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Abstract: In this paper, the transient breakdown voltage (TrBV) of a silicon-on-insulator (SOI) laterally
diffused metal-oxide-semiconductor (LDMOS) device was increased by introducing a step P-type
doping buried layer (SPBL) below the buried oxide (BOX). Device simulation software MEDICI
0.13.2 was used to investigate the electrical characteristics of the new devices. When the device was
turned off, the SPBL could enhance the reduced surface field (RESURF) effect and modulate the
lateral electric field in the drift region to ensure that the surface electric field was evenly distributed,
thus increasing the lateral breakdown voltage (BVlat). The enhancement of the RESURF effect while
maintaining a high doping concentration in the drift region (Nd) in the SPBL SOI LDMOS resulted in
a reduction in the substrate doping concentration (Psub) and an expansion of the substrate depletion
layer. Therefore, the SPBL both improved the vertical breakdown voltage (BVver) and suppressed
an increase in the specific on-resistance (Ron,sp). The results of simulations showed a 14.46% higher
TrBV and a 46.25% lower Ron,sp for the SPBL SOI LDMOS compared to those of the SOI LDMOS. As
the SPBL optimized the vertical electric field at the drain, the turn-off non-breakdown time (Tnonbv)
of the SPBL SOI LDMOS was 65.64% longer than that of the SOI LDMOS. The SPBL SOI LDMOS also
demonstrated that TrBV was 10% higher, Ron,sp was 37.74% lower, and Tnonbv was 10% longer than
those of the double RESURF SOI LDMOS.

Keywords: silicon-on-insulator; MOS devices; deep depletion; breakdown voltage; transient
breakdown voltage; step P-type doping buried layer

1. Introduction

In the passing years, as the number of electric vehicles, charging piles, and intelligent
electronic equipment is on the rise, there is a sustained and strong demand for power
MOSFET. Despite those wide bandgap semiconductor power devices such as SiC and GaN
developing in leaps and bounds, silicon devices still occupy the largest market share due
to their low cost and mature technology. A silicon-on-insulator (SOI) laterally diffused
metal-oxide-semiconductor (LDMOS) devices offer the advantages of high speed, low loss,
and easy integration and are widely used in power integrated circuits [1–5]. Breakdown
voltage (BV) is an important performance indicator of the SOI LDMOS and comprises
the static BV (StBV) and the transient BV (TrBV). An electron inversion layer is formed
under the buried oxide (BOX) of the SOI LDMOS in static conditions, such that there is
no deep depletion (DD) effect in the substrate, which sustains very little StBV [6,7]. Thus,
the device has low StBV. Scholars have obtained many results after long-term research on
StBV. Some of these results have been obtained using an analytical model of StBV [8–14],
and others are related to new structures [15–27], in some of which StBV can reach more
than 1000 V [25–27]. However, when a device is turned off rapidly, there is insufficient time
for an electron inversion layer to form under the BOX, which can induce a DD effect in the
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substrate. The depletion layer in the substrate can sustain a portion of TrBV [6]. E. Napoli
proposed a one-dimensional TrBV analytical model [7] and performed simulations and
experiments [6,28,29] that verified that an appropriate reduction in the substrate doping
concentration (Psub) of the SOI LDMOS can increase TrBV. In [30], a new device structure is
proposed that achieves a good trade-off between TrBV and specific on-resistance (Ron,sp).
Like StBV, TrBV is determined by the smaller of the lateral breakdown voltage (BVlat) and
the vertical breakdown voltage (BVver). Studies have shown that although reducing the
Psub can promote expansion of the depletion layer and increase BVver, the surface field
(RESURF) effect is reduced [31]. An extremely low Psub can lead to an increase in the
surface electric field at the source and premature breakdown, thus reducing BVlat and
resulting in a substantial decrease in TrBV [31]. Therefore, the doping concentration in the
drift region (Nd) needs to be reduced simultaneously to obtain high TrBV [31], whereby
Ron,sp is also considerably increased. Double RESURF, step doping in the drift region, and
linear variable doping in the drift region techniques are commonly applied to improve
BVlat of SOI LDMOS devices [32–35]. If BVlat limits TrBV, these three techniques can also
enhance TrBV. SOI LDMOS with a P-top layer is called a double RESURF SOI LDMOS
(D-RESURF SOI LDMOS), whose P-top layer can improve BVlat and lower Ron,sp [33,34].
The lateral electric field distribution in the drift region of devices with step doping and a
linear variable doping profile is more uniform than that of conventional devices. Therefore,
they can achieve higher TrBV at the same drift region length. However, they have high
Ron,sp due to the too-low doping concentration in the drift region near the source optimizing
for TrBV, and these two techniques are often suitable for ultra-thin SOI devices.

TrBV is an important performance indicator for high-speed SOI LDMOS switching
devices. To improve TrBV and suppress the increase in Ron,sp, a SPBL was introduced
below the BOX of the SOI LDMOS. The SPBL could optimize the lateral and vertical electric
fields of the device and improve the TrBV of the device without increasing the Ron,sp.
The simulation results showed that the TrBV of SPBL SOI LDMOS was higher than that of
SOI LDMOS and D-RESURF SOI LDMOS, and the Ron,sp was lower. As the vertical electric
field was optimized, the turn-off non-breakdown time (Tnonbv) of the SPBL SOI LDMOS
was longer than that of the SOI LDMOS and D-RESURF SOI LDMOS.

2. Device Structure and Simulation Settings

Figure 1a shows the SPBL SOI LDMOS device structure and simulation circuit, which
differ from those of the conventional SOI LDMOS device shown in Figure 1c in that there
was an SPBL below the BOX. The SPBL was divided into five-step P-type doping regions,
and the doping concentration decreased from P1 to P5 by the same difference. x and y
represent lateral distance from the left edge of the device and vertical distance from the
top silicon surface, respectively. When the device is turned off, the high-concentration
doping region of the SPBL near the source can enhance the RESURF effect and reduce
the surface electric field at the source, whereas the low-concentration doping region near
the drain promotes the downward expansion of the substrate depletion layer. After the
SPBL is depleted, the negative charges in the SPBL exhibit a stepped distribution. This
charge distribution has a significant modulation effect on the lateral electric field in the
drift region, which causes the surface electric field in the middle to rise. The enhancement
of the RESURF effect by the SPBL can decrease Psub. Therefore, the SPBL enables the device
to maintain a small Ron,sp and increases BVlat and BVver. Figure 1b shows the D-RESURF
SOI LDMOS. A P-type doping layer, namely the P-top layer, is on the top of the drift
region. Ptop and ttop are the doping concentration and depth of the P-top layer, respectively.
At high Nd, the source surface electric field of SOI LDMOS increases rapidly with the in-
crease of drain voltage. However, the P-top layer in D-RESURF SOI LDMOS can effectively
reduce the increasing speed of the surface electric field at the source and obtain higher
StBV. If optimized for StBV, the Nd of the D-RESURF SOI LDMOS is twice that of SOI
LDMOS. In other words, the Ron,sp of the D-RESURF SOI LDMOS is smaller than that of
SOI LDMOS at the same StBV. For TrBV, the P-top layer can also enhance the RESURF
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effect, maintain high BV, and obtain lower Ron,sp. As mentioned in the introduction, most
step doping SOI LDMOS and linear variable doping SOI LDMOS are usually ultra-thin SOI
devices, and their Ron,sp is high. Therefore, they were not added to the paper as a reference.
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Figure 1. Device structure and simulation circuit of (a) SPBL SOI LDMOS, (b) D−RESURF SOI
LDMOS, and (c) SOI LDMOS.

Step doping profile can be achieved by adjusting the implantation window width and
multiple ion implantations [34]. The main manufacturing process of the SPBL SOI LDMOS
is shown in Figure 2. First, a P-type substrate was lithographically aligned, followed by
boron-ion implantation from the window to form the first doping region. Next, the window
width was doubled to the right, and another boron-ion implantation was performed to form
the second doped region. After five consecutive ion implantations, a SPBL was formed, as
in Figure 2c. Then, SiO2 was deposited on the P-type substrate to form a BOX; the BOX and
substrate were treated with double-sided lithography for alignment marks, and the SiO2
was planarized. Finally, the n-type SOI layer was bonded to the BOX, the SOI layer was
thinned, and the lithography was aligned with the marks. The rest of the SPBL SOI LDMOS
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manufacturing steps are compatible with the standard manufacturing process of the SOI
LDMOS. Device fabrication steps and costs increase with the number of doping regions.
Therefore, the number was two or three, and the cost could be effectively controlled.
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Figure 2. The main manufacturing process of an SPBL SOI LDMOS: (a) lithography alignment with
marks, boron−ion implantation from the window to form the first doping region; (b) double the
width of the window to the right, another boron−ion implantation to form the second doping region;
(c) after five consecutive ion implantations, the formation of a SPBL; (d) deposition and planarization
of SiO2 and creation of alignment marks for double−sided lithography; and (e) bonding of SiO2 and
Si, thinning of the SOI layer and lithography alignment with marks. (f) The other manufacturing
steps for the device are compatible with the standard manufacturing process for an SOI LDMOS.
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The device parameters of the SOI LDMOS and the D-RESURF SOI LDMOS are listed
in Table 1, while those of the D-RESURF SOI LDMOS are described later. To make a fair
comparison of the TrBVs of the three devices, their Psub was set to 2 × 1014 cm−3, and the
Nd of the SOI LDMOS was optimized to 2.4 × 1015 cm−3 based on the TrBV. To obtain
a small Ron,sp in the SPBL SOI LDMOS and the D-RESURF SOI LDMOS, Nd was set to
5 × 1015 cm−3. Optimized for TrBV and Ron,sp, Ptop and ttop in the D-RESURF SOI LDMOS
were 1.1 × 1016 cm−3 and 1 µm, respectively. The other parameters of this device were
the same as in SOI LDMOS. Figure 1 shows the circuit used to simulate the TrBV of the
device [31]. The source and substrate electrodes of the test device were grounded, gate
voltage Vg was applied to the gate through the gate resistor Rg, and a fixed drain voltage Vd
was applied to the drain through the drain resistor Rd. Rg was set to a small value to ensure
that the test device could be quickly turned off. The function of Rd was to limit the drain
current to prevent damage to the device from an excessive current. MEDICI 0.13.2 software
of Synopsys was used to perform a two-dimensional simulation of TrBV in the device.
Several models, such as recombination, impact ionization, band-gap narrowing, mobility,
and lifetime, were used in the simulation [30] The temperature (T) of the simulated device
was 300 K by default. The breakdown condition of the device was that the drain current Id
exceeded 1 × 10−7 A/µm in the off-state. To simulate TrBV, Vd was a low positive voltage
at which the test device did not break down, and Vg was decreased from 15 V to 0 V within
0.1 µs to turn the test device off. As a device is quickly turned off, there is insufficient
time for an electron inversion layer to form under the BOX, the DD effect is induced in the
substrate, which sustains a portion of Vd [6,7,28,29]. Then, Vd is increased until the test
device breaks down. The Vd at breakdown is the TrBV of the test device. Every time Vd
was changed, a simulation was carried out. This work was done by executing a batch file.
If Vd was greater than or equal to StBV, the device could be broken down after being in the
off-state for a period of time. The time between turning the device off and breakdown is
Tnonbv. To simulate the Tnonbv, Vd was a voltage greater than StBV, and Vg was decreased
from 15 V to 0 V within 0.1 µs to turn the test device off. After a period of time, Id increased
rapidly and exceeded 1 × 10−7 A/µm in the off-state. Data of Id with time was stored in
a log file by MEDICI. Tnonbv could be obtained by subtracting the turn-off time from the
breakdown time.

Table 1. Device parameters.

Symbol Device Parameters SPBL SOI LDMOS SOI LDMOS

Ld Length of drift region 50 µm 50 µm
Lchan Channel length 5 µm 5 µm

tg Gate oxide thickness 50 nm 50 nm
tS Drift region thickness 4 µm 4 µm
tI Buried oxide thickness 0.5 µm 0.5 µm
tP SPBL thickness 1 µm -

Pwell Doping concentration in P-well 2 × 1017 cm−3 2 × 1017 cm−3

Nd
Doping concentration in

N− drift region 5 × 1015 cm−3 2.4 × 1015 cm−3

Psub
Doping concentration of

P− substrate 2 × 1014 cm−3 2 × 1014 cm−3

P1
Doping concentration in

first region 1.1× 1016 cm−3→ 1.8× 1016 cm−3 -

P5
Doping concentration in

fifth region 1 × 1015 cm−3 → 7 × 1015 cm−3 -

3. Results and Discussion

Figure 3 shows the distribution of the charge under the BOX and lateral electric field
and the potential of the three devices. The doping concentration of SPBL was reduced from
P1 = 1.5 × 1016 cm−3 to P5 = 1 × 1015 cm−3 in five steps of 3.5 × 1015 cm−3 each. TrBV
of the SPBL SOI LDMOS was 768 V, which corresponded to a 14.46% increase from that
of the SOI LDMOS (671 V) and a 10% increase from that of the D-RESURF SOI LDMOS
(698 V). Note that using an Nd of 5 × 1015 cm−3 for the SOI LDMOS and optimizing Psub to
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1.7 × 1015 cm−3 with respect to TrBV resulted in a TrBV of only 337 V. Figure 3a shows that
compared to those of the SOI LDMOS and the D-RESURF SOI LDMOS, the distribution
of equipotential lines in the drift region was more uniform and the substrate depletion
layer was deeper in the SPBL SOI LDMOS, that is, the lateral electric field in the drift
region was more uniform and both BVlat and BVver were larger. The surface potential
of SPBL SOI LDMOS in the drift region decreased from 768 V to 0 V with a relatively
constant value, and the potential distribution line was relatively straight, as in Figure 3a.
The decrease rate of the surface potential of the other two devices varied greatly, and the
two potential distribution lines fluctuated obviously. Figure 3b shows the distribution of
the charge concentration under the BOX for the three devices. There were five steps in the
charge distribution below the BOX of the SPBL SOI LDMOS. The charge concentration iwas
1.5 × 1016 cm−3 in the first region near the source and decreased to 1 × 1015 cm−3 in the
fifth region near the drain in fixed step sizes. These four sudden changes in the charge
concentration in the SPBL could introduce spikes into the lateral electric field. The charge
concentration of 2 × 1014 cm−3 under the conventional SOI LDMOS and the D-RESURF
SOI LDMOS was evenly distributed, and it did not contribute to the improvement of the
electric field in the middle of the drift region. Figure 3c shows the lateral electric field
distribution of the three devices. Unlike with the SOI LDMOS, there were four clear electric
field spikes in the lateral electric field inside the BOX (y = 4.49 µm) and the bottom of the
drift region (y = 3.99 µm) of the SPBL SOI LDMOS, where the lateral electric field in the
middle was higher. The surface electric field (y = 0.001 µm) of the new device was far from
the SPBL and was weakly modulated. Although there was no electric field spike on the
surface of the drift region of the SPBL SOI LDMOS, the electric field in the middle was
uniform and higher than that of the conventional SOI LDMOS and the D-RESURF SOI
LDMOS, indicating that the depleted SPBL modulated the lateral electric field in the drift
region, which increased the BVlat of the new device. The P-top layer of the D-RESURF
SOI LDMOS could also modulate the surface electric field, but the surface electric field of
the D-RESURF SOI LDMOS was not as uniform as that of the SPBL SOI LDMOS. Figure 4
shows the current distribution in the drift region of the three devices at Vg = 15 V and
Vd = 0.1 V. The Nd and the current distribution area determine the drain current in the drift
region. The Nd of the SPBL SOI LDMOS was 5 × 1015 cm−3, and the current distributed
throughout the drift region, as in Figure 4a. Therefore, its Id was the largest among those
of the three devices. The Nd of the D-RESURF SOI LDMOS was the same as that of the
SPBL SOI LDMOS, and there was no current in the P-top layer, as seen in Figure 4b. Its
Id was the second largest among those of the three devices. Although the current of the
SOI LDMOS distributed throughout the drift region, the Nd was less than half that of
the other two devices. Its current was the smallest among those of the three devices.
According to the Id of these three devices, their Ron,sp could be calculated. The Ron,sp was
7.82 Ω·mm2 for the SPBL SOI LDMOS, which was 46.25% lower than that of the SOI LDMOS
(14.55 Ω·mm2) and 37.74% lower than that of the D-RESURF SOI LDMOS (12.56 Ω·mm2).
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Figure 3. Distributions of SPBL SOI LDMOS, D−RESURF SOI LDMOS, and SOI LDMOS devices’ 
(a) potential (20 V/contour), (b) charge under the BOX, and (c) lateral electric field. 
Figure 3. Distributions of SPBL SOI LDMOS, D−RESURF SOI LDMOS, and SOI LDMOS devices’
(a) potential (20 V/contour), (b) charge under the BOX, and (c) lateral electric field.
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LDMOS, and (c) SOI LDMOS at Vg = 15 V and Vd = 0.1 V.

Figure 5 shows the effect of the SPBL doping concentration on TrBV. The TrBV of
the SOI LDMOS device depended on the smaller of BVlat and BVver, both of which were
affected by the SPBL doping concentration. Increasing the SPBL doping concentration
weakened the surface electric field at the source, which was conducive to increasing BVlat
and hindered the downward expansion of the substrate depletion layer to reduce BVver.
To obtain the maximum TrBV, P1 and P5 needed to be optimized. At a fixed P5 and a low
P1, the SPBL did not sufficiently weaken the surface electric field at the source, resulting
in premature breakdown of the device at the source surface, and BVlat was lower than
BVver. The TrBV was limited by BVlat. Therefore, increasing P1 could reduce the surface
electric field at the source and increase BVlat, thereby increasing the TrBV of the device. At
a P5 of 1 × 1015 cm−3, TrBV initially increased with P1 to a maximum value of 768 V at
P1 = 1.5 × 1016 cm−3. BVlat was equal to BVver. As P1 increased, the doping concentration
of the other regions (except for the fifth region) also increased accordingly, which enhanced
the blocking effect of the SPBL on the downward expansion of the substrate depletion layer,
resulting in BVver being lower than BVlat. The TrBV was limited by BVver. Therefore, as P1
increased from 1.5 × 1016 cm−3 to 1.8 × 1016 cm−3, TrBV was affected by the decrease in
BVver and continued to decrease. In short, when P5 was constant, P1 increased from low to
high, BVlat increased from low to high, and BVver decreased from high to low. When BVlat
was lower than BVver, TrBV was determined by BVlat, and TrBV increased with P1. When
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BVlat equaled BVver, TrBV reached the maximum. When BVver was less than BVlat, TrBV
was determined by BVver, and TrBV decreased with the increase of P1. Similarly, increasing
P5 promoted the weakening of the surface electric field at the source and increased BVlat
but hindered the downward expansion of the depletion layer and reduced BVver. It can be
seen from Figure 5 that for different P5 values, the trend of TrBV with increasing P1 was
consistent. The larger P5, the earlier TrBV reached a maximum in P1. However, the increase
in P5 reduced BVver and thereby the maximum TrBV.
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drain was more uniform, and TrBV was further increased to 761 V. When N = 5, the sur-
face electric field distribution was almost the same as that of N = 4, and TrBV was 768 V 
and only increases by 7 V. Therefore, with an increase of N, the SPBL modulated the 
surface electric field more uniformly, and a higher TrBV could be obtained. For the SOI 
LDMOS, the surface electric field at the source was too high at Nd = 5 × 1015 cm−3. The de-
vice was prematurely broken down, and its TrBV was 337 V. When Nd = 2.4 × 1015 cm−3, 
the surface electric field peaks were at the source and drain, and the electric field at the 
middle of the drift region was low. TrBV was increased to 671 V. Compared to that of the 
SOI LDMOS, the surface electric field of the D-RESURF SOI LDMOS in the drift region 
was more uniform and higher, and its TrBV was also 27 V higher. The Ron,sp of the SPBL 
SOI LDMOS was the lowest among those of the three devices. At N = 3, the TrBV of the 
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Figure 6 shows the influence of the number of doping regions (N) of SPBL on TrBV
and surface electric field. The TrBV of the SPBL SOI LDMOS listed in Figure 6a was the
maximum value that could be gained by optimizing the doping concentration of SPBL at
different N. The TrBV of the device increased with the N and then tended to be saturated. In
Figure 6b, the surface electric fields of the SPBL SOI LDMOS were compared at different N.
When N = 2, there was a comparatively high peak in the middle of the surface electric field,
but the electric field near the drain was too low. TrBV was 614 V. When N = 3, there were
two peaks in the middle of the surface electric field, which made the surface electric field
more uniform and the electric field near the drain higher. TrBV increased to 696 V. When
N = 4, the surface electric field in the middle of the drift region and near the drain was more
uniform, and TrBV was further increased to 761 V. When N = 5, the surface electric field
distribution was almost the same as that of N = 4, and TrBV was 768 V and only increases
by 7 V. Therefore, with an increase of N, the SPBL modulated the surface electric field more
uniformly, and a higher TrBV could be obtained. For the SOI LDMOS, the surface electric
field at the source was too high at Nd = 5 × 1015 cm−3. The device was prematurely broken
down, and its TrBV was 337 V. When Nd = 2.4 × 1015 cm−3, the surface electric field peaks
were at the source and drain, and the electric field at the middle of the drift region was
low. TrBV was increased to 671 V. Compared to that of the SOI LDMOS, the surface electric
field of the D-RESURF SOI LDMOS in the drift region was more uniform and higher, and
its TrBV was also 27 V higher. The Ron,sp of the SPBL SOI LDMOS was the lowest among
those of the three devices. At N = 3, the TrBV of the SPBL SOI LDMOS was as high as that
of the D-RESURF SOI LDMOS and higher than that of the SOI LDMOS. At N > 3, the TrBV
of the SPBL SOI LDMOS was higher than that of the other two devices.
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Turning the device off generates electron-positron pairs in the substrate depletion layer.
Under an electric field, the electrons move into and continuously accumulate at the bottom
of the BOX, and the holes move to the edge of the depletion layer and recombine with the
electrons, thereby continuously thinning the depletion layer [30]. Therefore, with increasing
time, the voltage sustained by the device substrate continuously decreases, and the voltage
sustained by the drift region and the BOX continuously increases. The maximum voltage
that the drift region and BOX can sustain is approximately equal to StBV. If Vd is greater
than or equal to StBV, the device can be broken down after being in the off-state for a period
of time. Tnonbv serves as a reference for the lowest operating frequency of the device [31].
Figure 7 shows the effect of different Ts and Vds on Tnonbv. The higher the Vd, the more
rapid the rate of increase in the voltage sustained by the drift region and BOX, and the
smaller the Tnonbv. The effect of T on Tnonbv was more significant. The generation rate of
electrons and holes in the substrate depletion layer increased rapidly with T, resulting in a
rapid thinning of the depletion layer and a significant decrease in Tnonbv. Figure 7 shows
that for a constant T, the Tnonbv of the three devices decreased rapidly with increasing Vd.
The Tnonbv of the three devices decreased sharply with increasing T. However, for fixed T
and Vd, the SPBL SOI LDMOS always had a larger Tnonbv than the SOI LDMOS and the
D-RESURF SOI LDMOS did. For a T of 400 K and Vd above 500 V, the substrate depletion
layer of the SOI LDMOS thinned sufficiently rapidly that the device could no longer be
turned off. The D-RESURF SOI LDMOS also could not be turned off when Vd was higher
than 550 V. Figure 8 shows the distribution of the vertical electric field and potential at the
drain of the three devices at different times for T = 373 K and Vd = 500 V. They were turned
off at t = 3.7 µs: the SOI LDMOS device was broken down first at t = 9.55 µs, the D-RESURF
SOI LDMOS device was broken down at t = 12.51 µs, and the SPBL SOI LDMOS was broken
down at t = 13.39 µs. The Tnonbv of the SPBL SOI LDMOS of 9.69 µs was 65.64% longer
than that of the SOI LDMOS (5.85 µs), indicating that the operating frequency had a lower
minimum and a wider range for the SPBL SOI LDMOS than the SOI LDMOS. The Tnonbv of
the D-RESURF SOI LDMOS was 8.81 µs, and it was slightly shorter than that of the SPBL
SOI LDMOS. The vertical electric field in and the voltage sustained by the drift region and
the BOX of the three devices were set to E1 and V1, respectively, and the voltage sustained
by the substrate depletion layer was set to V2. Figure 8a shows that for a fixed time, the
electric field at the vertical n+/n- junction at the drain of the SPBL SOI LDMOS was much
lower than that of the SOI LDMOS because the Nd of the SPBL SOI LDMOS was more
than twice that of the SOI LDMOS. Solving the Poisson equation with boundary conditions
shows that E1 was lower for the SPBL SOI LDMOS than the SOI LDMOS. Therefore, for
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the same time and Vd, the SPBL SOI LDMOS had a smaller V1, a larger V2, and a deeper
substrate depletion layer than those of the SOI LDMOS. During device breakdown of the
SPBL SOI LDMOS and SOI LDMOS, the maximum voltage sustained by the depletion layer
and BOX and the substrate depletion layer depth were almost the same. Thus, the depletion
layer of the SPBL SOI LDMOS was deeper than that of the SOI LDMOS during turn-off, and
the depletion layer depth of both devices was equal during breakdown, such that the Tnonbv
of the SPBL SOI LDMOS was longer than that of the SOI LDMOS. Figure 8b shows that
at t = 3.7 µs and Vd = 500 V, the depth of the substrate depletion layer and V1 were 52 µm
and 74 V, respectively, for the SPBL SOI LDMOS. The depth of the substrate depletion layer
and V1 were 50 µm and 109 V, respectively, for the SOI LDMOS. At t = 9.55 µs, the depth of
the substrate depletion layer of the SPBL SOI LDMOS decreased to 49.5 µm, V1 increased
to 128 V, and the device was not broken down, whereas for the SOI LDMOS, the depth of
the substrate depletion layer was 47.5 µm and V1 increased to 170 V, which exceeded StBV,
resulting in device breakdown. Note that the StBV of the device was higher at T = 373 K
than that at T = 300 K. At t = 13.39 µs, the depth of the substrate depletion layer of the SPBL
SOI LDMOS decreased further to 48 µm, V1 increased to 162 V, and the device was broken
down. Because the Nd of the D-RESURF SOI LDMOS was the same as that of the SPBL
SOI LDMOS, their electric field and potential distribution were almost the same during
turn-off and breakdown. The P-top layer in the D-RESURF SOI LDMOS not only weakened
the electric field of the source but also enhanced the electric field of the drain. When the
substrate depletion layer decreased, the E1 of the D-RESURF SOI LDMOS increased faster
than that of the SPBL SOI LDMOS. The D-RESURF SOI LDMOS was broken down earlier
than the SPBL SOI LDMOS. The Tnonbv of the D-RESURF SOI LDMOS was slightly shorter
than that of the SPBL SOI LDMOS but longer than that of SOI LDMOS.
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4. Conclusions

The introduction of an SPBL into an SOI LDMOS improved the TrBV and suppressed
the increase in Ron,sp by optimizing the lateral and vertical electric fields of the device. At
tS = 4 µm, tI = 0.5 µm, Ld = 50 µm, and Nd = 5 × 1015 cm−3, the TrBV of the SPBL SOI
LDMOS was 768 V, which was 127.89% higher than that of the SOI LDMOS for the same
Nd. For a fixed Psub = 2 × 1014 cm−3, the TrBV and Ron,sp were 14.46% higher and 46.25%
lower, respectively, in the SPBL SOI LDMOS than in the SOI LDMOS. At T = 373 K and
Vd = 500 V, the Tnonbv of the SPBL SOI LDMOS was 65.64% longer than that of the SOI
LDMOS. The SPBL SOI LDMOS also demonstrated that TrBV was 10% higher, Ron,sp was
37.74% lower, and Tnonbv was 10% longer than in the D-RESURF SOI LDMOS.

Subsequent research will focus on the manufacturing process of the new device and
its application in the switching power supply circuit. The process of forming a SPBL with
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only one ion implantation to reduce the cost will be studied. If Vg is constant at 0 V and
Vd is higher than StBV due to a circuit fault, the device will be broken down. A protection
circuit needs to be designed to avoid device breakdown.
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