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Abstract: The Internet of Things requires greater attention to the security and privacy of the network.
Compared to other public-key cryptosystems, elliptic curve cryptography can provide better security
and lower latency with shorter keys, rendering it more suitable for IoT security. This paper presents
a high-efficiency and low-delay elliptic curve cryptographic architecture based on the NIST-p256

prime field for IoT security applications. A modular square unit utilizes a fast partial Montgomery
reduction algorithm, demanding just a mere four clock cycles to complete a modular square operation.
The modular square unit can be computed simultaneously with the modular multiplication unit,
consequently improving the speed of point multiplication operations. Synthesized on the Xilinx
Virtex-7 FPGA platform, the proposed architecture completes one PM operation in 0.08 ms using
23.1 k LUTs at 105.3 MHz. These results show significantly better performance compared to that in
previous works.

Keywords: elliptic curve cryptography (ECC); field-programmable gate array (FPGA); Internet of
Things (IoT); point multiplication; Montgomery reduction

1. Introduction

IoT security faces numerous challenges regarding sensitive issues such as device
authentication, software vulnerabilities, and privacy leaks. As IoT technology advances,
and the number of smart terminal devices increases, these security concerns become
increasingly pressing. Elliptic curve cryptography (ECC) has been well-suited for use
in IoT security. Compared to other cryptographic systems, ECC achieves better security
levels and lower latency with shorter key lengths. Independently introduced by Koblitz [1]
and Miller [2] in 1985, ECC has since been embraced and standardized by international
organizations such as ANSI [3], IEEE [4], NIST [5], and SCA [6]. ECC has found extensive
use in IoT applications, including NFC [7], RFID [8], and DTLS [9].

Elliptic curve cryptography can be realized through software [10] and hardware [11]
approaches. Software-based ECC offers low design costs and high portability, but it is
constrained by processor performance and lower efficiency, rendering it unsuitable for high-
performance IoT applications. Hardware implementations, including field-programmable
gate arrays (FPGAs) and application-specific integrated circuits (ASICs), provide distinct
advantages. ASIC-based ECC excels in encryption/decryption speed, security strength,
hardware resource utilization, and power consumption. FPGA-based ECC leverages
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reprogrammability, reconfigurability, compatibility, and parallel computing to achieve
reduced latency and enhanced throughput.

Since point multiplication (PM) is the major and critical operation during the whole
encryption process, most researchers focus on optimizing the PM hardware architectures
to improve the overall performance of ECC. To accelerate the point multiplication process,
the modular multiplier has been widely studied for its high logic complexity and long
latency. The Radix-4 algorithm proposed in [12] improves the serial interleaved multi-
plication to achieve a smaller area and higher frequency, which is particularly useful in
low-power and resource-constrained situations. In [13], the combination of a single-cycle
full-precision multiplier and a fast-reduction algorithm was implemented to achieve ex-
tremely high speed. The processor in [14] uses the Karatsuba–Ofman multiplication and
fast-reduction algorithm to perform a trade-off between the area and performance of ECC.
In [15], the Toom–Cook algorithm was used to improve the multiplier, further reducing
multiplication complexity. In [16,17], the fast partial Montgomery reduction algorithm
achieved better performance and a more balanced area. In contrast to the majority of
works centered on modular multiplication, the authors in [18] presented a low-complexity
modular squaring scheme to decrease the cycle time required for point multiplication.
Additionally, some studies focused on binary field curves [19,20], but the NIST-p256 curve
is a better choice because it is a widely adopted and standardized elliptic curve, offering
strong security and compatibility with various cryptographic protocols. Its performance
and smaller keys render it an attractive choice compared to other curves.

Existing works have conducted extensive research on the main frequency, delay, power
consumption, and complexity of elliptic curve cryptography circuits. However, the high
hardware-resource requirements and long computational delay remain significant chal-
lenges. This paper aims to design a high-efficiency and low-delay ECC point multiplication
architecture with NIST prime curve p256 = 2256 − 2224 + 2192 + 296 − 1. The main contribu-
tions of this paper are as follows:

1. A modular square unit using a fast partial Montgomery reduction algorithm is pro-
posed to significantly reduce the area. It takes only four clock cycles to complete a
modular square operation. Modular multiplication and modular square operations
can be computed in parallel to achieve high speed.

2. A modified point addition (PA) operation and a modified point doubling (PD) opera-
tion are proposed. It takes 21 cycles to compute a PD and 32 cycles to compute a PA.
The number of operation clock cycles is reduced to the minimum.

3. This paper proposes a high-speed modular inversion algorithm based on the extended
Euclidean algorithm, but some modifications were performed using the two modular
adders. It takes about 300 clock cycles to perform a modular inverse operation, which
is only 83% of the Radix-2 algorithm.

The rest of this paper is organized as follows. Section 2 introduces the background
knowledge about ECC and the point multiplication algorithm. Section 3 shows the hard-
ware implementation of the ECC architecture. Section 4 gives a comparison of the perfor-
mance of the FPGA structure with other works. Section 5 summarizes this work. For a
detailed explanation of the abbreviations, please refer to Appendix A.

2. Preliminaries
2.1. Elliptic Curve Cryptograph

An elliptic curve E over a prime field is usually defined with the Weierstrass Equation (1):

E : y2 + xy = x3 + ax + b (1)

where a, b ∈ GF(p) and 4a3 + 27b2 6= 0 (mod p). All points (x, y) that satisfy Weierstrass
Equation (1) and the infinite point O form an abelian group [21]. Let points P = (xp, yp)
and Q = (xQ, yQ) be points on the elliptic curve. Elliptic curve cryptography defines two
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addition operations, point addition and point doubling. For P 6= Q, the expression of PA is
R(xR, yR) = P + Q, and for P = Q, the expression of PD is R(xR, yR) = 2P.

The calculation formulas of PA and PD are different in different coordinate systems [21].
Table 1 lists the calculation cost of the y2 + xy = x3 − 3x + b curve in various coordinate
systems. In Table 1, I denotes a modular inverse operation, M denotes a modular multipli-
cation operation, and S represents a modular square operation. Since modular inversion is
the most time-consuming of all basic operations, we use the projected coordinate system
to eliminate modular inversion in PA and PD operations. The complexity of calculating
PA using mixed Jacobin–affine coordinates is 8M + 3S, and the complexity of calculating
PD using Jacobin coordinates is 4M + 4S. A modular square operation occupies the second
important position in PA and PD operations. However, most previous architectures used
one modular multiplication unit to calculate modular square operations. In this case, much
of the PA and PD cycle time is wasted, resulting in a low performance level during the PM
process. Therefore, it is necessary to design a modular square unit.

Table 1. Calculation cost of PA and PD.

Coordinate PA PD

Affine coordinate 1I 1 + 2M 2 + 1S 3 1I + 2M + 2S
Projective coordinate 12M + 2S 7M + 3S
Jacobin coordinate 12M + 4S 4M + 4S
Chudnovsky coordinate 11M + 3S 5M + 4S
Mixed Jacobin-affine coordinate 8M + 3S

1 I, modular inversion operation; 2 M, modular multiplication operation; 3 S, modular square operation.

To switch between different coordinates, coordinate conversion is required. Equation (2)
is for converting affine coordinates into Jacobin coordinates. Equation (3) is for converting
Jacobin coordinates into affine coordinates.

(x, y)→ {(X, Y, Z)|X = x, Y = y, Z = 1} (2)

(X, Y, Z)→
{
(x, y)

∣∣∣x = X/Z2, y = Y/Z3
}

(3)

In mixed Jacobian–affine coordinates, the calculation formulas of PA are:
X3 = (Y2Z1

3 −Y1)
2 − (X2Z1

2 − X1)
2
(X1 + X2Z1

2)

Y3 = (Y2Z1
3 −Y1)(X1(X2Z1

2 − X1)
2 − X3)−Y1(X2Z1

2 − X1)
3

Z3 = (X2Z1
2 − X1)Z1.

(4)

In Jacobian coordinates, the calculation formulas of PD are:
X3 = (3X1

2 + aZ1
4)

2 − 8X1Y1
2

Y3 = (3X1
2 + aZ1

4)(4X1Y1
2 − X3)− 8Y1

4

Z3 = 2Y1Z1

(5)

A point multiplication (PM) operation on the elliptic curve is defined as
kP = (k/2)P + (k/2)P, where k is a positive integer. PM can be transformed into opera-
tions of PA and PD. The non-adjacent form (NAF) algorithm is a standard PM calculation
method that can reduce the number of PM calculations to k PD and k/3 PA. The NAF
encoding of k can be expressed as k = ∑l−1

i=0 ki2i, where ki ∈ 0,±1, kl−1 6= 0, and no two
consecutive digits ki are non-zero. NAF encoding has the fewest non-zero numbers.

However, when calculating PM with the NAF algorithm, it is essential to convert
binary k into NAF encoding in advance, which wastes many clock cycles. Algorithm 1
can avoid the conversion of NAF encoding by pre-calculating h = 3k, and the cost is
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only an extra register resource. Algorithm 1 simultaneously scans the values of hi and
ki from left to right, performing PD once per scan bit, performing PA once when hi = 1
and ki = 0, and performing point subtraction (PS) once when hi = 0 and ki = 1. Since
Q− P = Q + (−P), where −P = (x,−y) for P = (x, y), PS can be converted into PA with
almost no cost. This design uses Algorithm 1 to calculate the PM.

Algorithm 1 On-the-fly NAF method for PM

Input: k = (kn−1, kn−2, · · · , k1, k0), P = (x, y)
Output: kP
1: h = 3k = (hl−1, hl−2, · · · , h1, h0),where hl is 1
2: Q← O
3: For i from l − 1 down to 1 do

3.1: Q← 2Q
3.2: if (hi = 1) and (ki = 0), then Q← Q + P
3.3: if (hi = 0) and (ki = 1), then Q← Q− P

4: return Q.

2.2. Modular Multiplier Algorithm

Modular multipliers consume most of the hardware resources in the point multipli-
cation architecture and dominate the overall performance. The Montgomery algorithm
uses a series of low-cost addition and shift operations instead of modular operations to
reduce computational complexity. However, large-number multiplication is still chal-
lenging for hardware. Therefore, a radix-2w Montgomery modular multiplication algo-
rithm is proposed for reducing the multiplication of large numbers into a shorter set
of integer multiplications. As shown in Algorithm 2, k-bits multiplier a is denoted as
a = (a(s−1), a(s−2), . . . , a0), where ai is w-bit data. p

′
0 is the precomputed parameter that can

be calculated with the r · r′ − p
′
0 · p = 1 formula. It takes s/w cycles to perform one Mont-

gomery modular multiplication. Steps 2.2 to 2.4 are equivalent to computing a reduction in
R(x) = x · 2−wmod p once.

Algorithm 2 Montgomery multiplication algorithm

Input: a = (as−1, as−2, . . . , a0), b, p with a, b ∈ [0, p)
Output: Monpro(a, b) = a · b · r−1mod p
1: u = 0.
2: For i from 0 up to s− 1 do

2.1: u = u + ai · b
2.2: m = u0 · p′0 mod 2w

2.3: u = u + m · p
2.4: u = u/2w

3: if u ≥ p, then return u− p
else return u

The Montgomery algorithm can be applied to most prime number fields, but rarely
to NIST prime number fields because NIST prime fields have unique modular reduction
methods. A Montgomery fast partial product reduction algorithm was proposed in [17]
that combines the Montgomery algorithm with NIST prime fields. The advantage of this
algorithm is that it avoids the two multiplications in Steps 2.2 to 2.4.
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The Montgomery fast partial product reduction algorithm denotes x as x = c · 2w + l;
then,

R(x) = (c · 2w + l) ∗ 2−wmod p

= (c + l · ((p + 1) >> w))mod p

= (c + r)mod p

(6)

when p = p256 = 2256 − 2224 + 2192 + 296 − 1 and w < 96:

r = l · ((p256 + 1) >> w)

= l · ((2256 − 2224 + 2192 + 296) >> w)

= (l << (256− w))− (l << (224− w)) + (l << (192− w)) + (l << (96− w))

(7)

Therefore, after deriving the value of r via simple addition and shift operations,
the reduction result of R(x) = x · 2−wmod p can be easily obtained.

Compared with the traditional algorithms, the Montgomery fast partial product
reduction algorithm speeds up modular multiplication computation and is more hardware-
friendly. However, considering the high-speed requirements for encryption and decryption,
the performance of a single modular multiplication module is still limited. Modular
multiplication and modular square operations must be computed in parallel to further
improve the speed of PM operation.

3. Implementations

In this section, we propose a high-performance PM architecture that calculates modular
multiplication and square operations in parallel. Secondl the algorithms and circuits of
modular multiplication and modular square are introduced. Then, a new high-speed
modular inverse circuit is proposed by improving the modular inverse algorithm. Lastly,
we analyze data dependency in the PA and PD operations, and perform calculations to
achieve high speed.

3.1. Proposed PM Architecture

The proposed PM architecture is shown in Figure 1. It consists of one modular square
unit, one modular multiplication unit, two modular adder units, one main state machine,
and several data registers. Compared to the one modular multiplication unit used in
traditional PM architectures, this novel architecture utilizes one more modular square unit
to achieve higher speed. The cost of the area is not high, but better efficiency is achieved.

The proposed PM state machine is shown in Figure 2. At the beginning of the PM
calculation, input coordinates P = (xp, yp) are stored in x2, y2 registers, and the k integer is
stored in the k register. Second, the h register is used to store the value of h = k + k · 2. Then,
coordinate data are converted into Montgomery field numbers and Jacobin coordinates.
The control unit cyclically calculates PA and PD on the basis of k and h, and outputs
intermediate variable Q in the x3, y3, and z3 registers. In the end, output result Q = kP =
(xQ, yQ) is obtained after finishing modular inversion and final coordinate transformation.
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Figure 1. Proposed PM architecture.

Figure 2. Proposed PM state machine.

3.2. Modular Multiplication Unit and Modular Square Unit

To improve the speed of modular multiplication and to be more friendly to hardware
implementation, the Montgomery fast partial product reduction algorithm for modular
multiplication is considered in this paper. As shown in Algorithm 3, the proposed modular
multiplication algorithm is executed once in Monpromul(a, b) = a · b · r−1mod p operation.
Algorithm 3 has three functions: multiplication, reduction, and modular addition, each
performed by a separate circuit module. For k-bit data a and b, it takes s = k/w iterations
of ai · b multiplication, s times reduction, and final modular addition. In this paper, we
describe the design for k = 256 and w = 64. Because CSA adders are used instead of a part
of the adder in Algorithm 3, there are pairs of variables. The CSA adder helps in reducing
the circuit’s critical path, but two values represent the result.
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Algorithm 3 Proposed Montgomery multiplication algorithm

Input: a = (a3, a2, a1, a0), b, p with a, b ∈ [0, p)
Output: Monmul(a, b) = a · b · r−1mod p
1: (c0, c1) ← Mul(a0, b)
2: (c0, c1) ← Mul(a1, b)

(d0, d1) ← Reduction(c0, c1, 0, 0)
3: For i from 2 up to s− 1 do

(c0, c1) ← Mul(ai, b)
(d0, d1) ← Reduction(c0, c1, d0, d1)

4: (d0, d1) ←Reduction(c0, c1, d0, d1)
5: c ← Add(d0, d1)

Since the resources required for modular square are similar to modular multiplication,
it is most important to organize it well to achieve better efficiency. The proposed modular
square algorithm is based on the same idea as that of the proposed modular multiplication
algorithm. Therefore, the modular square can benefit from high-speed modular reduction
circuits. As shown in Algorithm 4, the proposed modular square algorithm is executed once
Monpromul(a) = a2 · r−1mod p operation. Algorithm 4 has three functions: square, reduc-
tion, and modular addition, each performed by a separate circuit module. For k-bit data a
and b, it takes s = k/w iterations of ai · b square, s times reduction, and final modular addi-
tion. The difference between the modular square algorithm and the modular multiplication
algorithm is mainly in the circuit structure of the square and reduction operation.

Algorithm 4 Proposed Montgomery square algorithm

Input: a, p with a ∈ [0, p)
Output: Monsqu(a) = a2 · r−1mod p
1: (c2, c3)← Squ(a, 0)
2: (c2, c3) ← Squ(a, 1)

(d2, d3) ← Reduction(c2, c3, 0, 0)
3: For i from 2 up to s− 1 do

(c2, c3) ← Squ(a, i)
(d2, d3) ← Reduction(c2, c3, d2, d3)

4: (d2, d3) ←Reduction(c2, c3, d2, d3)
5: c ← Add(d2, d3)

Figure 3 shows the circuit structures of the modular multiplication unit and the
modular square unit. The mul module performs the calculation of a · b and is highlighted in
green, while the squ module performs the calculation of a2 and is also highlighted in green.
The red1 and red2 modules, highlighted in blue, are used for the reductions in Algorithms 3
and 4, respectively. The yellow-marked modules add1 and add2 are two identical modular
adder circuits that can be operated independently. The mul_a and mul_b registers are
used to store the multiplicands a and b in Algorithm 3, while the squ_a register is used to
store the square data a in Algorithm 4. The add1_a and add1_b registers store the input
data for the add1 circuit, and the add2_a and add2_b registers store the input data for the
add2 circuit.
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Figure 3. Structure of the modular multiplication unit and the modular square unit.

In Algorithm 3, since reduction always follows multiplication, Step 1 does not perform
the reduction, and Step 4 does not perform the multiplication. This renders the pipelined
structure possible. As shown in Figure 4, both the modular multiplication and modular
squaring circuits have a three-stage pipeline structure. It takes only 4 clock cycles to perform
a modular multiplication or a modular square operation in a sequential calculation.

Figure 4. Pipeline of the modular multiplication unit and the modular square unit.

In Algorithm 3, with four 64-bit multipliers, one 256-bit × 64-bit multiplication oper-
ation is executed in 4 different clock cycles. Every clock cycle time, the four 64-bit multiplica-
tions results are combined and stored in registers c0 and c1, denoted as
mul(ai, b) = c0 + c1 · 264. Figure 5 shows the calculation of c0 and c1 with different val-
ues of i. In Algorithm 3, the values of c0 and c1 in each cycle were 64 bits higher than
those of the last cycle. On the basis of this characteristic, we designed the squ function in
Algorithm 4.
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Figure 5. Calculation of c0 and c1.

In Algorithm 4, with nine 32-bit multipliers, one 256-bit square operation is executed
in 4 different clock cycles. Every clock cycle time the nine 32-bit multiplications results
are combined and stored in registers c2 and c3, expressed as squ(a, i) = c2 + c3 · 264.
Figures 6 and 7 illustrate the calculation of c2 and c3 for different values of i. Similarly,
in Algorithm 4, the values of c2 and c3 in each cycle were 64 bits higher than those in the
last cycle. This characteristic makes it possible to design the high-speed modular reduction
unit for modular square. In addition, compared to the four 64-bit multipliers in the modular
multiplication unit, the modular square unit uses only nine 32-bit multipliers, resulting in a
significant reduction in area.

Figure 6. Calculation of c2.

Figure 7. Calculation of c3.

In the red1 module, CSA257 and CSA258 are used to calculate c0 + c1 + d0 + d1 to
obtain the results of both result1 and carry1. As shown in Figure 8, a 64-bit adder adds
the lower 64-bit of result1 and carry1 to get the value of h · 264 + l. The calculation of r is
in Equation (7), and the specific implementation is shown in Figure 9. The value of r is
obtained using a 96-bit adder after shifting l left and merging it. The outputs of CSA256
and carry1 are strobed back to red1’s inputs, ensuring that the length of the critical path is
not affected.

Figure 8. Calculation of l.
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Figure 9. Calculation of r.

As shown in Figure 3, red2 had a similar structure to that of red1, but some mod-
ifications were performed for different bit widths. When Algorithm 4 loops to Step 4,
the value of the high 65-bit of c2 is a7 · a7 ≤

(
232 − 1

)
×
(
232 − 1

)
=
(
264 − 233 + 1

)
, so

c2 < 2320 − 2289 + 2256 + 2256 − 1. After the data pass through CSA258 and CSA289,
the value of u is u = u + squ(a) < 2320 − 2288 − 2287. Then, through the 64-bit shift
register, the value of c is c < 2256 − 2224 − 2223 < p256. Lastly, at CSA257, because r =
(l � 192)− (l � 160) + (l � 128) + (l � 32) < p256, then c + r < 2 · p256, the output of
the red2 module can be connected to the input of the modular adder units.

3.3. Modular Inversion Unit

Modular inversion operation is required for coordinate conversion. Modular inversion
can be implemented by using the extended Euclidean algorithm. The extended Euclidean
algorithm comprises the Radix-2 and Radix-4 algorithms [22–25]. The Radix-2 algorithm
is particularly useful for hardware implementation, and the modular inverse result can
be obtained by circularly performing subtraction and shift operations. The authors in [24]
showed that the Radix-2 algorithm requires 363 clock cycles to calculate a modular inverse
operation on average. Compared with the Radix-2 algorithm, the Radix-4 algorithm
has changed the number of bits per cycle scan from 1-bit to 2-bit, and its speed could
theoretically be twice that of the Radix-2 algorithm. However, the Radix-4 algorithm needs
to consume a lot of circuit resources and is not suitable for hardware. In this paper, we
propose a a high-speed modular inversion algorithm based on the Radix-2 and Radix-4
algorithms. It takes about 300 clock cycles to execute one modular inversion operation,
which is only 83% of the Radix-2 algorithm.

Algorithm 5 implements the division by 4 and division by 2 operations of u and v
by right shifting. During the division by 4 and by 2 operations of x1 and x2, the least
significant bits of the respective values must be set to zero by using the +0, +P, +2P,
and +3P operations, followed by a right shift to obtain the result. The modular inverse unit
uses two adders to update the values of registers u and v in circuit design, and uses two
modular adders to update the values of registers x1 and x2. To minimize the area of the
ECC circuit, registers u and v are multiplexed with registers storing the affine coordinate
input data P = (xp, yp), and registers x1 and x2 are multiplexed with the modular addition
unit input registers.

As shown in Figure 10, the hardware structure of the modular inversion module
consists of two adders in (a) and (b), and two modular addition modules in (c) and (d).
Within the elliptic curve point multiplication circuit, the modular addition module serves
as a shared arithmetic resource. On the one hand, it can be used for modular addition and
subtraction operations in point addition and point doubling calculations. On the other
hand, it also assists in implementing modular inversion, multiplication, and squaring
operations. To achieve diverse functionality, the modular addition module incorporates
several data selectors and shift registers, building on the existing two 257-bit adders, and is
designed with four output ports.



Micromachines 2023, 14, 1037 11 of 15

Algorithm 5 Proposed modular inversion algorithm

Input: a, p with a ∈ [0, p)
Output: a−1mod p
1: u = a, v = p, x1 = 1, x2 = 0
2: while ((u ! = 1)&( v ! = 1))

2.1: if u[1 : 0] = 2′b00
u = u/4, x1 = x1/4 mod p

2.2: else if v[1 : 0] = 2′b00
v = v/4, x2 = x2/4 mod p

2.3: else if u[0] = 1′b0
u = u/2, x1 = x1/2 mod p

2.4: else if v[0] = 1′b0
v = v/2, x2 = x2/2 mod p

2.5: else if u ≥ v
u = (u− v)/2, x1 = (x1− x2)/2 mod p

2.6: else
v = (v− u)/2, x2 = (x2− x1)/2 mod p

3: if u = 1, return x1
else return x2

Figure 10. Structure of adders and modular adders.

3.4. Calculation of PA and PD

In the circuit implementation of PA and PD operations, due to the strong data de-
pendency in the calculation formula sequence, hardware utilization cannot reach 100%.
To improve the computation speed and hardware resource utilization of the system, this
section first analyzes the data flow of PA and PD operations. Then, we decompose them
into a series of finite field operation steps, and re-schedule and coordinate the usage of arith-
metic logic units. The computation sequences for point addition and point multiplication
operations are illustrated in Figures 11 and 12, respectively.
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Figure 11 shows that, during PA operation, State 1 only executes the modular squaring
operation, leaving the modular multiplication unit idle. Meanwhile, in States 6–8, only
modular multiplication and modular addition operations are executed, rendering the
modular squaring unit idle. Similarly, Figure 12 shows that, during PD operation, State
1 only executes the modular squaring operation, leaving the modular multiplication unit
idle; while in States 5 and 6, only modular multiplication and modular addition operations
are executed, rendering the modular squaring unit idle.

Figure 11. Calculation of PA.

Figure 12. Calculation of PD.

To enhance hardware resource utilization and shorten computation time, employing
pipeline technology is an effective method for addressing idle time issues between modular
multipliers and modular squarers. Pipeline technology divides the calculation process
of PA and PD into multiple stages, allowing tasks from different stages to be executed
simultaneously. By adopting a neighboring task connection strategy, gaps between modular
multipliers and modular squarers are effectively filled. As a result, the next PA or PD
operation can be initiated immediately before the completion of a previous one, thereby
achieving efficient parallel computation. It takes 21 cycles to compute a PD, and 32 cycles
to compute a PA. The number of operation clock cycles is reduced to the minimum.

4. Results and Comparisons

As shown in Figure 13, the proposed architecture was implemented on Xilinx Zynq-
7000 FPGA by Vivado 2018. The synthesized results on Virtex-7 FPGA compared with
those of other works are shown in Table 2. The elliptic curve was selected from the 256-bit
NIST-p256 curve or SM2 curve. The performance of the different designs was evaluated
via the product of implementation area (LUTs) and the time (ms). To better evaluate the
trade-off between area and speed in digital circuits, the AT parameter (AT = area (LUTs) ×
time (ms)) is introduced.
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Figure 13. FPGA test platform.

The proposed design on Virtex-7 FPGA reached the frequency of 105.3 MHz and
performed one PM operation in 0.08 ms at the cost of 23.1k LUTs. Having achieved an
AT of 1.85, the proposed architecture achieved relatively balanced performance with low
latency and acceptable regional costs. Compared to [18], even with the smallest area design
of 16.3 k LUTs, our speed was more than 34 times faster than theirs, and our frequency
was higher. In [26], the proposed architecture employs a dual-core hardware design along
with a radix-128 Montgomery modular multiplication algorithm to attain remarkably high
speeds. Although it executes one PM in a mere 0.056 ms, it needs 182k LUTs, which is
7.8 times more than that of our approach. The authors in [27] presented a well-balanced
solution for performance and resource utilization that takes only 0.15 ms to execute one PM,
reaches a frequency of 123.3 MHz, and has an area of just 22.9k LUTs. The comprehensive
AT value was 3.44, which was 1.86 times more than that in our work. Our proposed design
calculates modular multiplication and square operations in parallel, delivering the best AT
performance among existing works. Consequently, this design is exceptionally well-suited
for high-speed encryption and decryption in IoT applications.

Table 2. Comparison with other PM architectures on FPGA.

Works FPGA Area/LUTs Freq./MHz Time/ms AT

[18] virtex-4 16.3k 62.4 2.75 44.83
[14] Virtex-5 26.7k 34.15 0.42 11.21
[26] Virtex-6 182k 104 0.056 10.19
[16] Virtex-6 18.6k 121.6 0.3 5.58
[27] Virtex-7 22.9k 123.3 0.15 3.44

Ours Virtex-7 23.1k 105.3 0.08 1.85

5. Conclusions

This paper presented a high-efficiency and low-delay ECC architecture based on
NIST-p256 prime field for IoT security applications. A modular square unit was designed
using fast partial Montgomery reduction algorithm that takes only four clock cycles to
complete a modular square operation. The modular multiplication and modular square
operations can be computed in parallel to achieve high speed. The proposed design on
Virtex-7 FPGA reached a frequency of 105.3 MHz and performed one PM operation in
0.08 ms at the cost of 23.1 k LUTs. Having achieved an AT of 1.85, the proposed architecture
achieved relatively balanced performance with the lowest latency and acceptable regional
costs. Consequently, this design is exceptionally well-suited for high-speed encryption and
decryption in IoT applications.



Micromachines 2023, 14, 1037 14 of 15

Author Contributions: Conceptualization, D.W. and Y.L.; formal analysis, methodology and super-
vision, Q.Z. and D.W.; software, validation, investigation, J.H., C.Z. and Q.Z.; writing—review and
editing, Y.L. and D.W.; project administration, Q.Z. and D.W.; resources, funding acquisition, Q.Z.
and D.W. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Key R&D Program of China (no. 2021ZD0114600),
the Key-Area Research and Development Program of Guangdong Province under grants 2019B010142002
and 2021B1101270004, the Guangdong Basic and Applied Basic Research Foundation under grants
2019B1515120025 and 2020A1515110272, and the Special Support Plan for Top Young Talents in
Science and Technology Innovation of Guangdong Province (no. 2021TQ06X978).

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the National Key R&D Program of China
(no. 2021ZD0114600), the Key-Area Research and Development Program of Guangdong Province un-
der grants 2019B010142002 and 2021B1101270004, the Guangdong Basic and Applied Basic Research
Foundation under grants 2019B1515120025 and 2020A1515110272, and the Special Support Plan for
Top Young Talents in Science and Technology Innovation of Guangdong Province (no. 2021TQ06X978).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

This section presents a table listing the main abbreviations used in the paper along
with their corresponding full names.

Table A1. Abbreviations and Full Names.

Abbreviations Full Names

ECC Elliptic curve cryptography
FPGA Field-Programmable Gate Array
ASIC Application-Specific Integrated Circuit
IoT Internet of Things
PM Point multiplication
PA Point addition
PD Point doubling
PS Point subtraction

NAF Non-adjacent form
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