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Abstract: N-TiO2/Ni(OH)2 nanofiber was successfully prepared by combining the electrospinning
and solvothermal method. It has been found that under visible light irradiation, the as-obtained
nanofiber exhibits excellent activity for the photodegradation of rhodamine B, and the average degrada-
tion rate reaches 3.1%/min−1. Further insight investigations reveal that such a high activity was mainly
due to the heterostructure-induced increase in the charge transfer rate and separation efficiency.

Keywords: photocatalysis; charge transfer; heterostructure

1. Introduction

Back in 2001, Asahi et al. [1,2] identified that the tactic of non-metal-doping can narrow
the bandgap of TiO2 (anatase, 3.2 eV). Both experimental results and the relevant density
functional theory (DFT) theoretical calculations revealed that nitrogen doping could signifi-
cantly extend the absorption range of TiO2 into the visible region. Since then, numerous
investigations focus on non-metal-doped (N, S, P, B) TiO2 photocatalysts [3,4]. Through the
non-metallic dopants and their combinations, the corresponding photocatalytic activity of
derived TiO2 could be improved, thus exhibiting outstanding photocatalytic performances
in various applications, such as photocatalytic water splitting [5,6], CO2 reduction [7,8],
removal of organic compounds [9,10], sterilization [11], and anti-viral applications [12].
Owing to these excellent properties, N-doped TiO2 and cocatalyst-supported TiO2 have
been commercialized and widely used in many practical applications [13]. However, the
photocatalytic reaction rate of N-doped TiO2 is still very low, which is believed to be caused
by the following two reasons: one is its weak absorption in the visible range, while the
other is the limited rate of the photocatalytic reactions by the nitrogen-induced oxygen
vacancies, which is supposed to act as the carrier traps and/or recombination centers.

To enhance the photocatalytic performance of nitrogen-doped TiO2 (N-TiO2) in the
visible range, tremendous efforts have been devoted to it during the past decades [14–16]. It
has been revealed that transition metal nickel hydroxide and NiS could act as cocatalysts to
significantly strengthen the photocatalytic activity of TiO2, which is believed to be attributed
to the inhibition of charge carriers’ recombination [17–19]. Zhang et al. [20] prepared
three-dimensional flower-like TiO2@Ni(OH)2 core–shell heterostructures, exhibiting a six-
fold activity enhancement for hydrogen photogeneration. Meng et al. [21] synthesized a
hierarchical TiO2/Ni(OH)2 composite photocatalyst via decorating Ni(OH)2 nanosheets
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on the electrospun TiO2 nanofibers by a simple wet method, and the results indicate that,
compared to pristine TiO2 fibers, its activity of CO2 photoreduction was significantly
improved, which was ascribed to the increased charge separation efficiency and higher
CO2 capture capacity owing to the presence of Ni(OH)2. Chen et al. [22] reported the
construction of a photo-supercapacitor with high specific capacitance and ultra-fast charge–
discharge response, in which TiO2 was used as a photoelectric conversion material and
Ni(OH)2 was used as an energy storage material in the TiO2/Ni(OH)2 composite material,
offering a simple fabrication process for efficient direct solar energy storage. These findings
inspired us to develop a heterojunction between N-TiO2 and nickel hydroxide to increase
the charge separation efficiency thereby improving its corresponding photocatalytic activity.

To our knowledge, only a few studies were focused on the photocatalytic applications
of N-TiO2/Ni(OH)2 composite. In this work, we first prepared N-TiO2 nanofibers by
electrospinning technique followed by decoration of Ni(OH)2 via the hydrothermal method
to obtain the high-quality N-TiO2/Ni(OH)2 heterostructures. The designated composite
exhibits a much-enhanced photocatalytic ability for the degradation of rhodamine B (RhB)
compared to N-TiO2 under visible light irradiation. Further detailed analyses reveal the
relevant enhanced activity is ascribed to the increased charge separation efficiency induced
by the delicate heterostructure.

2. Experimental Section
2.1. Chemicals and Reagents

Acetic acid (99.5%), butyl titanate (99.0%), ethanol (99.0%), urea (99.0%), polyvinylpyrroli-
done (99.0%), Rhodamine B (99.0%), nickel nitrate hexahydrate (99.0%), and hexamethylenete-
tramine (99.0%) were purchased from Shanghai Aladdin Biochemical Technology Co., Ltd.
(Shanghai, China). All chemicals were used as received without further purification.

2.2. Synthesis of Ni(OH)2 Nanosheets

N-TiO2 nanofibers were prepared by the electrospinning method according to the
previous work [23]. Typically, 5 mL of acetic acid and 5 mL of butyl titanate were added
into 10 mL ethanol under vigorous stirring at room temperature (RT). After ~10 min., 0.2 g
of urea was introduced, followed by another 20 min stirring. Meanwhile, another solution
was obtained by introducing 1.5 g of polyvinylpyrrolidone into 10 mL ethanol. Then,
the two above solutions were homogeneously mixed and further heated at 70 ◦C for 1 h
under vigorous stirring to obtain the precursor solution for electrospinning. At a static
voltage of 15 kV, a capillary tube with an inner diameter of 0.5 mm at a 15 cm distance from
the collector was used to prepare the electrospun film. The flow rate was set at 1 mL/h.
Afterward, the fiber film was peeled off and placed in a crucible that was sealed with tin
foil and kept at 550 ◦C for 3 h in a muffle furnace to obtain N-TiO2 fibers. For comparison,
TiO2 nanofibers were prepared by a similar procedure and the only exception is without
introducing urea.

2.3. Preparation of N-TiO2/Ni(OH)2 Nanocomposite

A total of 100 mg of the as-prepared N-TiO2 nanofibers were added into 40 mL ultra-
pure water followed by sonication for 10 min to obtain a homogeneous suspension. Next,
3.1 mg nickel nitrate hexahydrate and 1.7 mg hexamethylenetetramine were introduced
and the corresponding solution was further stirred for 1 h at RT. Then, the solution was
transferred to the Teflon-lined autoclave and heated at 120 ◦C for another 6 h. The ob-
tained precipitation was alternatively washed with ethanol and water several times and
subsequently dried in a vacuum oven at 80 ◦C for 4 h. Samples with 0.5 and 1.5 wt%
Ni(OH)2 contents were prepared by the same protocol with different amounts of nickel
nitrate hexahydrate and hexamethylenetetramine introduced.
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2.4. Characterization

The crystal structure of samples was investigated on an X-ray diffractometer (Rigaku
D/Max 2550, Japan Rigaku Co., Ltd., Tokyo, Japan) at 40 kV and 40 mA with copper Kα

radiation (λ = 0.154056 nm). The morphological and structural information was charac-
terized via field-emission scanning electron microscopy (SEM, JSM-7610F, Tokyo, Japan)
and transmission electron microscopy (TEM, Tecnai G2 F20 S-TWIN, FEI, Valley City, ND,
USA). X-ray photoelectron spectroscopy (XPS) measurements were recorded by a photo-
electron spectrometer (ESCALAB MKII, VG Scientific, Waltham, MA, USA). The relevant
photoluminescence results were obtained on an FLS-1000 fluorescence spectrophotometer
(Edinburgh Instruments Ltd., Livingston, UK). The transient photocurrent signals were
measured by an electrochemical workstation (CHI-660, CH Instruments, Austin, TX, USA).
UV-Vis diffuse reflectance spectra of the samples, and the absorbance of Rh B solution was
measured on a Shimadzu-2600 spectrophotometer (Shimadzu, Kyoto, Japan).

2.5. Measurement of Photocatalytic Reactions

The RhB photodegradation experiments were performed in a glass flask. Typically,
25 mg of the relevant photocatalyst was dispersed into a 100 mL Rh B aqueous solution
(10 mg/L). Before the photoreaction, the solution was stirred for 30 min in dark to exclude
the adsorption effect of the sample. Then, the solution was illuminated by a 300-W Xenon
lamp with a filter (>420 nm). A total of 2 mL of the solution was taken at regular intervals
(30 min), then subjected to UV-Vis measurements after filtrating the photocatalyst.

3. Results

The crystal structural information of TiO2, N-TiO2, and N-TiO2/Ni(OH)2 nanofibers
were obtained by X-ray diffraction (XRD) technique. As shown (Figure 1), for TiO2, the
clear diffraction peaks at 2θ = 25.2◦, 37.8◦, 47.8◦, 55.2◦, 62.7◦, 68.9◦, 75.1◦, and 82.6◦ ascribed
to (101), (004), (200), (105), (204), (116), and (215) crystal planes of anatase (JCPDS card
number 21-1272) were observed, respectively. Meanwhile, peaks at 2θ = 27.4◦, 36.1◦, and
41.1◦, which is consistent with the (110), (101), and (111) crystal planes of rutile, respectively,
TiO2 (JCPDS card number 21-1276) are also detected. The results demonstrate that under
the current calcination condition, the obtained TiO2 nanofibers are in the mixed phase of
anatase and rutile. Interestingly, when nitrogen is introduced into TiO2, the rutile phase of
TiO2 seems to be significantly inhibited. Furthermore, for N-TiO2/Ni(OH)2 nanocomposite,
no peak belonging to Ni(OH)2 was observed, which is considered to be owing to the low
Ni(OH)2 content [18].
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The morphological and structural information of the sample was obtained by SEM and
TEM measurements. Figure 2a displays the SEM result of TiO2 nanofibers. It is seen that the
TiO2 was in a fibrous structure with a diameter of ~500 nm and length over 10 µm, while the
introduction of nitrogen did not induce any observable morphological change (Figure 2b).
Further decoration of Ni(OH)2 onto N-TiO2 nanofibers could induce the two-dimensional
structural growth on the surface of the corresponding samples, (Figure 2c), which mani-
fests the successful deposition of Ni(OH)2. TEM image of the N-TiO2/1.0 wt% Ni(OH)2
nanofibers indicates the diameter of the relevant sample in ~500 nm (Figure 2d), and higher
magnification TEM result clearly demonstrates a 50-nm-thick layer was homogenously
coated onto the outside surface of the N-TiO2 fibers, which is considered to be Ni(OH)2
(Figure 2e). Furthermore, HRTEM measurement confirms our assumption. As is shown
(Figure 2f), the clear granular nanostructure ascribed to (110) crystal plane of Ni(OH)2 was
found in the corresponding outside layer area of the sample, and the green circle represents
Ni(OH)2 nanocrystalline particles in Figure 2f.
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To acquire the chemical state of each element in the samples, XPS measurements were
performed. Figure 3 shows the high-resolution Ti 2p, O 1s, N 1s, and Ni 2p XPS spectra of
the N-TiO2/1.0 wt% Ni(OH)2. As is shown for Ti 2p, peaks at 458.5 and 464.3 eV could be
ascribed to Ti 2p3/2 and Ti 2p1/2 of TiO2, respectively, indicating the existence of Ti4+ in
the sample [24–26]; while for O 1s, signals of lattice oxygen (titanium–oxygen–titanium,
529.7 eV) and hydroxyl oxygen (Ti-OH and Ni-OH, 531.4 eV) are observed [27] (Figure 3b).
A weak characteristic peak (N1s) at 399.9 eV attributes to the signal combination of weakly
charged nitrogen species with C, H, or O atoms [28] (Figure 3c), and demonstrates the suc-
cessful diffusion of nitrogen into the TiO2 lattice at interstitial positions [29,30]. It is noted
that nitrogen had a weak positive charge in the Ni 2p region (Figure 3d) due to the bonding
with O atoms of TiO2 [30–32]. In addition, the peaks at 855.3 and 873.0 eV correspond to
Ni 2p3/2 and Ni 2p1/2, respectively, indicating the existence of nickel hydroxide [33]. In
addition, the two shoulder peaks were ascribed to the satellite peaks of Ni 2p3/2 and Ni
2p1/2 in the vicinity of 861.7 and 880.3 eV, respectively [20].
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The absorption property of different samples was measured by UV-Vis diffuse re-
flectance absorption spectroscopy. As indicated (Figure 4), Ni(OH)2 control sample exhibits
an obvious absorption at 450 and 600–800 nm, which is due to the d–d transition of Ni [34].
In addition, compared to TiO2, the absorption of N-TiO2 and different N-TiO2/Ni(OH)2
samples in the visible region are significantly enhanced. It should be noted that, in the
range of 400–550 nm, the absorption intensity of N-TiO2/Ni(OH)2 nanofibers is increased
with the increase in Ni(OH)2 content.
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with different Ni(OH)2 contents, respectively.

The photocatalytic activity on the degradation of RhB of different samples was then
evaluated. As shown (Figure 5a), all the employed samples exhibit the similar phys-
ical adsorption property for RhB. However, interestingly, once illuminated, all the N-
TiO2/Ni(OH)2 nanocomposites show a much higher ability for the photodegradation
of RhB compared to that of a relevant single component. Especially, N-TiO2/Ni(OH)2
nanocomposite possesses the best performance, and ~97% of RhB would be photodegraded
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in 90 min. To illustrate the decomposition rate more clearly, the Langmuir-Hinshelwood
kinetics equation was employed [35]. As shown in Figure 5b, the activities of all the
nanocomposites were higher than those of a single component, indicating an apparent
synergistic effect between N-TiO2 and Ni(OH)2, which could also be reflected by the rate
constant (Figure 5c). Our results unambiguously manifest the vital role of forming the
heterostructure for significantly enhancing the RhB photodegradation ability. Further
optimization of the addition of Ni(OH)2 in the composite showed that when the amount
of Ni(OH)2 in the composite is 1.0-wt%, the best performance of 0.0310 min−1 could be
achieved (Figure 5b), which was comparable to the recent benchmark test results (Table 1).
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(d) five consecutive photodegeration curves of RhB over N-TiO2/1.0-wt% Ni(OH)2 under the visible
light irradiation.

Table 1. Comparison of the catalytic performance of N-TiO2/Ni(OH)2 with the previously reported
data for the reduction in organic dyes of Rh B.

Material Used Light Used Dye
Degradation

Kapp
(min−1)

Removal (%)/
30 min Ref.

N-TiO2/Ni(OH)2 visible light RhB 0.0310 60% This work
Ni(OH)2 UV-visible RhB 0.0130 / [36]
NiO-ZnO UV-visible RhB 0.0302 50 [37]

NixOy/TiO2 UV-visible RhB 0.0349 56.5 [38]
Ni/NiO/TiO2 UV-visible RhB / 35 [39]

NiO/BVO UV-visible RhB / 40 [40]
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The stability of photocatalyst is a critical issue for the potential real application. Hence,
the relevant stability of N-TiO2/1.0-wt% Ni(OH)2 was evaluated (Figure 5d). After each
round of photocatalytic reaction, the sample was collected via centrifugation and washed
with ultrapure water several times before further usage. As shown, only a slight activity
decrease (~3.7%) was observed after five cycles demonstrating its excellent stability for
long-term use.

To elucidate the underlying mechanism of the heterostructure-induced photocatalytic
activity enhancement, photoluminescence (PL) measurements were first employed. As
shown in Figure 6a, N-TiO2 gives an obvious PL emission in the range of 400–550 nm,
while for that of Ni(OH)2, hardly any PL signal could be observed. Interestingly, for the
nanocomposite sample, the relevant PL intensity is gradually decreased with the gradual
increase in Ni(OH)2 content, which is considered to be ascribed to charge transfer from
N-TiO2 to Ni(OH)2 [35]. To further verify the separation and migration behavior of charge
carriers, photocurrent response tests were performed. As shown in Figure 6b, all the
composite samples give higher photocurrent responses than that of the N-TiO2 or Ni(OH)2,
and N-TiO2/1.0 wt% Ni(OH)2 exhibits the highest response, which is consistent with
the trend of their photocatalytic performance. This strongly signifies the introduction of
Ni(OH)2 is beneficial for increasing charge separation efficiency, and thus enhances the
relevant photocatalytic activity.
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Based on the above results, the plausible underlying mechanism for the enhanced
photocatalytic activity of N-TiO2/Ni(OH)2 composite has been proposed (Figure 7). After
the absorption of the incident light, both N-TiO2 and Ni(OH)2 were excited. Thereafter, the
electrons and holes are photogenerated in each component, and electrons are excited into
the conduction band (CB) while the holes are left at the valence band (VB). Owing to the
potential of Ni2+/Ni (0.23 eV) being slightly lower than that of anatase TiO2 (~0.26 eV),
photogenerated electrons will transfer from CB of TiO2 into CB of Ni(OH)2, while holes
remain in VB of TiO2. This will significantly promote charge separation and inhibit the
recombination of photogenerated electrons and holes. Subsequently, electrons could react
with adsorbed oxygen to generate superoxide free radicals. It is noted the formation of
free radicals can not only effectively inhibit electron-hole recombination, but also destroy
the bonds of RhB and therefore degrade them, which finally exhibits enhanced photocat-
alytic activity.
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4. Conclusions

In this work, the heterostructured N-TiO2/Ni(OH)2 nanofibers were successfully
constructed and further applied for the enhanced photodegradation of RhB compared
to that of N-TiO2 under visible light irradiation (>420 nm). Our results indicate that the
elaborated design could significantly enhance the corresponding photocatalytic activity and
the one with 1.0 wt% Ni(OH)2 exhibits the best performance. Further detailed investigations
revealed that the enhanced activity is mainly ascribed to the efficient charge transfer and
separation in N-TiO2 induced by the integration of Ni(OH)2. It is anticipated that our tactics
and results would be beneficial for the future design of high-performance photocatalysts.
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