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Abstract: Deep learning has a better output quality compared with traditional algorithms for video
super-resolution (SR), but the network model needs large resources and has poor real-time per-
formance. This paper focuses on solving the speed problem of SR; it achieves real-time SR by the
collaborative design of a deep learning video SR algorithm and GPU parallel acceleration. An al-
gorithm combining deep learning networks with a lookup table (LUT) is proposed for the video
SR, which ensures both the SR effect and ease of GPU parallel acceleration. The computational
efficiency of the GPU network-on-chip algorithm is improved to ensure real-time performance by
three major GPU optimization strategies: storage access optimization, conditional branching function
optimization, and threading optimization. Finally, the network-on-chip was implemented on a RTX
3090 GPU, and the validity of the algorithm was demonstrated through ablation experiments. In
addition, SR performance is compared with existing classical algorithms based on standard datasets.
The new algorithm was found to be more efficient than the SR-LUT algorithm. The average PSNR
was 0.61 dB higher than the SR-LUT-V algorithm and 0.24 dB higher than the SR-LUT-S algorithm. At
the same time, the speed of real video SR was tested. For a real video with a resolution of 540 × 540,
the proposed GPU network-on-chip achieved a speed of 42 FPS. The new method is 9.1 times faster
than the original SR-LUT-S fast method, which was directly imported into the GPU for processing.

Keywords: super-resolution; deep learning; lookup table; GPU network-on-chip; real-time processing

1. Introduction

The demand of high-resolution (HR) images is growing for the advancement of
information technology and modern industrial civilization, but image clarity is limited
by the functionality of sensors and processors. The goal of super-resolution (SR) is to
convert low-resolution (LR) images into high-resolution (HR) images, which has important
research value. The deep learning SR method is a hot topic of research because it can
achieve impressive results. In 2014, Dong et al. [1] first proposed the SRCNN method to
achieve image SR reconstruction; many scholars then carried out further research based
on SRCNN, such as FSRCNN [2], LapSRN [3], IMDN [4–7], etc. These methods achieved
good results in the peak signal-to-noise ratio (PSNR), but usually cannot be implemented
in real-time because of a large computational burden. Despite the availability of specialized
computing engines that can enhance efficiency, the fixed “black box” network models
make it is difficult to accelerate the calculation. The high hardware requirements and large
computational costs hinder the wide application of deep learning SR algorithm.

In recent years, significant progress has been made in the hardware deployment of SR
technology. Researchers have gradually applied SR technology to various hardware plat-
forms by optimizing network structures, network quantization, and hardware acceleration
methods. Lightweight network structures have notable advantages in hardware deploy-
ment. For example, Lim et al. [8] proposed that the EDSR, which is based on deep residual
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networks, has an improved and optimized network structure, providing a reference for
hardware deployment. Hui et al. [4] proposed the IMDN, another lightweight and efficient
SR model suitable for hardware deployment. However, these methods still face challenges
in terms of inference speed when dealing with larger input images. One important reason
is that the form of CNN convolution is a sliding window, and optimizing the network does
not fundamentally improve the computational efficiency of the convolution. Cao et al. [9]
proposed the matrix multiplication (MatMul) method and WinoConv [10] as alternatives to
convolutional computations for SR hardware acceleration. They save the parameters of the
convolution kernel in a LUT and then convert the input image into a vector for matrix oper-
ations to obtain the final output. This method is theoretically feasible; however, the process
of converting images to vectors also consumes a significant amount of time. Moreover,
if the MatMul method is to replace the sliding window effect of the convolution kernel
applied to the image, the converted vector needs to contain a large amount of redundant
data. Consequently, memory usage will increase exponentially as the image size grows.

With the widespread application of Graphics Processing Units (GPUs) in high-
performance computing and artificial intelligence applications, designing efficient, low-
power, and highly scalable on-chip communication networks is crucial. Modern GPUs
have thousands of cores that require fast and scalable communication networks to support
high-bandwidth, low-latency data exchange. Traditional on-chip buses and direct inter-
connect structures cannot meet these demands, and therefore, Network-on-Chip (NoC)
technology has been widely applied in GPUs. NoC technology in GPUs faces a range
of challenges, such as striking a balance between high performance and low power con-
sumption, coping with uncertainty and faults, and meeting real-time and predictability
requirements [11]. To address these challenges, researchers have proposed many novel
approaches and techniques, such as heterogeneous NoCs, fault-tolerant techniques, and
machine learning-based optimization strategies [12].

In image processing, the lookup tables (LUTs) have exhibited excellent computational
performance and have been widely used for various color conversion tasks [13]. Storing
the trained network parameters as an LUT provides more operability for optimizing the
performance of post-algorithms. Deep learning methods based on LUTs have also emerged
in low-level vision tasks [14–17]. In the image enhancement field, Zeng et al. [14] first
proposed image-adaptive 3D lookup tables to achieve high-performance photo enhance-
ment. On this basis, Wang et al. [15] considered spatial information and further proposed
learnable spatial-aware 3D lookup tables. Wang et al. [16] model local context cues and
propose pixel-adaptive lookup table weights for portrait photo retouching. Recently, some
scholars have applied the LUT to the image restoration field [17], but the redundant cal-
culations on the CPU still hinder the speed. Due to the strong operability of the LUT, this
paper combines the working principle of the LUT with features of GPU to process image
data. The primary focus of this research involves the design of deep learning algorithms
combined with LUT and the parallel implementation of GPU network-on-chip.

In summary, the contributions of this paper are:

(1) The paper proposes a deep learning SR algorithm combined with LUT, which enables
the algorithm to be efficiently implemented on the GPU.

(2) The proposed video SR algorithm has been implemented in real-time on a GPU by
elaborate optimization strategy: storage access optimization, conditional branching
function optimization, and threading optimization.

The remaining paper is organized as follows. Section 2 designs a SR network based on
deep learning and LUT. Section 3 discusses the implementation of a parallel SR algorithm
on GPU by optimization. Section 4 is about the algorithm testing and result analysis.
Section 5 summarizes the major findings and concludes of the paper.
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2. Design of a SR Network Based on Deep Learning and LUT
2.1. Design of Video SR Network

The proposed SR network structure is shown in Figure 1 by combining deep learning
and LUT. The new SR network is composed of SR-Net [17] and ROT-Net. SR-Net is a deep
learning SR network with a receptive field (RF) size of 4. The SR-Net model is first trained,
and then its output is passed to the LUT. ROT-Net is a feature extraction network, which is
used to get the weight information at different rotation angles. SR-Net primarily learns the
feature information from LR images to HR images, while ROT-Net mainly learns the pixel
weight information for weighted fusion of SR results at different angles.
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There is an exponential increase in the size of the LUT with the RF size. In practice, if
the RF size is 3 or greater, the complete LUT can become very large. To mitigate the size of
the LUT, a uniform sampling method can be employed to reduce the RF size. In the paper,
a lightweight neural network SR-Net with an RF size of 4 is designed. SR-Net consists of a
convolutional neural network (CNN) with 6 convolutional layers, in which the first layer
has a kernel size of 2 × 2 and the rest have a kernel size of 1 × 1. The number of output
channels for the first 5 convolutional layers is set to 64, and the number of output channels
for the last layer is set to the square of the image upscaling factor.

To enhance the extraction of local structural features at different angles and increase
the RF size, this paper adopts the method proposed by Jo et al. [17]. The image is rotated
to 0, 90, 180, and 270 degrees, and the four outputs of the rotated images are fused to
obtain the SR result. The rotational strategy has been used to maximize the accuracy
only at the test time in previous deep SR works [8,18]. In the original fusion method, the
average operation is used according to the Formula (1). Formally, the final output, ŷi, can
be expressed as follows:

ŷi =
3

∑
j = 0

Aj(R−1
j ( f (Rj(xi)))), (1)

in which ŷi is the final output of SR reconstruction, xi is LR input patch, Aj is the coefficients
for different angles, f is the deep SR network, Rj is image rotation operation to j× 90 degree,
and R−1

j is the reverse rotation operation.
In the paper, considering that the local texture structure used in SR has directionality,

the weights at different directions should be different. Therefore, the coefficient value, Aj.
for each pixel at different angles is obtained through a lightweight CNN called ROT-Net,
whose network structure is shown in Figure 2. ROT-Net consists of three convolutional
layers and two fully connected layers, in which the ReLU activation function and max
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pooling operation are used for feature extraction. To adapt to images with different scales,
an adaptive average pooling is introduced to fix the feature size. Finally, the four results
from the LUT are fused according to the weights from ROT-Net, and a SR result with more
detailed information is obtained.
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Figure 2. Structure of the ROT-Net network.

The training process of the network comprises two stages. In the first stage, a
lightweight SR-Net network is trained using the DIV2K dataset to obtain complete LUT
parameters. In the second stage, we fixed the parameters of the SR-Net and trained the
ROT-Net. The four results with different rotation angles from the LUT were fused according
to the adaptive weights from ROT-Net to generate the final SR image.

2.2. LUT and Interpolation Design

After training the SR-Net network, the LUT is designed for a SR-Net network with
an RF size of 4. The mapping method of the LUT is shown in Figure 3. The output values
of the network are indexed by four corresponding input values and saved in the LUT. As
illustrated in Figure 3, the LUT is the term 4D-LUT, which consists of four input values and
two output values.
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Once the LUT is built, SR is performed solely with the LUT. However, mapping the
complete network parameters to the LUT will consume a significant amount of storage
resources. If the dimensions of the LUT increase, the storage resource requirements increase
exponentially. By uniformly sampling for the original input space of 28 bins (0–255 for
an 8-bit input image), the size of the LUT can be reduced. For example, a 4D-LUT can
be divided into 24 + 1 bins as uniformly sampled spaces by using an interval of 24. The
overall size will be reduced from 64 G (4D-LUT[256][256][256][256]) for the complete LUT
to 1.274 MB (4D-LUT[17][17][17][17]). After uniform sampling, the entire LUT process
is divided into two specific steps: calculating the original quantized coordinates and
performing interpolation operations. The interpolation coordinates are calculated from the
original quantized coordinates and weights.

After obtaining the original quantized coordinates, an interpolation calculation is
performed using the tetrahedral interpolation method [19]. A tetrahedron is formed by
four non-coplanar three-dimensional coordinate points, and interpolation is performed on
the four triangles formed by the tetrahedron. Based on the weight of the interpolation point
relative to the four vertices of the tetrahedron, the final interpolation result is achieved
by weighting the interpolation results of individual triangles. An example of triangular
interpolation is a sampled 2D-LUT with the sampling interval of 24. An example of
interpolation for a sampled 2D-LUT with the sampling interval of 4 is shown in Figure 4.
For the query input, I0 = 24 and I1 = 60, the nearest points, P00, P01, and P11, and the
corresponding weights, w0, w1, and w2, are determined. The output value is calculated as
the weighted sum. The same principle applies to 3D and 4D LUTs.
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Figure 4. An example of triangular interpolation for a sampled 2D-LUT with a sampling interval
of 24.

In Figure 4 (the 2D equivalent triangular interpolation), first, the input values
I0 = 36(00100100(2)) and I1 = 60(00111100(2)) are split into the 4 most significant
bits (MSBs) and 4 least significant bits (LSBs). The MSBs of I0 and I1 are 2 and 3, respec-
tively, which are used to determine the nearest sampling point. The LSBs of I0 and I1 are
Lx = 4 and Ly = 12, respectively, which are used to determine the weights of the bound-
ary triangle and boundary vertices. Two boundary vertices are fixed at P00 = LUT[2][3]
and P11 = LUT[2 + 1][3 + 1], and the third vertex is determined by comparing Lx and
Ly. Here, we choose P01 = LUT[2][3 + 1]. The weight of each vertex is proportional
to the area of the corresponding triangle, which can be calculated as: w0 = 24 − Ly,
w1 = Ly − Lx, and w2 = Lx. The predicted output value of this 2D-LUT example is:
V̂ = (w0P00 + w1P01 + w2P02)/24.
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The same principle applies to 4D LUTs. Based on the LSB values (corresponding to
Lx, Ly, Lz, and Lt for Io, I1, I2, and I3, respectively), out of the 24 possible combinations of
Lx, Ly, Lz, and Lt, one branch is selected as the predicted output value using a judgement
mechanism. Based on the coordinate information and using tetrahedral interpolation, the
predicted output value V̂ of the 4D-LUT is calculated using the Formula (2).

V̂ =
1

W ∑4
i = 0 wiPi, (2)

where, W is the sampling interval, wi is the weight assigned to the interpolated point with
respect to sampling coordinate points, and Pi is the set of all interpolation coordinate points.

As the input LR image size increases, the computation time for SR using LUTs grows
exponentially. Therefore, optimizing the LUT structure and interpolation algorithm is
extremely important.

3. GPU On-Chip Optimization Implementation of the Algorithm

GPU is a high-performance computing device. In 2007, NVIDIA introduced the
Compute Unified Device Architecture (CUDA). To deploy the algorithm on a GPU and
implement it using a GPU NoC, we adopted the CUDA programming framework, which
supports GPU computing. Various storage systems have been designed in CUDA [20–22],
including global memory, shared memory, and constant memory, among others. The
storage systems are used at different locations in the algorithm, based on their storage
capacity and access speed. The effective allocation of data storage space plays a crucial
role in enhancing the overall performance of the algorithm. In this study, the quantized
coordinate information of each pixel and the final interpolation process are obtained
through a LUT, which requires traversing all pixels in the image. If executed in serial,
its performance cannot meet the real-time requirements. Therefore, the computation of
original quantized coordinates and the final SR process are realized by GPU parallel. In
addition, three optimization strategies are used to optimize the GPU parallel algorithm for
video SR scenarios.

3.1. Implementation of the Parallel SR Algorithm Based on CUDA

In the new SR algorithm, based on the LUT, the tetrahedral interpolation method is
used according to the original quantized coordinates and weights. The interpolation coor-
dinates can be directly obtained for sampling points, but the nearest neighbor points need
to be calculated for non-sampling points. For example, the original quantized coordinates
P (the neighbor points) include: in 2D, only P00, P01, P10, and P11; in 3D, 8 neighboring
points from P000 to P111; and in 4D, 16 neighboring points from P0000 to P1111. Thus, if the
dimension of the LUT increases, the number of calculated neighboring points will also
increase. In the paper, two kernel functions, PCoordinatesKernel and SRLinearKernel, are
designed. The PCoordinatesKernel obtains the coordinates P by performing a lookup in the
LUT using the input image data. The SRLinearKernel performs image SR by interpolating
the original image using coordinate data.

For 4D-LUT, in order to facilitate data manipulation in CUDA, image data is com-
pressed into a one-dimensional matrix. A one-dimensional coordinate matrix pi is obtained
by querying a LUT, which can be represented as Formula (3):

pi = LUT(b)× r2 + i, (3)

where, b is the set of index values corresponding to the higher four bits of the image pixel
space on the LUT, r represents the magnification factor, and i corresponds to the number of
pixels after a single pixel SR (equal to all integers between 0 and r2).

The final original quantized coordinates P are represented as follows:

P =
{

pi_o
∣∣∣0 < o < 2R

}
, (4)
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where o is the number of coordinates and R is the dimension of the LUT. The coordinates
of the current pixel are fixed by the index value in the CUDA thread. We set block_size = k
(0 < k ≤ 1024) and grid_size = (total number of pixels + k − 1)/k; block_size is the thread
block size of a single grid, and grid_size is the grid size allocated by the kernel function. Us-
ing the built-in one-dimensional indexing variables blockDim.x, blockIdx.x, and threadIdx.x
in CUDA, image pixel traversal can be accomplished. blockDim.x represents the number of
threads contained in a thread block. blockIdx.x is the index of the thread block in the grid,
indicating the encoding of the current thread in its thread block. threadIdx.x is the index of
the thread in its thread block [23]. The precise scheduling of GPU threads can be achieved
by combining these three built-in variables. The thread index tidx/tidy can be calculated
as Formula (5):

tidx = blockDim.x × blockx.x + threadIdx.x,
tidy = blockDim.y × blockx.y + threadIdx.y,

(5)

where tidx and tidy denote the indexes mapped to the x and y directions of the thread
block, respectively. The pre-processed image data and LUT data are inputted into the
PCoordinatesKernel GPU kernel function to compute the coordinates, P, which are then
used for the subsequent calculation of interpolated coordinates. The flow chart for SR of
LUTs on the CPU/GPU is shown in Figure 5.
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The interpolation process requires compressing the three-channel RGB image into
a one-dimensional array and sending it to the SRLinearKernel kernel function. Its cal-
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culation process requires mapping from a three-dimensional matrix (Formula (2)) to a
one-dimensional matrix. Specifically, the mapping to a one-dimensional coordinate space
needs to be calculated for each of the RGB channels, followed by interpolation. The final
predicted output of the compressed image data in one dimension is obtained in CUDA
as follows:

R :
ˆ

Vr(indexr + a) = w × p[x × w × r2 + y × r2 + H],

G :
ˆ

Vg(indexr + a + indexg) = w × p[M + x × w × r2 + y × r2 + H],

B :
ˆ

Vb(indexr + a + indexb) = w × p[2 × M + x × w × r2 + y × r2 + H],

(6)

where, R, G, and B represent the interpolation of three channels and the V̂r,g,b is the one-
dimensional data of the final output image. indexr = (x × h + y)× 42, x and y correspond
to the coordinates on the x-axis and y-axis, respectively, and h and w represent the width
and height of the image. M = h × w × r2, the size of a channel image. H represents the
two-dimensional coordinate matrix H[i, j] = i × r + j(i, j between 0 − (r − 1)) where the
interpolated values are located. The specific coordinate, P, chosen needs to be calculated
by comparing the values of the LSB.

In practical applications, when traversing an input image, the current pixel position
needs to be determined through a two-dimensional coordinate. Therefore, it is necessary to
map the two-dimensional coordinates to the index of GPU threads. According to Equation
(5), we use tidx and tidy to denote the index of image pixels mapped to threads, respectively.
For GPUs based on the Turing architecture, there are restrictions on the grid size and thread
block size. The maximum values allowed for the grid size in the x, y, and z directions are
231 − 1, 65,535, and 65,535, respectively. The maximum values allowed for the thread block
size in the x, y, and z directions are 1024, 1024, and 64, respectively, and the product of the
sizes in the three directions cannot exceed 1024. Regardless of how it is defined, a thread
block can have a maximum of 1024 threads [24].

3.2. Optimization Strategy for Algorithms on CUDA

The dimension of the LUT is higher, the number of calculated coordinates and the
number of conditional branches in the interpolation calculation will increase, requiring
more resources and computing power. Optimizing the GPU parallel strategy is crucial. It is
important to minimize the data transfer between CPU and GPU, to increase the arithmetic
strength of the kernel functions, and to increase the parallel scale of the kernel functions [24].
In this paper, three specific optimization strategies are used to achieve efficient data transfer,
enhance the arithmetic strength of the kernel function, and increase the kernel function
parallelism scale of the algorithm, as follows:

(1) Storage access optimization

During the computation of the original quantized coordinates, it is necessary to allocate
the memory for the LUT, image data, and the required quantization coordinates on the
GPU simultaneously. In the case of video SR, SR for each frame of the video should not
create and destroy all data memory as often, as some of the data memory can be applied
to the calculation of SR for all frames. For example, by copying the LUT to the GPU only
once, with all frames accessing that LUT, the SR of each frame will save time by copying
the LUT to the GPU once. Global memory in GPUs has a large capacity, typically greater
than 2 GB and sometimes even larger, and is accessible to all threads. However, because
transferring data between CPU and GPU takes a significant amount of time, it is necessary
to organize data transfer in memory based on the characteristics of the data.

Once the image size is known in a video stream, the original quantized coordinates, P,
and the size of the output result can be calculated. The storage access optimization adopted
in this paper mainly includes the following:

In the CUDA kernel function, repeated memory allocation, and resource recovery are
reduced by modifying data in memory. The memories for LUT, quantization coordinates,
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P, and the final output result are accordingly allocated on the GPU, and their storage size
is fixed and calculated based on the input image. These memories are not released before
thread exit, thus saving time for memory initialization and data transfer between the host
and device.

Accessing global memory in CUDA is comparatively slow, and computing coordinates
and interpolation requires multiple accesses to image data and interpolation coordinate data
stored in GPU memory. To solve this problem, the built-in function __ldg() in CUDA can be
used to read data from global memory, and by specifying read-only caching with __ldg(),
the GPU can directly access the data from the faster Texture Cache. Using function __ldg()
in CUDA can reduce latency and improving the efficiency of global memory data access.

(2) Conditional branching function optimization

In the interpolation process, the interpolation coordinates need to judge the LSB in
different pixel spaces to determine the weights of the boundaries and boundary vertices.
However, the frequently used i f branching statements in the code make different threads
execute different instruction paths, which will result in more time and resources needed
for thread synchronization and cooperation. This paper improves the execution efficiency
of the CUDA program by using high-speed bitwise and logical operations instead of
branching statements. For example, if the LSBs of the image are calculated as f a and f b,
their difference can be calculated and right-shifted 31 bits. If f a is greater than f b, the
highest bit of the difference is 0; otherwise, it is 1. The logical AND operator is applied to
the operation that needs to be executed. If the flag is 1, the operation is executed; otherwise,
it is not.

(3) Threading optimization

In RTX 3090GPU, each Streaming Multiprocessor (SM) can support up to 2048 thread
blocks and each thread block can support up to 1024 threads. However, the number of
thread blocks is also limited by the amount of shared memory and registers available. If
a fixed number of thread-blocks and grid sizes are used, it may lead to wasted resources
or an insufficient thread scale. The thread-dispatch experiment in Figure 6 of the paper
tested the relationship between the number of threads and pixels in the GPU. Therefore, an
adaptive calculation should be performed when allocating the number of threads in CUDA.
The adaptive calculation formula is as Formula (7):

Gx = (w + blockIdx.x − 1)/blockIdx.x,
Gy = (h + blockIdx.y × n − 1)/(blockIdx.y × n)× n/2,

(7)

where, Gx and Gy represent the corresponding grid sizes in the x and y directions, respec-
tively, and n represents the number of pixels processed by a single thread. The maximum
thread block size is 1024 (32 × 32). For the stability of the program and to avoid resource
waste, a grid size of (Gx, Gy) and thread block size of (32, 32) are allocated adaptively
within constraints. This adaptive allocation can achieve good performance for any image
size. However, if on low-performance hardware, reducing the grid size and thread block
size is necessary to lower the number of CUDA cores and achieve real-time performance.
Figure 7 shows the minimum number of CUDA cores required to reach a frame rate of over
20 FPS for various image sizes.

Since the LUT SR process requires rotating the image four times (0, 90, 180, and
270 degrees), calling the kernel function four times for image interpolation would take
a considerable amount of time. Using CUDA Stream to asynchronously execute kernel
functions allows multiple kernel functions to be executed simultaneously. By using the
CUDA Stream asynchronous mechanism, device waiting time for the host can be reduced,
thereby improving overall performance.
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4. Experimental Results and Analysis

In this study, the CPU used in the experimental environment is Intel(R) Core (TM)
i9-10900k, and the GPU used is RTX 3090. The experimental platform is Ubuntu18.04. The
experimental includes algorithm ablation experiments, comparison tests with classical SR
algorithms, and real video image testing.

4.1. Algorithm Ablation Experiment
4.1.1. Thread Allocation Ablation Experiment

The test time for obtaining the output result of SR using LUT before optimization
with an input image resolution of 540 × 540 is 22.8 ms, and the resolution of the output
image is 2160 × 2160 (×4). We set the number of threads in a block to 1024 and used the
thread multi-element revisit strategy [25] to allow GPU threads to process multiple pixels.
Figure 6 shows the performance improvement ratio when the number of pixels processed
by threads varies. The performance improvement ratio L is calculated as Formula (8):

L =

(
Tbe f − Ta f t

)
Ta f t

× 100%, (8)
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where, Tbe f and Ta f t represent the execution time of a certain optimization before and after
its effectiveness. From the Figure 6, it can be found that the method achieves a performance
improvement ratio of 3.8% when a single GPU thread processes 2 pixels. This experiment
proves that a single thread can handle multiple pixels, reducing the grid size. In the
experiment, the overall GPU memory consumption is 2622 MiB (a memory usage rate is
10.7%). The results show that the new method can be implemented on lower-memory
embedded hardware.

This paper achieves high GPU acceleration performance by using a small grid size.
A smaller grid size means a reduced GPU load and scheduling, thereby improving the
parallel computing efficiency of the algorithm. Moreover, a smaller grid size indicates
good scalability of the algorithm, making it easier to implement on GPUs with lower
computing power.

4.1.2. Image Ablation Experiment with Different Resolution

We selected commonly seen low-resolution images in real-world scenarios, with pixel
counts of 100,000, 300,000, 500,000, and 1,000,000, which correspond to resolutions ranging
from 360 × 360 to 1080 × 1080, to test the performance. As the resolution increases, the
number of computing units executed by the kernel also increases. The minimum required
number of CUDA cores for the algorithm to run in real-time with different video resolutions
is shown in Figure 7. The 360× 360 resolution requires a minimum of 36 cores and achieves
39 FPS; the 540 × 540 resolution requires 81 cores and achieves 25 FPS; and the 720 × 720
resolution requires 256 cores and achieves 20 FPS.

As the input image size increases, the algorithm’s running time also increases. The
speed tests are performed on images with different resolutions, and the test results are
shown in Figure 8. The figure displays the consumed time (in milliseconds) and FPS for
images of different resolutions. The bar chart represents the average FPS of the output
displayed after the input image is SR four times, and the line chart represents the stable
single-frame time consumption. The maximum frame rate was 80 FPS for the 360 × 360
image, and the average elapsed time was 12.5 ms per frame.
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As the resolution increases, the GPU memory usage also increases. The test results
about GPU memory usage of video streams with different resolutions are shown in Figure 9.
Among them, the minimum memory usage is 2010 MiB at a resolution of 360 × 360. With
the increase of resolution, the memory usage shows a clear upward trend, and reaches
5810 MiB at a resolution of 1080 × 1080.
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4.2. Network-on-Chip Performance Comparison with Classical SR Algorithms

Four public datasets that have been widely used in SR task evaluation, Set5, Set14,
BSDS100 [26], and Urban100 [27], are used to compare the paper with classical algorithms.
For quantitative evaluation, PSNR and structural similarity index (SSIM) [28] are used,
which are traditionally used for image quality assessment. The paper compared our method
with several classic SR algorithms. The runtime test was conducted by using a 320 × 180
LR image as input to generate a 1280 × 720 HR RGB image, and the average was obtained
from 10 tests. Due to our successful optimization and deployment of the algorithm on the
GPU, the execution environment is set to GPU, while other programs such as callers, data
transmission, etc., are run on the CPU.

In Table 1, our proposed algorithm shows good PSNR and SSIM values on four
datasets, which are higher than those of SR-LUT-S. The largest improvement in PSNR
is achieved on the Set14 dataset, with an increase of +0.51 dB. At the same time, our
algorithm runs 9.1 times faster than the SR-LUT-S fast algorithm, and even faster than the
SR-LUT-V algorithm, with a stable output of 10 ms. We also employ GPUs for inference on
other neural network models. Our algorithm is faster than mainstream lightweight neural
networks. It is 5.5 times faster than the quickest lightweight neural network, IMDN, greatly
surpassing the inference speed of lightweight neural networks.

Table 1. Comparison of test data results.

Method Runtime Size
Set5 Set14 BSDS100 Urban100

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Interpolation
Nearest 4 ms * - 26.25 0.7372 24.65 0.6529 25.03 0.6293 22.17 0.6154
Bilinear 16 ms * - 27.55 0.7884 25.42 0.6792 25.54 0.6460 22.69 0.6346
Bicubic 60 ms * - 28.42 0.8101 26.00 0.7023 25.96 0.6672 23.14 0.6574

LUT

SR-LUT-V [17] 15 ms * 1 MB 29.22 0.8304 26.65 0.7258 26.33 0.6880 23.68 0.6852
SR-LUT-F [17] 34 ms * 77 kB 29.77 0.8429 26.99 0.7372 26.57 0.6990 23.94 0.6971
SR-LUT-S [17] 91 ms * 1.274 MB 29.82 0.8478 27.01 0.7355 26.53 0.6953 24.02 0.6990

Our 10 ms ” 2.974 MB 29.89 0.8494 27.52 0.7614 26.89 0.7118 24.03 0.7082

Sparse
coding

NE+LLE [29] 7016 ms * 1.434 MB 29.62 0.8404 26.82 0.7346 26.49 0.6970 23.84 0.6942
Zeyde et al. [30] 8797 ms * 1.434 MB 26.69 0.8429 26.90 0.7354 26.53 0.6968 23.90 0.6962

ANR [31] 1715 ms * 1.434 MB 29.70 0.8422 26.86 0.7368 26.52 0.6992 23.89 0.6964
A+ [32] 1748 ms * 15.171 MB 30.27 0.8602 27.30 0.7498 26.73 0.7088 24.33 0.7189

DNN

FSRCNN [2] 75 ms ” 12 K † 30.71 0.8656 27.60 0.7543 26.96 0.7129 24.61 0.7263
CARN-M [33] 270 ms ” 412 K † 31.82 0.8898 28.29 0.7747 27.42 0.7305 25.62 0.7694

RRDB [6] 1780 ms ” 16,698 K † 32.68 0.8999 28.88 0.7891 27.82 0.7444 27.02 0.8146
EDSR [8] 130 ms ” 1300 K † 32.46 0.8968 28.80 0.7876 27.71 0.7420 26.64 0.8033
IMDN [4] 55 ms ” 715 K † 32.21 0.8948 28.58 0.7811 27.56 0.7353 26.04 0.7838

*: denotes the running time tested on the CPU. ”: denotes the running time tested on the GPU. †: denotes the
number of deep neural networks (DNN) parameters.
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The SR comparison results are shown in Figure 10. Based on visual inspection, the
proposed method exhibits prominent restoration effects compared to bicubic interpolation
and shows better sharpness in some detail recoveries than SR-LUT-V/S.
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4.3. Real Video Testing

In practical applications, this paper uses a ZWO ASI462 industrial camera to capture
images in real-time. By sampling a 540 × 540 video area for SR, the algorithm generates a
2160 × 2160 result for display, achieving 42 FPS with a memory consumption of 2622 MiB.
The representative results are shown in Figure 11. From the results, it can be seen that the
reconstruction of SR using the method proposed in this paper can significantly improve the
effects on lines and contours, and achieve completely real-time video SR reconstruction.
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threads in parallel. GPU optimization strategies are proposed, which include storage ac-
cess optimization, conditional branching function optimization, and threading optimiza-
tion. Finally, the test results show that the speed of the new SR is 9.1 times faster than SR-
LUT-S. In a quantitative comparison on public datasets, the new method outperforms SR-
LUT in terms of PSNR and SSIM. Additionally, the GPU-accelerated implementation of 
the new algorithm only requires 81 CUDA cores and 2622 MiB of GPU memory. Real-time 
×4 SR of 540 × 540 resolution video streams can be achieved with 42 FPS. Theoretically, 
our method can also be applied to embedded hardware environments with lower compu-
ting power. 
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5. Conclusions

This paper explored the application of a LUT combined with deep learning for video
SR, and optimized the SR algorithm through GPU implementation. Firstly, the design
and training strategy of the SR network were described, which effectively utilized the
influence of different rotation angles on the LUT. The weights of features from different
angles are adaptively changed to improve the quality of the SR reconstructed image. The
network parameters are uniformly sampled and added to a carefully designed multidi-
mensional LUT. The video real-time SR reconstruction is achieved by fully utilizing the
data characteristics of the LUT and the CUDA kernel function to execute a large number of
threads in parallel. GPU optimization strategies are proposed, which include storage access
optimization, conditional branching function optimization, and threading optimization.
Finally, the test results show that the speed of the new SR is 9.1 times faster than SR-LUT-S.
In a quantitative comparison on public datasets, the new method outperforms SR-LUT in
terms of PSNR and SSIM. Additionally, the GPU-accelerated implementation of the new
algorithm only requires 81 CUDA cores and 2622 MiB of GPU memory. Real-time ×4 SR of
540 × 540 resolution video streams can be achieved with 42 FPS. Theoretically, our method
can also be applied to embedded hardware environments with lower computing power.
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