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Abstract: For the Siamese network-based trackers utilizing modern deep feature extraction networks
without taking full advantage of the different levels of features, tracking drift is prone to occur
in aerial scenarios, such as target occlusion, scale variation, and low-resolution target tracking.
Additionally, the accuracy is low in challenging scenarios of visual tracking, which is due to the
imperfect utilization of features. To improve the performance of the existing Siamese tracker in the
above-mentioned challenging scenes, we propose a Siamese tracker based on Transformer multi-
level feature enhancement with a hierarchical attention strategy. The saliency of the extracted
features is enhanced by the process of Transformer Multi-level Enhancement; the application of the
hierarchical attention strategy makes the tracker adaptively notice the target region information
and improve the tracking performance in challenging aerial scenarios. Meanwhile, we conducted
extensive experiments and qualitative or quantitative discussions on UVA123, UAV20L, and OTB100
datasets. Finally, the experimental results show that our SiamHAS performs favorably against several
state-of-the-art trackers in these challenging scenarios.

Keywords: Siamese tracker; deep learning; hierarchical attention strategy; multi-level feature
enhancement

1. Introduction

In the past decade, deep learning methods have been widely used and driven inno-
vation in various research fields [1-4]. As an important task in the field of applications in
deep learning, target tracking can be cross-applied with many disciplines, making it a hot
topic of interest for researchers in many related fields, and is widely used in intelligent
video surveillance [5], UAV applications [6], and assisted autonomous driving [7]. The
task of traditional target tracking can be described as the following process: given only the
initial location information and size of an arbitrary target in a video segment, the tracker
needs to continuously estimate the subsequent motion state of the target without using
other prior information. However, the actual video sequences often consist of scenarios
such as scale variation, occlusion, and low resolution, which require high accuracy and
robustness of the trackers, and it is a challenging task to ensure the performance of the
tracker in complex scenes.

The existing target tracking methods could be divided into generative model-based
tracking methods [8,9] and discriminative model-based tracking methods [10,11] according
to the method of building target features. The former refers to the traditional methods
which use the target’s feature and rely on manually designed features, such as the optical
flow method [12], mean drift [13], etc., with generally poor tracking results. The latter
refers to the discriminative model-based tracking methods that exploit both target motion
foreground and background information, which have become mainstream over the last
decade. The foreground indicates the pixels” location where the target region in the fea-
ture maps is located, and the background refers to the pixel area occupied by the target
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motion background. Correctly distinguishing the foreground from the background is the
key factor to locate the target object location and generate the predicted banding box. A
step further, according to the implementation principle, it can be divided into correlation
filter-based [14-17] and deep learning-based [18-21] tracking models. The key step in the
correlation filter approach is to obtain the filter with optimal performance so that the search
area and the target area could generate an accurate maximum response. For example, the
KCF tracker [22], which is the cornerstone of the correlation filtering algorithms family, uses
a similarity-matching strategy that transforms the image-matching task into a classification
task of foreground and background and reduces the computational effort of the algorithm
by using circular matrices and fast Fourier transforms. However, it cannot meet the require-
ments of tracking accuracy in fast background movement, small target object tracking, or
other aerial scenarios. Among the features outputted by the deep learning-based feature
extraction network, the shallow features contain location information, and in this regard,
the shallower feature extraction network is more beneficial for determining the target
position. The deeper features contain rich semantic information about the foreground and
background in the images, which is useful for tracking in scenarios such as motion blur,
low resolution, etc. The deep learning-based approach can automatically extract features at
different depth levels through the feature extraction network and can effectively utilize the
background information of the target motion, which makes it have strong feature extraction
capability and robustness compared to traditional methods and correlation filter-based
methods. In recent years, Siamese neural network-based trackers [23-26] have received
extensive attention from researchers in the field.

Based on the above analysis, we propose a novel Siamese tracker based on the feature
enhancement module of Transformer with the hierarchical attention strategy. The algorithm
is mainly composed of the following four parts: feature extraction, feature fusion, similarity
matching, and classification regression prediction head. The hierarchical attention strategy
is the main characteristic of the feature fusion network. The self-attention mechanism can
effectively improve the saliency of each branch, and the hierarchical attention strategy could
achieve feature enhancement at different levels so that the features could include global
contextual information and make it easier to utilize the features effectively. Experiments
demonstrate that our SiamHAS can effectively enhance the tracking performance of Siamese
neural networks in challenging scenarios.

The main contributions of our proposed approach can be summarized as follows:

1.  We propose a target tracker with the strategy of hierarchical attention. After compar-
ing with several state-of-the-art Siamese trackers, our SiamHAS reaps more stable
robustness and precision in challenging scenes such as target occlusion, especially in
various challenges in aerial scenarios, and achieves the desired goal.

2. Inthe feature fusion sub-network, a feature enhancement method integrating multiple
attention strategies is introduced in this paper. With the channel context-aware
mechanism, global context information can be included among different channels,
which achieves feature enhancement in the channel dimension. The introduction of
multiple modified Transformer encoders enhances the saliency of deeper features in
each branch and effectively improves performance.

3.  Extensive comparative experiments on our proposed SiamHAS are conducted on
many benchmarks with complex and challenging scenarios. The experiments demon-
strate that our algorithm obtains high robustness in challenging scenarios, and the
hierarchical attention mechanism and Transformer module can strongly improve the
performance of the Siamese network-based tracker.

2. Related Work

In this section, we briefly review the research related to our work in recent years,
including a summary of the Siamese neural network trackers, attention mechanisms,
and Transformers.
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2.1. Siamese Trackers

The core idea of the Siamese trackers is to learn the information between the target
template and the search region and then transform the tracking tasks into a similarity-
matching problem between the two branches. The first Siamese tracker is SINT [27], and
the subsequent series of Siamese trackers have a similar structure of using two branches
of the same backbone network to generate feature maps. Then, after the mutual correla-
tion operation, the best matching search region in the response maps is generated by the
similarity matching network to complete the tracking, such as SiamFC [28], SiamDW [29],
SiamDW-RPN [30], and SiamFC++ [31]. Inspired by Faster R-CNN [32] which proposed the
RPN network to avoid the process of extracting feature maps at multiple scales, SiamRPN
was proposed by Li et al. [33]. DaSiamRPN [34] achieves a degree of performance improve-
ment but the depth of the extracted features is relatively shallow. SiamRPN++ [35] applies
a deeper feature extraction network, but it uses a direct linear weighting fusion method
without deeply exploring how to fully utilize the advantage of the deep network’s multiple
layers feature. In recent years, more advanced methods such as HiFT [36], SiamBAN [37],
SiamCAR [38], and Ocean [39] have been proposed one after another, all of which use
deeper feature extraction networks. Although the above-mentioned trackers are applied to
modern deep feature extraction networks, they do not take full advantage of the different
levels of features, resulting in relatively poor performance in aerial scenarios, such as target
occlusion, scale variation, and low-resolution target tracking.

2.2. Attention Mechanism
2.2.1. Introduction to Attention Mechanism

The attention mechanism [40-42] is one of the ways for humans to filter information
efficiently. The main implementation of the attention mechanism can be described as
follows: n input messages represented by a key-value pair can be written as [(k1,v1), (ka,v2)
..., (kn,vn)]. The first step is the attention scoring function that uses the dot product model,
which uses the inner product calculation to calculate the similarity of each covariate in the
query object Q and K. In the second step, the attention scores are normalized to obtain the
probability of each similarity, and the probability vector is called attention distribution. The
normalization feature of the softmax function is used to highlight the weights of important
elements and bring the network’s attention to the areas that need more attention. The
overall implementation process of the attention mechanism can be summarized in the
following equation. The attention score of each element in Q and K can be obtained as S. A
is the final attention results, Q is the query variables, K is the key in the input key-value
pair, and V is the value.

A(Q,K,V) = softmax(S(Q,K)) x V (1)

In the third step, the value is the weighted sum according to the coefficient of the
attention distribution to aggregate information and obtain the final output result. The
three-step process described above can be expressed as follows:

STEP1:S =s1,82,...,5: = Q* K; (K =kq,kp, ..., k)
STEP2:D = dy,dy, ..., dy = softmax(sy, sy, ..., ,) = 225
Lo @
n
STEP3: A = Y d;v;
i=1

In this formula, the K represents the input keys in the key-value pair, in different con-
ditions, it could be the original input values or input values after the linear transformation.
S represents the attention score for the input key-value pair, s; represents the attention score
for each element in the input, and n represents the number of elements in the input. D
represents the attention distribution for the input key-value pair, and it could be calculated
by the softmax function with the input of S where the result is a normalized distribution of
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S. d; represents the attention distribution for each element in the input. A represents the
final attention results, it is the sum of all the products of v; which is the value element of all
key-value pairs in the input and the corresponding attention distribution d;.

2.2.2. Typical Attention Mechanisms in Computer Vision

Generally, self-attention [43] and non-self-attention are the typical classification method
according to whether the ternary inputs are from the same source or not. In computer
vision tasks, self-attention mechanisms are commonly used. According to the different
dimensions of the extracted attention distribution, it can be generally classified into several
forms of spatial [44], channel, and context [45] attention mechanisms. Taking the channel
attention mechanism as an example, since the modern feature extraction network has deep
layers, the change of channel dimension is essential, usually, the convolutional layers make
significant contributions to the process, as shown in Figure 1.

Multi-channel Convolution Process

Output single-channel

Feature maps
feature map

after convolution

convolution

| kemel
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Figure 1. A multi-channel convolution process where a single convolutional kernel convolves with
the corresponding feature maps, and the individual layer pixel positions are added to produce an
output single-channel feature map.

The output feature map by each convolution kernel extracts a kind of feature of the
target object, and each channel represents a matrix of each kind of feature. So, in the
learning process, the parameters of the convolution kernel could adaptively vary and
offer the net an appropriate structure. Similarly, the channel attention could finally obtain
an attention distribution that can be recognized as a convolution kernel which could be
optimized through the training process.

2.3. Transformer and Multi-Head Attention

Distinct from the attention mechanism in a broad sense, the self-attention mechanism
stipulates a new restriction that the three elements of the input QKV must be homologous,
which is usually known as the Transformer structure [46]. A typical Transformer structure
definition had been released in “Attention is all you need” by Ashish Vaswani [47] in 2017.
Its main implementation process can be summarized as the process of Scaled Dot-Product
Attention, which is shown in Figure 2.
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Figure 2. A typical self-attention mechanism implementation process where MatMul represents the

dot product operation of the input matrix Q and K.

The mathematical expression of the model could be expressed as

)

K

L)

Attention(Q, K, V) = softmax(=~)V
Query : Q = WeX €)
Key : K = WKX
Value: V =W"X

1

The matrix X represents the input data, and the values of Q, K, and V are derived from
the same input X through matrix operations with three hyperparameters W<, WX, WV that
are first initialized and then learned through the process of optimization in training by
applying an SGD optimizer with the strategy of random batch gradient descent. We use
the dimension of the key, which is the number of its channels, as a parameter dj to scale the
output of MatMul. This avoids the possibility of distortion in the softmax process which
represents the process of obtaining a probability vector that stores attention distribution.
The model of the multi-head attention mechanism describes a detailed introduction to the
linear transformation matrix operations. The following Figure 3 and formulas illustrate the

implementation process.

MultiHead(Q, K, V) = Concat(heady, . .. ,headh)WO )
headi = Attention(QW<, KWK, VWY

Implementation Process of Muti-Head Attention Computing
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Figure 3. The implementation process of multi-head attention computing.

In the above formula, Q, K, and V represent query, key, and value, respectively.
For each head, head; is computed in the same process as the self-attention computation
mentioned above, with each head initializing a different set of W; parameter matrices.
Furthermore, the results of these heads are finally concatenated together and then it is
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multiplied with a trainable parameter matrix WO to generate the final multi-head attention
output. The multi-head attention calculates the similarity between Q and K, so the attention
map could be obtained. Then, through the process of multiplying V with the normalized
attention map, finally, we finish the process of enhancement for the inputs. To improve
the various deficiencies of the existing methods, reference [48] adopts a Transformer-based
feature fusion structure, which establishes the connection of global context, and the critical
step is the powerful ability of the multi-head self-attention in the core module of the
Transformer encoder.

3. Proposed Approach

In our proposed approach, we specifically introduce the proposed Siamese tracker
and detail the overall structural composition of the algorithm and the principle of imple-
mentation. We focus on the structural composition of the hierarchical attention strategy
for feature enhancement of the feature fusion sub-network then detail its basic modules
and the important influence of the algorithm structure design. In particular, we focus
on the implementation of the fusion strategy with channel, context, and multi-headed
attention mechanisms, and the improvement of each part of the module, the architectural
design, and implementation principles are presented in detail. Finally, we analyze the
architectural design advantages of our proposed algorithm from the top-level perspective
of the network.

3.1. The Owverall Structure of SiamHAS

The proposed algorithm consists of the following four main modules: feature extrac-
tion backbone, feature fusion and enhancement network, similarity matching network, and
classification regression prediction heads. The overall framework of our proposed tracker
in this paper is shown in Figure 4.
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Figure 4. The overall framework of the proposed SiamHAS tracker.

In the Transformer Fusion Neck part, we propose the hierarchical attention strategy
block and abbreviate it as the HAS block. It consists of the proposed channel context-
aware attention module, which is abbreviated as the CCA module, and the Transformer
multi-level enhancement module, which is abbreviated as the TME module, to realize
the global correlation enhancement before feature fusion. Specifically, the last three-layer
feature blocks output by the backbone are respectively used as the QKV ternary inputs
of the three-level CCA modules, and the optimized three-layer feature blocks with the
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same dimension are the output. The following is a detailed description of the proposed
CCA module.

3.1.1. The Proposed CCA Module: Channel Context-Aware Attention

For typical channel attention, if the dimension of the convolution outputis C x H x W,
the channel attention distribution learned through the network is stored in the
C-dimensional vector, and the weight values of each layer are applied to all positions
of each channel of the feature maps in turn. It could be the traditional way to realize the
channel attention mechanism, but it still cannot make the most of the global context-aware
information for modeling, and the efficacy is still comparatively low. Global context-aware
information is a crucial factor for aerial tracking, as it could help to globally model using
the correlation between consecutive frames to avoid tracking drift caused by temporary
disappearance of the target in some frames or occlusion scenes. We propose a channel
context-aware attention block applied to the fusion section, trying to apply the method of
global contextual attention mechanism to different levels of features and realize the mining
process of different depths of feature information from the dimension of channels. Specif-
ically, we improve the optimization approach of attention feature maps in reference [45]
from the perspective of theoretical analysis and experimental validation to balance the
features at different levels. To adapt to the characteristics of the feature maps in aerial
scenes and balance the effect of the information contained in different levels of feature
maps, we concatenate the attention feature maps’ output with the initial input feature
maps and adjust them with a 1 X 1 convolutional layer as the final output to achieve
better feature utilization in aerial scenes and improve the performance of the tracker in
challenging scenes. The channels containing the target features receive a larger attention
scoring result through global contextual modeling to highlight the information of these
channels and complete the pre-processing of the input data for the next process of Trans-
former multi-level enhancement. The specific implementation process of the proposed
CCA module is displayed in Figure 5.

Structure of Proposed Channel Context-aware Attention

N N=Hxw

f(A)=WaxA transpose
reshape

output

attention feature maps(E)

map(X)

i H

input H
feature maps(A) softmax = J

e N U]

attention c W
i g(A)=LWKxA feature maps(0) ey
p
(o < reshape —
w H concat
N H

reshape

h(A)WYA | ’ ’

Figure 5. The structure design of the proposed CCA module.

Specifically, the input feature maps are reshaped to obtain the new A in a different
shape of C x N, which is then transposed to obtain AT and perform matrix multiplication of
the two obtained feature maps. Then the attention map X in the shape of C x C is obtained
after passing through the softmax layer. Through the process of matrix multiplication of
XT and A in the shape of CxN, the attention scoring process can be applied to different
channels based on different attention scores, and then reshape the results to the original
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shape to obtain attention feature maps O. The attention map involved in the calculation in
this process could be expressed as follows:

X= softmax((AQ)T - AK)
X _ exp(AR-AK) &)
KQ ™ ¥F exp(aQ.ak)

where X represents the attention map, A and AKX represent the features after the processing
of the trainable parameter matrices W® and WX, respectively. xx( represents each element
of the attention map, corresponding to the attention value of each location point. The
output O and A are then fused through a process of channel cascade, and finally, the final
output E is obtained through 1*1 convolution. The operation could be represented as

E = conv(concat(A, O)) (6)

O = conv (AV~X) (7)

where E represents the final output feature maps, A" represents the features after the
processing of the trainable parameter matrix WY, O represents the attention feature maps
after applying the attention map as a weight map to multiply with AV, conv represents
the convolution operation, and concat represents the process of the concatenation. By the
process of concatenation of the original input and the attention feature maps, the final out-
put could contain multi-level information. This is an essential strategy to cope with aerial
scenes such as occlusion or low resolution, because it is extremely demanding to fuse deep
semantic information and shallow spatial information to complete the tracking process.

In summary, the proposed CCA module completes the optimization process of the
source input data in the channel dimension by global modeling of the global context, using
a self-attentive mechanism to obtain the channel correlations between any two different
channels, and updating every channel graph using the strategy of the weighted sum of
all channels.

After the tensor data is optimized by the CCA module, the feature information will be
reduced by adjusting layers to avoid the large number of computational resources required
in the subsequent TME module processing. Specifically, at the adjusting layers part, we
take advantage of the multiple convolutional layers dimension adjustment, and the number
of channels of the three-layer feature blocks after channel cascading is uniformly adjusted
from the original [512, 1024, 2048] channels to [256, 256, 256] channels. This is to decrease
the subsequent amount of parameters, and the dimensionality of the number of channels
of the feature blocks will become 3 x 256. The following is a detailed description of the
proposed TME module.

3.1.2. The Proposed TME Module: Transformer Multi-Level Enhancement

It is generally believed that the ability to effectively utilize the depth advantage of
modern deep feature extraction networks is the key step to enhancing the existing Siamese
trackers, and one of the most important steps is to effectively utilize different levels of
deep features. Among the features extracted by the backbone at different depth levels,
the shallow layer output features retain more concrete spatial information, such as edge,
color, texture, etc., which helps to locate the target frame. The high-level feature maps after
multiple convolutional and pooling layers contain deep semantic information, which can
help the classification network to determine whether each pixel location is foreground or
background. How to effectively utilize the feature information at different levels is a crucial
process to enhance the model’s performance.

In aerial scenarios such as occlusion and motion blur, deep semantic feature infor-
mation is detrimental to distinguishing the targets. In aerial tiny target detection and
low-resolution scenarios, the pixel area of the target object has too few pixels to retain
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enough shallow spatial feature information, causing degradation in tracking performance.
The existing methods often lack global interactions, and it is difficult to effectively exploit
the association advantage of global contextual hierarchical features. To enhance the saliency
of the hierarchical features at different levels to improve the performance of the tracker in
the above aerial scenarios, we propose a TME module based on a hierarchical self-attentive
strategy to cope with this problem.

Specifically, the pooling-based encoder structure is modified as the TME module
in the second core attention in our proposed hierarchical attention strategy. As shown
in Figure 6, the average pooling strategy is used in the Transformer encoder with the
pooling strategy block, which is abbreviated as the TEP block, as a pretreatment strategy
for refining the input data of the K and V parameters. We modify the typical Transformer
encoder structure proposed in reference [48] as the basic architecture of the proposed TEP
module through theoretical analysis and several experimental adjustments. We use two
tandem TEP structures in the conv4 branch and a single TEP structure in the remaining
two branches to achieve a balanced utilization of the features at different levels. Finally,
we integrate the TME module consisting of four TEP modules into the structure design
of the tracker to achieve better tracking performance. To further optimize to obtain a
lighter Transformer-based structure for object tracking tasks, we replace the process of
position coding of the typical Transformer structure with the zero-padding strategy using
the location information of the inputs to ensure the integrity of input information.

. Ik
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- R
= g = ll= I 7x7x256
f— .'-- 1 T oSN
Q||m 1 Q||@ ] = ]
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Figure 6. The schematic of the process of Transformer multi-level enhancement, depthwise separable
intercorrelation, and downsize operation.

The core process of the TEP block is processing the input ternary data, which is
essentially the calculation process of the proposed pooling-based encoder, this could be
mathematically expressed as

TEP(Q, K, V) = Norm(I + MLP(I)) o
I = Norm(Q + MutiHead (Q, Normé&Pooling(K, V))) ®

where QKV represent the ternary inputs, which are query variables, key-value variables,
and value variables of the key-value pairs, respectively. MLP represents a fully connected
feed-forward network, Pooling represents average pooling, and Norm represents the
process of LayerNorm for smoothing the inputs. The following is a detailed description
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of how the proposed TME module is applied in our SiamHAS structure. Specifically, as
shown in Figure 6, after the dimension adjustment, the feature block of 3,4,5 of each layer
is flattened into sequence information using the convolution operation, and they are used
as the inputs of the subsequent Transformer multi-level enhancement module, respectively,
as the QKV ternary input of the three TEP blocks. The results of the TEP block whose
input is conv4 are sent to another TEP block to achieve a balance of deep-level and shallow-
level features through the calculation of double-layer self-attention. The three-branch
TEP-based feature optimization calculation process constitutes the transformer multi-level
enhancement process of our TME module. Taking the process of obtaining the results of
the conv4 feature block Fj as an example, it could be mathematically expressed as

R=TEP(F, Fy, Fy) ©)
F,= TEP(R, R, R)

where the intermediate variable R represents the features processed by the first TEP module
and is used as the ternary input for the second TEP module.

3.1.3. The Similarity Matching Net and Downsize Feature Fusion

The output of the HAS block is the hierarchical fusion features that consist of shallow
spatial information and deep semantic information. Finally, the number of channels and
pixels of the feature maps will be further reduced by the downsizing feature fusion process
after the similarity matching process, which greatly reduces the computational quantity in
the following procedures of the feature processing In the similarity matching sub-network,
the depthwise separable intercorrelation operation is used to calculate the response maps
after each level of intercorrelation through a hierarchical convolution of the corresponding
layers of 3,4,5 of the target template and the search region. The above process can be
described as

R = ¢(X)*¢(Z) (10)

where * represents the depthwise separable intercorrelation operation, and ¢(X) and
¢(Z) represent the hierarchical convolutional inputs corresponding to layers of 3,4,5 of
the search region and template branch, respectively, which is also could be regarded as
the hierarchical three-layer outputs of the TME blocks in the search region and template
branch. The number of channels of the response map output is 256 x 3, which is still
too large if it is directly used as the input of the subsequent classification and regression
network. Therefore, we utilize multiple convolutional layers to decrease the dimensionality
and adjust the dimension of the response maps. Specifically, the three blocks at different
levels after the depthwise separable intercorrelation are sent to the downsizing block,
which consists of multiple convolutional layers, to obtain 7 X 7 x 256 tensor for the
template patch branch and 31 x 31 x 256 for the search region branch as the inputs of the
following prediction heads. This operation decreases the number of model parameters and
improves the speed of model derivation, ensuring a balance between model effectiveness
and computational efficiency to the greatest extent. The above process can be represented
by the following Figure 6.

3.1.4. The Prediction Heads

The prediction heads consist of three branches, including the CLS head, CEN head,
and REG head shown in Figure 4, where the CLS head represents the classification network,
the REG head represents the regression network, and the CEN head represents the centrality
network. The role of the CLS head is to determine the attribute of every pixel position using
the binary attributes of the target and background, to predict the attribute of the feature
map location. The CEN head could obtain the prediction box’s centroid through multiple
convolutional layers. The REG head could obtain the prediction box’s width and height
to generate the tracking banding box through the continuous regression calculation of the
network. Finally, the foreground and background are distinguished by the classification
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and regression network to obtain the target prediction frame. In the prediction head
network, the response map generated after the intercorrelation operation can be regarded
as a linear mapping of the input image in the space under the weight of the target template,
and each position of the response map could be mapped to the corresponding position in
the original image space of the search region, and the crucial process of mapping is the
size of the receptive field of the linear transformation. Different from the algorithm based
on region proposal network that uses fixed multi-scale frames for similarity matching to
obtain multiple response maps, and then maps its maximum response area back to the
corresponding search region position to achieve the prediction frame centroid and output
the prediction frame by size regression, in this paper, we adopt the anchor-free mechanism
to directly classify and regress the candidate frames at each position without setting a priori
information to initialize the anchor frame size. Thus, we could break through the limitation
of the scale and receptive field of fixed frames, minimize the limitation and interference
of the set a priori information to the classification and regression network, avoid the
introduction of multi-layer hyperparameter information which is difficult to optimally
adjust, and ensure the computational efficiency of the classification and regression network.

3.1.5. The Loss Function

For all the heads introduced above, they receive an input of tensor in the shape of
25 x 25 x 256 after the process of similarity matching. For the final output, the classifica-
tion head generates a classification feature map F,j; € RIXWX2 and the regression head
generates a regression feature map Fye, € RI*W*4 where W represents the width of the
output feature map and H represents the height. In our case, they would be the same as the
shape of the input tensor which is 25.

For the regression head, it outputs a feature map of size 25 x 25 with 4 channels,
which records the distance from each corresponding location point to the 4 sides of the
bounding box. This is noted as (i, j) which is a 4D vector (I,t,7,b), and could be calculated
as follows:

tO(irj) :l:x_xO/tl(irj) =t=Y—Yo (11)
tr(i,j)=r=x1—x,t3(i,j) =b=y1 —y
where (x,y) represents the coordinates of the location of the search region corresponding
to the point (i, ), and (xg,y0) and (x1,y1) represent the coordinates of the left-top and
right-bottom corners of ground truth. The regression loss could be calculated by the

following formula:
1
Lieg = =3 ;) x IOU[T; ), ti )] (12)
i i 7y Y
where T(; ;y represents the ground truth bounding box. IOU represents the common cross-
merge ratio loss function, which is used to calculate the IOU loss between T; ;) and ¢; ;),
and I(i,j) is a judgment function, the value of it would be 1 when the sample point lies
within the ground truth box, otherwise, it is 0.
For the classification head, it outputs a feature map of size 25 x 25 with 2 channels,
which records the information of foreground and background at each point (i, j) in a 2D
vector. The classification loss could be calculated using the method of cross-entropy loss:

Les = 0.5 x BCEL0sS (8pos, I) + 0.5 x BCEL0sS (8peq, I ) (13)

where 6,05 and dy,.¢ represent the foreground and background scores stored in the 2D vector
for each corresponding position in the search region. I represents the ground truth of
the classification label at the location, and BCELoss represents the binary cross-entropy
loss function.
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For the centrality head, it outputs a feature map of size 25 x 25 with 1 channel called
the centrality feature map F,, € RHXWX1 \which records the centrality score C(i, ) of the
corresponding position. The centrality score could be calculated by the formula:

Ci,j) = I x \/min(l,t) " min(r, b) (14)

max(l,t) © max(r,b)

where [ is a judgment function, the value of it would be 1 when the sample point is in the
foreground and lies within the ground truth box, otherwise, it is 0. The centrality loss is

Lcen -

L Clij) X og (i) + (1= C(i.)) x log(1 ~ RG.j)) (19
(L) *1=1

where C(i, ) represents the predicted centrality score for a specific location and R(i, j)
represents the actual centrality score for this position.
In summary, the overall loss function of the algorithm is as follows:

L = L¢js + a1 Lcen + a2 Lyreg (16)

where L, Leen, and Lyg represent the classification loss, centrality loss, and regression
loss, respectively. a1 and a; are used as the weight hyperparameters to adjust the network
and are set to 1 and 3, respectively, during the training process based on experimental and
experiential evidence.

4. Experiments and Discussion
4.1. Experiments Settings
4.1.1. Experiments Environment and Parameter Settings

The experimental environment of the algorithms in the paper is set up as follows: the
CUDA version is 11.8, and the Python 3.7 + pytorch 1.13 programming framework is used
to train and verify the algorithm performance. The hardware platform configuration used
is AMD Ryzen5 5600 @4.40 GHz processor for CPU and Nvidia GeForce RTX3080 for GPU,
the total memory capacity is 16GB.

The parameters of the training process are initialized as follows: the tracker is trained
by applying the SGD optimizer with random batch gradient descent, the batch size is
set to 12, and the training result of the ResNet-50 network on ImageNet [49], a large
computer vision image dataset, is used as the pre-trained weight model for the backbone
network. The following strategy is used for learning rate setting: in the process, the
learning rate modification strategy is set to weight decay, and the first 5 iterative processes
are trained using a warm-up [50] strategy, where we initialize the learning rate at 0.001 and
subsequently increase by 0.001 for each iteration. The model is trained with the strategy of
a gradient descent of the learning rate after the warm-up. A total of 20 rounds of iterative
processes are performed and the overall training time of the network is 65 h.

4.1.2. Datasets and Pretreatment

We train our SiamHAS network using the COCO [51], GOT-10K [52], and VID datasets
as training sets with a sample size of 400,000 frames per round. To evaluate the performance
in generalization and robustness of our algorithm from multiple perspectives, we use
UAV123 [53] and OTB100 [54] datasets as test sets. A total of 100 video sequences containing
various challenging scenes are available in the OTB100 dataset, and the UAV123 has
123 video sequences of aerial scenes, including multiple challenge categories such as scale
transformation, occlusion, and viewpoint transformation in aerial scenes; it is the most
frequently used test dataset for target tracking in aerial scenes.

We use the method of padding and cropping normalization to achieve scale-normalized
preprocessing for images of different sizes in the datasets. The original images with a res-
olution less than 255 x 255 are filled with edge pixels to be the desired input resolution
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and used as the search region branch input of the network. Meanwhile, the ground truth
information that is read from the Jason file is used as a basis to cut out the 127 x 127
area that contains most of the target’s information in the original picture, and then it is
used as the template branch input. The purpose is to normalize the input and improve
the training efficiency. Since the network structure will transform the input image into
a smaller resolution 256 x 256 feature map, the normalized dataset will undoubtedly
retain more target feature information and enhance the training speed of the algorithm
and the effectiveness of the model. The following Figure 7 shows the detailed process of
pre-processing described in the previous section.

Datasets Pretreatment: Padding & Cropping Normalization

(a) Original Images (b) Search Reigon (c) Template Patch
RGB-3 Channels X-255x255x3 Z-127x27x3

Figure 7. The process of datasets pretreatment: padding and cropping normalization. The (a) original
images are adjusted through the padding process to be 255 x 255 as the inputs of the (b) search
region branch X, and then are cropped to 127 x 127 as the inputs of the (c) template patch Z branch
using the ground truth information.

4.2. Evaluation Metrics

The frequently used evaluation method for target tracking which is called one-pass
evaluation (OPE) is generally used to initialize the first frame with the information in the
ground truth. Then, the tracker could obtain the average accuracy and precision in the
following tracking process. The common evaluation parameters for target tracking mainly
include center position error and overlapping area ratio. The details will be described in
the following subsections. Here Figure 8 shows a visual interpretation of the two kinds of
evaluation metrics introduced above.

R RY
(%q.%3)
B Ret Rt
RINRI
Ty
(32.¥2)
(a) center position error (b) overlapping area ratio

Figure 8. Visual presentation of (a) center position error and (b) overlapping area ratio. The centroid
error between the target template and the search area prediction output and the overlapping area
ratio of the two areas are used as the core evaluation calculation indicators.
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4.2.1. Precision

Precision is a common evaluation metric for single target tracking tasks. Precision is
defined as the percentage of the frames where the Euclidean distance between the centroid
of the target location generated by the tracker and the centroid of the manually labeled
target is less than a set threshold. Usually, the threshold is set to 20 pixels, and the Euclidean
distance within 20 pixels is regarded as the criterion for successful tracking. Specifically,
the Euclidean distance calculation method between them is

p= \/(xz —x1)’ 4 (12— )’ (17)

Different thresholds are chosen as the criteria for judging the accuracy requirements,
so different percentages of the frames that meet the thresholds can be obtained, and a
precision curve can be drawn.

4.2.2. Success Rate

The success rate is determined by calculating the intersection ratio of the pixels in the
region of the prediction box and the ground truth box, as shown in Figure 9 below. This is
the ratio of the intersection area of the red box and the green box in the figure below to the
total area surrounded by the two boxes.

Figure 9. Visual presentation of the process of computing overlapping area ratio.
Specifically, the overlap score OS is calculated as:

_ Jxny
lx Uyl

oS (18)

The bounding box generated by the tracker is recorded as x, the ground truth box is
recorded as y, and |- | indicates the number of pixels in the region. When the OS of a frame
is above the set threshold, it could be regarded as successful tracking, and the success rate
is calculated by the percentage of the total successful frames to all the frames. The value
range of OS is 0~1, so a success rate evaluation curve could be drawn.

4.3. Performance Comparison
4.3.1. UAV123 Benchmark

The UAV123 benchmark is composed of 123 image sequences filmed by an aerial vehi-
cle. It consists of various challenging characteristics, including tiny targets, low resolution,
occlusion, and so on. Success and precision plots are the two kinds of evaluation methods
for the trackers. For precision plots, the threshold is set to less than 20 pixels to judge if the
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specific frame meets the requirement. Precision refers to the percentage of frames whose
CLE meets the requirements in the total frames. The formulas are as follows.

CLE = \/(xpr — xgt)2 + (Ypr — ygt)z
1,CLE < 20
= ’ l
f { 0,CLE > 20 19)
Precision = %

In the formulas, (Xpr, Ypr) and (Xgt, ygt) refer to the center position of the prediction
box and ground truth, respectively. For success rate, the overlap ratio S threshold is set to
larger than 0.5 to judge if the specific frame meets the requirement and can be regarded
as successful tracking. The success rate is calculated by the percentage of the number of
frames whose overlap ratio S meets the requirements in the total frames. The overlap
represents the IOU of the prediction box and the ground truth of each frame. The final
result takes the average value of all the frames. The formulas are as follows.

_ |Rp,ngt|
S = IOU*“{WURS“|

f _ 1,I0U > 0.5 (20)
0,I0U < 0.5
sion — Zie1f
Precision = ==~
The success plots and precision plots of the one-pass evaluation on the trackers are
shown in Table 1. Our proposed tracker SiamHAS is observed to obtain a success rate
of 0.627 and a precision of 0.820. Compared with other Siamese series trackers such as
SiamBAN, which also has a similar overall structure design, our SiamHAS obtains a large
improvement of 2.3% and 2.5% in success rate and precision.

Table 1. UAV123 benchmark comparison table, the table shows the success rate and precision results
of 9 trackers including ours. The proposed SiamHAS performs favorably against state-of-the-art
trackers. The best method is shown in red, and the second is shown in green.

Tracker Ours CGACD SiamCAR SiamRPN++SiamBAN HiFT SiamDW  SiamRPN SiamFC
Success 0.627 0.615 0.611 0.604 0.589 0.582 0.536 0.478
Precision 0.820 0.804 0.804 0.795 0.787 0.776 0.772 0.697

4.3.2. Attribute-Based Discussion on UAV123

To illustrate the performance improvement of the proposed method under challenging
scenarios such as low resolution, occlusion, and scale variation, we conduct an attribute-
based experiment on UAV123. The results of the attribute-based evaluation on UAV123
are shown in Figure 10, demonstrating that the proposed SiamHAS achieves the best
evaluation results in all the attribute-based challenges. For success rate, the proposed
SiamHAS obtains the best results, including full occlusion (0.416), low resolution (0.489),
partial occlusion (0.553), and scale variation (0.612). In the standardized process of the one-
pass evaluation for target tracking algorithms, for the success plots, the threshold of overlap
ratio is set to 50 percent to judge whether a particular frame is tracked successfully or not,
and the percentage of the frames judged to be successfully tracked to the total number
of frames is defined as the success rate, which is recorded in the box on the right side
corresponding to the different trackers, and the color ranking is constant and represents the
success rate ranking of different trackers. Similarly, for the precision plots, the threshold
of the location error is set to 20 pixels to judge whether a particular frame meets the
requirements of expected precision or not. For the precision plot, the proposed SiamHAS
also obtains the best performance among all the comparison attribute challenges mentioned
above. Compared with the other Siamese series trackers such as SiamCAR, the proposed
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SiamHAS obtains significant performance improvement in full occlusion and low resolution
challenges with 1.9% and 2.5% in precision, and 2.2% and 2.3% in success rate. Furthermore,
it is worth noting that further attribute-based experiments show that the proposed method
seems to show a degradation in the performance of background clutter scenarios. This
might be caused by the fact that the proposed hierarchical attention mechanism does not
balance well the effect of background noise while improving the saliency of the target.
To sum up, the attribute-based discussion demonstrates that the proposed SiamHAS
displays significant improvement in the performance of challenging aerial scenes and how
to overcome the effect of background clutter will be a key consideration in our future work.
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Figure 10. Attribute-based experiment results corresponding to 5 scenes on UAV123, including
(a) full occlusion; (b) low resolution; (c) partial occlusion; (d) scaled variation; (e) background clutter.

4.3.3. Case Visual Comparison on UAV123

To intuitively show the improvement of our proposed tracker SiamHAS in coping with
challenging scenes such as low resolution, occlusion, and scale variation, we choose six
cases from the UAV123 dataset, that consist of the above issues. Results are then compared
to other Siamese series trackers and several state-of-the-art trackers, and the case visual
comparison is shown in Figure 11.
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Figure 11. Case study of the proposed SiamHAS and several state-of-the-art trackers on the UAV123
dataset. From the top to bottom, the pictures show the visual case experiment results on the image
sequences of (a) Birdl, (b) Car9, (c) Carl4, (d) Groupl, (e) Personll, and (f) Uavl. Red—Ours,
Green—SiamCAR, Blue—SiamRPN++, Black—SiamRPN, Pink—SiamFC.

4.3.4. UAV20L Benchmark

UAV20L is a dataset for aerial image and video analysis, which contains 20 long-time
sequences of UAV images in different urban scenes. These image sequences cover a wide
range of scenes, including city streets, parks, buildings, and natural landscapes, and are
widely used as a benchmark to test the tracker’s long-time tracking performance. To
further verify the robustness of the proposed SiamHAS in aerial scenarios, especially the
performance when coping with long-time target tracking, we conducted experiments on
the UAV20L benchmark to more comprehensively illustrate the performance improvement
of the designed tracker in coping with aerial scenarios, and to intuitively represent the
performance improvement of the tracker in optimizing the design for aerial scenarios.
The success rate and precision of the one-pass evaluation on the trackers are shown in
Table 2. Our proposed tracker SiamHAS is observed to obtain a success rate of 0.573 and a
precision of 0.745. Compared with the other state-of-the-art Siamese series trackers such
as SiamAPN++ [55], our SiamHAS obtains an improvement of 1.3% and 0.9% in success
rate and precision. From the experimental results, we could draw the conclusion that the
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proposed SiamHAS tracker outperforms other state-of-the-art trackers in aerial long-term
target tracking scenarios. Additionally, we have comprehensively evaluated the perfor-
mance of the proposed tracker in aerial scenarios after the UAV20L benchmark experiment,
which strongly supports the effectiveness of the innovative design and the improvement
methods of the proposed tracker in adapting to the characteristics of aerial scenarios.

Table 2. UAV20L benchmark comparison table, the table shows the success rate and precision results
of 8 trackers including ours. The proposed SiamHAS performs favorably against state-of-the-art
trackers. The best method is shown in red, and the second is shown in green.

Tracker Ours SiamAPN++ HiFT SiamAPN SiamFC++ SiamRPN DaSiamRPN  SiamFC
Success 0.573 0.553 0.539 0.533 0.528 0.547 0.423
Precision 0.745 0.736 0.721 0.695 0.696 0.676 0.629

4.4. Quantitative Analysis

To validate the generalization ability of our SiamHAS in non-aerial scenarios for other
types of challenges, we choose four typical scenarios in the OTB100 dataset including
(a) fast motion, (b) motion blur, (c) occlusion, and (d) out of view for the attribute-based
comparison experiments with some other state-of-the-art algorithms. Figure 12 displays
the attribute-based evaluation and demonstrates that the proposed SiamHAS achieves the
best performance compared with the other trackers that participate in the comparison on
the attributes-based challenges. SiamHAS greatly improves the performance, especially in
the two key scenes of occlusion and out of view.
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Figure 12. Experimental results corresponding to 4 typical scenarios on OTB100, including (a) fast
motion; (b) motion blur; (¢) occlusion; (d) out of view.

4.5. Discussion and Ablation Studies
4.5.1. Case Discussion on OTB100

To further validate the generalization capability of our tracker SiamHAS and intuitively
demonstrate the performance improvement in coping with challenging scenarios such as
occlusion, motion blur, and out of view, we choose four cases from the OTB100 dataset. The
results are compared to several state-of-the-art trackers, such as SiamCAR, SiamRPN++,
SiamRPN, and SiamFC, the visual comparison pictures are shown in Figure 13.

Figure 13. Cont.
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Figure 13. Case study on OTB100 for our SiamHAS and several state-of-the-art trackers. From the top
to bottom, the pictures show the visual case experiment results on the image sequences of (a) Bird1,
(b) lemming, (c¢) Coupon, and (d) human4. Red—Ours, Green—SiamCAR, Blue—SiamRPN++,
Black—SiamRPN, and Pink—SiamFC.

4.5.2. Heat Map Experiment

To more intuitively show the comparison between the other state-of-the-art Siamese
series trackers” and our SiamHAS'’ focusing region and show the performance improvement
of our tracker in coping with complex scenes such as similar object interference and
motion blur, we perform a comparison-based heat map analysis with the recent and related
approach SiamCAR under equal conditions. Specifically, we choose five cases in the OTB100
dataset, and the areas that draw the attention of the trackers are shown in Figure 14.

4.5.3. Modules Ablation Experiment

To provide a deeper insight into how each of the proposed modules contributes to the
overall network performance improvement, we carry out an ablation study on multiple
benchmarks. The intention of this is to show how our proposed modules contribute to the
performance of the tracker, and how much performance improvement every module could
bring to the tracker. As shown in Table 3, we use the symbol 4/ to indicate the specific block
has been added to the tracker architecture; x represents the opposite.

Table 3. Comprehensive evaluation results with or without the proposed blocks on multiple datasets.
Success-U and PRE-U represent the success rate and precision on the UAV123 benchmark; Success-O
and PRE-O represent the success rate and precision on the OTB100 benchmark. FPS represents the
selected results on the GOT-10K benchmark. The best method is shown in red, and the second is
shown in green.

NO. CCA TME Success-U PRE-U Success-O PRE-O FPS
1 X X 0.599 0.773 0.676 0.879 51
2 Vv X 0.601 0.789 0.681 0.881 49
3 X v 0.615 0.804 0.686 0.887 47
4 4 Vv 0.627 0.820 0.693 0.896 45
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Figure 14. The heat map experiment visual results correspond to 5 scenes, including (a) blot subset;
(b) box subset; (c) cardark subset; (d) crowds subset; (e) dog subset.

5. Conclusions

In our present article, we propose a novel Siamese tracker SiamHAS to improve the
shortcomings of tracking drift and tracking failure in challenging aerial scenarios such as oc-
clusion, aspect ratio change, low resolution, and scale variation. The proposed HAS module
adopts a hierarchical attention strategy, which can take advantage of semantic and spatial
features to break through the limitations of the receptive field of traditional convolutional
neural networks and achieve multi-layer feature enhancement. In the channel attention part,
we achieve global feature enhancement in the channel dimension, and through the channel
context-aware process, we make the model adaptively distribute the attention scores of each
channel based on global modeling. Therefore, there is an information exchange between
different channels, which makes each channel contain more global contextual information
and achieves a more effective feature optimization. In addition, self-attention enhancement
of deep information is achieved by multiple parallel multi-headed attention networks,
which enhances the model’s capability to distinguish foreground and background while
balancing deep and shallow feature information. Additionally, we have performed many
analyses and experiments on UAV123, UAV20L, and OTB100 datasets, experiments based
on attribute challenges, case discussion, visualization, ablation experiments, etc. The exper-
iments show that SiamHAS obtains significant capability improvement in all challenges
compared with several state-of-the-art Siamese trackers; it also shows some generaliza-
tion ability in the dataset of non-aerial scenes. Compared with the Siamese series tracker
SiamCAR, it shows significant performance improvement for aerial scenarios, which also
verifies that the proposed method can effectively cope with challenging scenarios such as
occlusion, aspect ratio change, low resolution, etc., without losing much performance in
real-time while ensuring the accuracy and robustness of the algorithm. In the case of using
a deeper feature extraction network, the algorithm in this paper maintains a frame rate
above 45 FPS, which meets the requirement of real-time tracking.
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