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Abstract: Herein, a scalable electrodeposition strategy is proposed to achieve hierarchical CuO/nickel–
cobalt–sulfide (NCS) electrodes using two-step potentiostatic deposition followed by high-temperature
calcination. The introduction of CuO provides support for the further deposition of NSC to ensure
a high load of active electrode materials, thus generating more abundant active electrochemical
sites. Meanwhile, dense deposited NSC nanosheets are connected to each other to form many cham-
bers. Such a hierarchical electrode prompts a smooth and orderly transmission channel for electron
transport, and reserves space for possible volume expansion during the electrochemical test process.
As a result, the CuO/NCS electrode exhibits superior specific capacitance (Cs) of 4.26 F cm−2 at
20 mA cm−2 and remarkable coulombic efficiency of 96.37%. Furthermore, the cycle stability of the
CuO/NCS electrode remains at 83.05% within 5000 cycles. The multistep electrodeposition strategy
provides a basis and reference for the rational design of hierarchical electrodes to be applied in the
field of energy storage.

Keywords: electrode material; transition metal sulfides; nanosheet; potentiostatic deposition

1. Introduction

Electrode materials, as the core components of energy storage devices, have contin-
uously received extensive attention from researchers [1]. Among the various types of
electrode materials available, transition metal sulfides, particularly Ni/Co sulfides and
including Ni-Co bimetallic sulfides, have received tremendous attention for their out-
standing merits of high theoretical specific capacitance (Cs), multiple oxidation states, and
the lower electronegativity of sulfur compared to oxide counterparts [2–4]. For example,
Meng et al. reported Ni-Co-S (NCS) nanoarchitecture on nickel foam via the combination
of hydrothermal and sulfurization processes. This in situ growth accelerated the rapid
transport of ions/electrons, and the porosity of NCS nanosheets allowed for fuller contact
with the electrolyte; thus, the optimized electrode Cs reached 6.3 F cm−2 at 1 mA cm−2 [5].
In addition, the researchers further improved the Cs and cycling performance of NCS
electrodes by exploring various synthetic pathways to regulate the quality of the growing
active materials [6–9]. Among them, electrodeposition has proven to be an effective strategy
which can adjust the amount of deposition layer by changing the electrolyte concentra-
tion, deposition time, and other parameters to avoid the structural collapse caused by
excessive deposition and shedding during the charge–discharge process. For instance,
Wen et al. developed hierarchical NCS electrodes by electrodeposition. The effects of metal
salt solution concentration and deposition time on load quality were investigated in detail.
The Cs attenuation of the optimized electrode for 3000 cycles was only 5% at a current
density of 10 A g−1 [10]. At the same time, the researchers also explored the construction
of composite electrodes based on NCS to fully take advantage of their synergistic effect.
For example, Wang et al. designed the NCS/carbon nanotube composite electrode, which
achieved an excellent Cs of 8.62 F cm−2 at 5 mA cm−2. The selection of carbon nanotube
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components stems from their high conductivity and provides support for the deposition of
NCS, thus forming more abundant electrochemically active sites [11]. As another example,
Ma et al. adopted a similar strategy to conceive hierarchical CoMoS4@NCS electrodes on
carbon cloth, and systematically evaluated the influence of NCS electrodeposition quality
on overall performance. The optimized CoMoS4@NCS electrode exhibited ultra-high Cs
and desirable cycling stability [12]. Therefore, electrodeposition is reasonably considered a
preferred approach to achieve hierarchical stepwise growth and precise regulation of the
amount of deposition layers. In addition, it also reflects the advantages of short experiment
cycles, high repeatability, and convenient operation [13].

Inspired by this, in this paper, we designed and constructed hierarchical CuO/NCS
electrodes on copper foam (CF) by a facile two-step potentiostatic electrodeposition and
intermediate calcination process. The resulting NCS nanosheets were tightly wrapped
around bent CuO nanorods. This hierarchical rational design not only created abundant
electrochemical active sites, but also facilitated ion/electron transmission and accelerated
efficient pseudocapacitance reactions, thus exhibiting excellent electrochemical activity.

2. Experimental Section
2.1. Materials

CF (1 cm × 1.5 cm) was cut in advance; treated with ethanol, dilute hydrochloric acid,
and water to remove surface impurities; and, finally, vacuum-dried.

2.2. Potentiostatic Deposition of CuO/NCS on CF

A three-electrode system consisting of CF (working electrode), Pt foil (counter elec-
trode), and Hg/HgO (reference electrode) performed the operation in 2 M NaOH. After
300 s of potentiostatic deposition (−0.1 V), orange-red CF was etched and oxidized to
produce blue-green Cu(OH)2, and then calcined at 200 ◦C for 2 h to form black CuO.

A three-electrode system consisting of CuO was obtained in the previous step as the
working electrode, with Pt foil and SCE as the counter electrode and reference electrode,
respectively. The electrolyte contained 0.05 M NiCl2·6H2O, 0.05 M Co(NO3)2·6H2O, and
0.5 M CH4N2S. After 300 s of potentiostatic deposition (−1.1 V), the CuO/NCS composite
electrode was thus obtained. Additionally, the deposition time of the NCS layer was also
set at 30 s, 150 s, and 450 s for comparison.

2.3. Characterization

The morphology and structure of the products were characterized, including X-ray
diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spec-
troscopy (XPS). At the same time, an electrochemical workstation (760 E) was used to
test the cyclic voltammetry (CV), galvanostatic charge–discharge (GCD), electrochem-
ical impedance spectroscopy (EIS), and cycle stability of the CuO/NCS electrode. A
three-electrode system consisting of CuO/NCS (working electrode), Pt foil (counter elec-
trode), and Ag/AgCl (reference electrode) was tested in 2 M NaOH.

3. Results

Figure 1 depicts the design process of the CuO/NCS composite electrode. First, CF
with a typical 3D structure was selected as the electrode substrate, as it has good conduc-
tivity and can provide a large specific surface area for the deposition of active electrode
materials. Enlarged images confirmed that the surface of the CF filament was relatively
flat (Figure S1). CF was oxidized and released Cu2+, which was captured by OH− to form
blue-green Cu(OH)2 nanorod arrays by potentiostatic deposition technology (Step 1), and
then calcined into black, slightly bent CuO (Step 2). CF plays a dual role as an electrode
substrate and copper source. After this, potentiostatic deposition was performed again
to place the coating of the NCS layer onto the surface of CuO. The final formation of the
CuO/NCS electrode was achieved (Step 3). Thiourea provided the sulfur source for NCS,
and its hydrolysis reaction was determined by Equation (1); it could also be explained
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by the fact that thiourea directly generates S2− in an alkaline medium (Equation (2)) [10].
Furthermore, the synthesis reaction of metal sulfides (MS, M = Ni/Co) could be expressed
as Equation (3):

(NH2)2CS + H2O→ H2S + CO2 + 2NH3 (1)

(NH2)2CS + 2OH− → H2NCN + S2− + 2H2O (2)

M2+ + S2− → MS (3)
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That is, in the initial stage of electrodeposition, the S2− was generated on the surface
of the CuO electrode by hydrolysis of thiourea, which was captured by the Ni2+/Co2+ to
form NCS nuclei, and then gradually grew into NCS nanosheets due to their preferred
growth surface. The two-step potentiostatic deposition curves are shown in Figure 2.
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Furthermore, the composition and structure of the CuO/NCS electrode were analyzed
in detail. Figure 3a records the XRD pattern of Cu(OH)2, CuO, and CuO/NCS. Among
them, the two strong peaks marked with rhombuses came from CF substrate (JCPDS 01-
1241). The red line represents CuO [JCPDS 05-0661], which was oxidized from Cu(OH)2
(JCPDS 13-0420). However, the diffraction peaks of CuO did not change significantly after
the deposition of the NCS layer due to the strong contrast of the CF substrate [12]. As a
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result, the diffraction peaks were locally amplified as the insertions, and the diffraction
peaks marked with stars came from NCS (JCPDS no. 43-1477). In addition, the composition
of Cu, Ni, Co, O, and S elements in CuO/NCS was verified by XPS spectra. Figure 3b
shows the Cu 2p spectrum, deconvoluted into two prominent peaks at 954.50 and 934.60 eV,
corresponding to Cu 2p1/2 and Cu 2p3/2, and the two sharp peaks at 952.45 and 932.55 eV
originated from the CF substrate [14,15]. The other three peaks at 963.03, 944.80, and
941.90 eV belonged to satellite peaks. The Ni 2p spectrum is exhibited in Figure 3c. A
pair of spin-orbit doublets, Ni 2p1/2 and Ni 2p3/2, at 873.85 and 856.23 eV belonged to
Ni2+, and their corresponding satellite peaks appeared at 880.50 and 861.80 eV, which was
consistent with previous work [16,17]. As illustrated in Figure 3d, the deconvolution of
the Co 2p profile manifested two sets of peaks. Among them, the two peaks at 798.00 and
796.50 eV corresponded to Co2p1/2, while 782.60 and 781.10 eV corresponded to Co2p3/2,
indicating the coexistence of Co2+ and Co3+ [12,18]. Additionally, the other two peaks at
803.05 and 786.85 eV were assigned to satellite peaks. Figure 3e shows the O 1s spectrum;
three peaks, located at 532.20, 531.40, and 530.70 eV, were ascribed to H2O, OH−, and
CuO [19]. From the S 2p spectrum in Figure 3f, these can be resolved into two S species.
The peaks at 163.50 and 162.07 eV, corresponding to S 2p1/2 and S 2p3/2, could be ascribed
to S2− [4,11], while the two weak peaks at 169.20 and 167.40 eV corresponded to S-O 2p1/2
and S-O 2p1/2, respectively [20,21]. Oxygen came from OH−, produced by the hydrolysis
of thiourea, which was consistent with previous reports [10].
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Figure 4 depicts SEM images of Cu(OH)2 and CuO, obtained by calcination at different
magnifications. As shown in Figure 4a, the surface of CF was covered by a uniform and
dense Cu(OH)2 layer. The corresponding magnified images confirmed that these Cu(OH)2
had straight, rod-like structures and smooth surfaces circa 115 nm in diameter (Figure 4b,c).
The CuO produced by calcining Cu(OH)2 nanorods at 200 ◦C still retained the 3D structure
of CF (Figure 4d), but these nanorods became bent due to water loss, and the diameters of
the nanorods did not change (Figure 4e,f).
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Figure 4. SEM images of (a–c) Cu(OH)2 and (d–f) CuO.

Figure 5 reveals the SEM images of CuO/NCS at different magnifications. As shown
in Figure 5a, the overall distribution remained uniform and orderly, except for fine cracks
on the sample’s surface. Compared to bent CuO nanorods, the CuO/NCS rod-like structure
became relatively robust and the orderliness significantly improved (Figure 5b). That is
because the NCS layer was uniformly deposited on the surface of CuO nanorods, which
made the rod-like structure more compact and increases the diameter to circa 430 nm
(Figure 5c). After further amplification, it could be seen that what were tightly wrapped
around the surface of CuO nanorods were NCS nanosheets with a thickness of circa 6 nm,
and these curved nanosheets were closely interwoven with each other to form many
chambers (Figure 5d).
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The electrochemical properties of the products were tested and analyzed. Figure 6a
shows the CV curves of the CuO/NCS, NCS, and CuO electrodes at a scan rate of 10 mV s−1.
We followed the principle that the larger the area of the CV curve was, the larger the Cs
would be [10,22]. The CuO/NCS electrode had the largest Cs of the three electrodes.
This trend is also illustrated in Figure 6b. When the discharge current density was set to
20 mA cm−2, the CuO/NCS electrode exhibited the longest discharge time compared to the
NCS and CuO electrodes, and, thus, has the largest Cs [4]. The corresponding relationship
between the current density and the Cs of the three electrodes is shown in Figure 6c. The
significantly enhanced energy storage characteristics of the CuO/NCS electrode were
attributed to the following pseudocapacitance reactions [12,17,23]:

NiS + OH− ↔ NiSOH + e− (4)

CoS + OH− ↔ CoSOH + e− (5)

CoSOH + OH− ↔ CoSO + H2O + e− (6)
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We also regulated the deposition time of the NCS layer. At the initial deposition
stage (30 s), the curved, rod-like CuO had little change, but the surfaces of the nanorods
began to become rough (Figure 7a,b). When the NCS deposition time was extended to
150 s, as shown in Figure 7c, these nanorods gradually became thick and distinct due to
being tightly wrapped by dense, wrinkled, growing NCS nanosheets (Figure 7d). When
deposition was carried out for 300 s, the sizes of these NCS nanosheets gradually increased
and became denser, as previously described in Figure 5. Continuous excessive deposition
(450 s) resulted in the disordered accumulation of a large number of NCS nanosheets, and
the rod-like structure of CuO was almost submerged (Figure 7e,f).
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Based on this, we systematically compared and analyzed the electrochemical per-
formance of the CuO/NCS electrodes with different NCS deposition times (S-30, S-150,
S-300, and S-450). Figure 8a records the CV curves of the four electrodes at a scan rate of
10 mV s−1. At the initial NCS deposition stage, the energy storage capacity of the electrodes
gradually increased with the deposited NCS until the area covered by CV curves at S-300
and S-450 was almost the same. The GCD curves of the four electrodes also reflect the
same trend (discharge current density of 20 mA cm−2), and the discharge times of S-300
and S-450 were almost the same (Figure 8b). For a more accurate comparison, the specific
Cs values of the four electrodes at different discharge current densities were calculated
and listed in Figure 8c. It should be noted that at a current density of 20 mA cm−2, the
Cs of S-300 was 4.26 F cm−2 and that of S-450 was 4.25 F cm−2. Therefore, it was obvious
that the order of the four electrodes in terms of energy storage capacity was S-300 > S-450
> S-150 > S-30. Moreover, S-300 maintained 69.41% of the original Cs when the current
density increased from 20 mA cm−2 to 70 mA cm−2, reflecting the best rate capability
(Figure 8d). At the same time, according to the table data (charge and discharge time;
Cs of four electrodes at a current density of 20 mA cm−2) on the left in Figure 8e, the
coulombic efficiency of S-300 reached as high as 96.37%, which is still the maximum of the
four electrodes. In addition, the average RESR data of the four electrodes were compared.
The voltage drop data of the four electrodes were substituted into the formula embedded
in Figure 8f for calculation, and the RESR of S-300 was 1.29 Ω cm−2, the lowest point in the
line graph. Therefore, in our experimental system, CuO provided skeleton support and
the Cs of the CuO/NCS electrode gradually increased with the deposited NCS. However,
excessive deposition of NCS inevitably led to disordered aggregation and accumulation of
the nanosheet structures, which destroyed the supporting role of CuO and was capable of
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causing collapse and even shedding of the hierarchical structure during the electrochemical
test [24]. Therefore, it is necessary to effectively control the deposition time of NCS to
give full play to the supporting role of CuO, and, thus, to form CuO/NCS with optimized
characteristics. Based on the comparison and analysis of the above data, S-300 was selected
for further research.
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Figure 9a shows the CV curve of the CuO/NCS electrode (S-300). As the scan rate
increased, the redox peak showed a gradually enhanced current response, while the cor-
responding Cs value gradually decreased due to the lack of a sufficient redox reaction
between OH− and the electrochemically active site inside the electrode at a relatively large
scan rate [22,25]. Figure 9b displays the GCD curve of the CuO/NCS electrode at different
discharge current densities. The discharge time of the electrode decreased gradually with
the increase in current density, and then the Cs decreased gradually. According to the
formula provided in Supplementary Materials [11], when the current density was 20, 30,
40, 50, 60, and 70 mA cm−2, the corresponding Cs were 4.26, 4.00, 3.80, 3.53, 3.25, and
2.96 F cm−2, respectively. The specific correspondences are shown in Figure 9c. The volt-
age drop data in Figure 9d were described in the previous paragraph. The EIS spectra
of the CuO/NCS and NCS electrodes are shown in Figure S2. The Nyquist plots were
measured in a frequency ranging of 0.01 Hz–100 kHz. The equivalent serious resistance
(Rs) was equivalent to the point intercepting with the X axis [12,22]; thus, the Rs values
of CuO/NCS and NCS corresponded to 1.09 Ω and 1.13 Ω, respectively. Thereby, the
introduction of CuO reduced the internal series resistance, favoring the ions’ diffusion
through the electrode/electrolyte [11].

Micromachines 2023, 14, x  9 of 14 
 

 

40, 50, 60, and 70 mA cm−2, the corresponding Cs were 4.26, 4.00, 3.80, 3.53, 3.25, and 2.96 
F cm−2, respectively. The specific correspondences are shown in Figure 9c. The voltage 
drop data in Figure 9d were described in the previous paragraph. The EIS spectra of the 
CuO/NCS and NCS electrodes are shown in Figure S2. The Nyquist plots were measured 
in a frequency ranging of 0.01 Hz–100 kHz. The equivalent serious resistance (Rs) was 
equivalent to the point intercepting with the X axis [12,22]; thus, the Rs values of CuO/NCS 
and NCS corresponded to 1.09 Ω and 1.13 Ω, respectively. Thereby, the introduction of 
CuO reduced the internal series resistance, favoring the ions’ diffusion through the elec-
trode/electrolyte [11]. 

 
Figure 9. Electrochemical properties of the CuO/NCS electrode (S-300): (a) CV curves; (b) GCD 
curves; (c) Cs; and (d) voltage drop at different current densities. 

In addition, the electrochemical properties of CuO and NCS electrodes, including CV, 
GCD, and Cs at different current densities, are also recorded in Figure 10. At the same 
time, it can be seen from Figure 11 that, in the absence of CuO nanorods support, irregular 
NCS nanosheets were bent and scattered on the surface of the CF substrate.  
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In addition, the electrochemical properties of CuO and NCS electrodes, including CV,
GCD, and Cs at different current densities, are also recorded in Figure 10. At the same time,
it can be seen from Figure 11 that, in the absence of CuO nanorods support, irregular NCS
nanosheets were bent and scattered on the surface of the CF substrate.

Finally, the cyclic stability of the CuO/NCS electrode was tested in Figure 12. The
result confirmed that the electrode Cs remained at 90.96% of the initial value during the
first 1500 cycles, and then stabilized at 83.05% within 5000 cycles. In addition, the structure
and morphology of the sample after electrochemical performance tests showed little change,
except for obvious cracks (Figure 13).
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Table 1 compares the test conditions and Cs values of the relevant electrode materials.
The CuO/Ni-Co-S electrode prepared in this work showed relatively prominent energy
storage behavior, and the reasons can be summarized as follows: In our reaction system, the
choice of CF electrode substrate exhibited direct oxidative corrosion, generating Cu(OH)2
nanorods and then forming CuO through subsequent high-temperature treatment. CuO
provided support for the further deposition of NSC to ensure high loads of active electrode
materials, thus generating more abundant electrochemically active sites [26,27]. These
preparation processes can be completed independently via the electrochemical workstation
in order to execute the electrodeposition strategy, including subsequent electrochemi-
cal performance tests. This fully demonstrates the convenience of the electrochemical
method [13,28,29]. In addition, the compact and curved deposited NCS nanosheets are in-
terwoven and tightly wrapped around the CuO nanorod array. This hierarchical CuO/NCS
design not only provides a smooth and orderly transmission channel for electron trans-
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port [30], but also reserves space for possible volume expansion during the electrochemical
test process while also ensuring structural stability during the long-term electrochemical
performance test [4,11,19,31].

Table 1. Cs evaluation of relevant electrode materials.

Electrode Substrate Electrolyte Current Density
(mA cm−2)

Cs
(F cm−2) Ref.

CuO Ni foam 6 M KOH 3 1.61 [32]
CuO brass 1 M Na2SO4 5 1.68 [33]

Ni(OH)2@CuO Carbon cloth 6 M KOH 1 2.28 [34]
CuO/ppy Cu foam 3 M KOH 2 1.08 [35]
Ni-Co-S Ni foam 3 M NaOH 10 4.87 [36]
Ni-Co-S Ni foam 1 M KOH 1 3.31 [37]
Co-Ni-S Ni foam 3 M KOH 8 1.12 [5]

Se-Ni-Co-S Ni foam 3 M KOH 1 2.00 [38]
CuO/Ni-Co-S Cu foam 2 M NaOH 20 4.26 this work

4. Conclusions

In summary, hierarchical CuO/NCS electrodes were uniformly grown on CF substrates
by two-step potentiostatic deposition. As one of the active components, CuO also provided
spatial support for NSC deposition. Meanwhile, the effects of the NCS deposition time on
the energy storage characteristics of CuO/NCS electrodes were systematically compared
and analyzed. The optimized CuO/NCS electrode Cs reached 4.26 F cm−2 at a current
density of 20 mA cm−2, and the coulombic efficiency reached as high as 96.37%. At
the same time, its Cs remained at 85.03% of the initial value within 5000 cycles. This
multistep electrodeposition strategy can be extended in order to design other CuO-based
binary or multicomponent transition metal sulfide electrodes to meet the high performance
requirement of electrochemical energy storage devices.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/mi14040888/s1, Figure S1: SEM images of bare CF at different magnifications. Figure S2: EIS
spectra for CuO/NCS and NCS electrodes. Formula for calculating the Cs.
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