displacement
dependances. A decade resistance standard resistor (279301, Yokogawa, Musashino City,
Japan) was connected to the piezoelectric tile in order to analyze the performance of the
energy-harvesting transducer tile at various resistive loads. The electrical output was
measured using an oscilloscope (GW INSTEK GDS-1052-U, Taipei, Taiwan). The effects
of pressure on the device’s electrical properties at a displacement of 2.5 mm and a load
resistance of 15 k() are shown in Figure 7. We found that the minimum pressure required
to activate the harvesting transducer is 5 kPa. The output voltage and output power
increased significantly in the human foot pressure range of 50-100 kPa [15] and were able
to withstand a maximum car-on-road pressure of 150 kPa [16], which suggests that the tile
device can be used to absorb energy from the movement of a human or a car.

Figure 8 shows the output voltage and output power of the piezoelectric energy-
harvesting transducer as a function of the load resistor at a displacement of 2.5 mm and
a pressure of 70 kPa. The output voltage was proportional to the load resistor values,
and the maximum output voltage observed was 6.8 V at 15 k(). Meanwhile, the output
power increased rapidly to a maximum value of 4.8 mW at 5 k() and gradually decreased
afterward, as shown in Figure 8b. The saturated values of the output voltage and output
power are relatively lower than those in the previous works [5-8] because we only used
four sensor panels in the harvesting transducer.
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Figure 6. Photo of piezoelectric harvesting transducer tile in universal testing machine.
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Figure 7. Pressure dependence of (a) output voltage and (b) output power.
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Figure 8. Load resistor dependence of (a) output voltage and (b) output power.
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With regard to another important aspect, the displacement dependence of output
voltage and output power are shown in Figure 9a,b, respectively. When the displace-
ment parameters were controlled to vary from 1 mm to 3 mm, all measurements were
performed at a load resistance of 15 k() and a pressure of 70 kPa. As presented in Figure 9,
the output voltage or output power values increased with increasing displacement. A
previous work [7] indicated that to meet practical operations on the floor or the road, the
displacement of the tile should be 2.5 mm. By considering such a recommendation and

our experimental data presented in Figure 9, we also selected 2.5 mm as the displacement
value of our harvesting transducer tile.
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Figure 9. Displacement dependence of (a) output voltage and (b) output power.

Figure 10 shows the dependences of the output voltage and output power of the
piezoelectric energy-harvesting transducer on the frequency of the applied force. Experi-
ments were performed at a displacement of 2.5 mm and a pressure of 70 kPa. The output
voltage and output power were observed to increase with an increasing frequency, attaining

maximum points at 75 Hz and then decreasing gradually. The tendency in Figure 10 is
consistent with that in Figure 2b.
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Figure 10. Applied frequency dependence of (a) output voltage and (b) output power.

In order to test the durability of the transducer tile, a Wheel-Track Device produced
by Hamburg AASHTO T 324-04 (Infratest, Brackenheim, Germany) with a load pressure
of 70 kPa and a frequency of ~75 Hz was used (shown in Figure 11). The output voltage
and output power values were repeatedly recorded at a displacement of 2.5 mm and a
load resistance of 15 k(). As can be seen in Figure 12, the electrical values are almost
unchanging after 1000 cycles of testing, suggesting that the energy harvester tile still
operated properly without degradation, which is a superior property among the harvesting
transducers reported so far [5-14,17,18]. This achievement was facilitated by the fact
that our mechanical design, with indirect touch points and protection springs (Figure 4),
suppressed the risk of destroying the piezoelectric sensor during operation and that the

flexibility of the sensor allows it to recover its status many times under the influence of an
external force.
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Wheel

Figure 11. (a) Wheel-passing transducer tile. (b) Wheel on transducer tile. (c) Photo of transducer tile
under test with the Wheel-Track Device produced by Hamburg AASHTO T 324.
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Figure 12. Reliability test of (a) output voltage and (b) output power.

Furthermore, to demonstrate the promising applications of the tile in smart trans-
portation, the harvesting transducer tile was temporarily laid on the floor of an overpass, a
sidewalk, and a tunnel walkway (located in Hanoi, Vietnam) to harvest energy from the
footsteps of volunteers modelling the behavior pedestrians. Over the course of a few days,
several tens of volunteers passed over the tile. For example, as can be seen in Figure 13
and Video S2a—c, when a 68 kg volunteer passed over the energy-harvesting transducer
tile, the implemented LED light was powered and illuminated rapidly. Even through the
light intensity generated from one tile is not very high, it can be speculated that if the area
on the floor was composed of our harvester tiles, the obtained electrical energy may be
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able to sufficiently illuminate the entire area of the overpass of a walking tunnel or power
electronic transportation devices. The remarkable operation test results of the transducer
shown in Video S2a—c also confirm the device’s stability.

LED lighting turning on

On overpass On sidewalk

Figure 13. Photos of testing on overpass and sidewalk.

5. Conclusions

In conclusion, a high-stability energy-harvesting transducer device has been designed
and fabricated based on a flexible piezoelectric sensor. The output voltage and output
power of the proposed energy-harvesting transducer were investigated as a function of
pressure, displacement, and load resistance. The maximum output voltage and maximum
output power obtained were 6.8 V and 4.5 mW, respectively, for an input pressure of
150 kN, a displacement of 2.5 mm, and a load resistance of 20 k(). Furthermore, the
designed structure limits the risk of the piezoelectric sensor being destroyed under the
action of an external force. As a result, the energy-harvesting transducer device exhibits
high stability at up to 1000 cycles of energy harvesting. Additionally, the piezoelectric
device was tested on the floor of an overpass and a walking tunnel. The energy harvested
from pedestrian footsteps was enough to power an LED light fixture, which suggests
that our tile device has great potential for use in powering the electronic devices in smart
transportation. In future research, energy-harvesting transducers with a greater surface
area will be developed and evaluated under various operating conditions.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/mi14051058/s1. Video S1: Sensor testing via oscilloscope; Video S2a:
Testing on overpass. Video S2b: Testing on sidewalk. Video S2c: Testing on tunnel walkway:.
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