
Citation: He, W.; Hu, A.; Dong, C.;

Chen, X.; Gong, J.; Miao, J. Design of

a Compact Analog Complex

Correlator for Millimeter-Wave

Radiation Temperature Measurement

System. Micromachines 2023, 14, 867.

https://doi.org/10.3390/mi14040867

Academic Editors: Shaolan Li and

Xiyuan Tang

Received: 10 March 2023

Revised: 5 April 2023

Accepted: 15 April 2023

Published: 17 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

micromachines

Article

Design of a Compact Analog Complex Correlator for
Millimeter-Wave Radiation Temperature Measurement System
Wangdong He, Anyong Hu *, Chen Dong, Xi Chen , Jianhao Gong and Jungang Miao

School of Electronics and Information Engineering, Beihang University, Beijing 100191, China;
hwd19930315@buaa.edu.cn (W.H.); phoenixdc@buaa.edu.cn (C.D.); chenxi0913@buaa.edu.cn (X.C.);
gongjh@buaa.edu.cn (J.G.); jmiaobremen@buaa.edu.cn (J.M.)
* Correspondence: hu_anyong@buaa.edu.cn; Tel.: +86-138-1142-1892

Abstract: Human body temperature is a fundamental physiological sign that reflects the state of
physical health. It is important to achieve high-accuracy detection for non-contact human body
temperature measurement. In this article, a Ka band (32 to 36 GHz) analog complex correlator using
the integrated six-port chip is proposed, and a millimeter-wave thermometer system based on the
designed correlator is completed for human body temperature measurement. The designed correlator
utilizes the six-port technique to achieve large bandwidth and high sensitivity, and miniaturization
of the correlator is achieved through an integrated six-port chip. By performing the single-frequency
test and the broadband noise measurement on the correlator, we can determine that the dynamic
range of input power of the correlator is −70 dBm to −35 dBm, and the correlation efficiency and
equivalent bandwidth are 92.5% and 3.42 GHz, respectively. Moreover, the output of the correlator
varies linearly with the input noise power, which reveals that the designed correlator is suitable for
the field of human body temperature measurement. Then, a handheld thermometer system, with a
size of 140 mm × 47 mm × 20 mm, is proposed using the designed correlator, and the measurement
results show that the temperature sensitivity of the thermometer is less than 0.2 K.

Keywords: analog complex correlator; six-port; Ka band; noise measurement; microwave radiometer;
thermometer

1. Introduction

Microwave radiometer has been widely used in astronomical observation [1], atmo-
spheric remote sensing [2], security sensing [3,4], temperature measurement [5], and other
scenarios. Since body temperature is one of the vital signs of the human body and an
important indicator to measure the condition of the body, the accurate detection of human
body temperature can assist doctors to diagnose and treat patients faster. Moreover, accu-
rate temperature measurements for different parts of the human body can assist doctors to
further understand the physiological status of patients. In the field of human body temper-
ature measurement, microwave radiation thermometry, as a non-contact rapid detection
method of human body temperature, has received a great deal of attention in recent years.
Compared with infrared temperature measurement [6], which is the main method in the
field of non-contact rapid detection of human body temperature, microwave radiation
temperature measurement has obvious advantages in clothing penetration, influence of sur-
rounding environment, temperature measurement distance, and temperature measurement
accuracy [7].

At present, the microwave radiation temperature measurement system based on the total
power radiometer and Dicke radiometer has achieved a series of achievements [8–10]. However,
the total power radiometer and Dicke radiometer has large temperature measurement
error and low temperature measurement accuracy. The microwave radiation temperature
measurement system using a correlation radiometer has higher temperature sensitivity,
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and the negative effect of gain fluctuation on temperature measurement accuracy is also
lower [11,12].

In the correlation radiometer, the correlator is one of the key components by perform-
ing cross-correlation measurement on two input signals [13]. According to the different
realization methods, correlators can be divided into digital correlators and analog correla-
tors. The digital correlator has the advantages of high stability and flexible configuration,
but it will introduce quantization noise in the quantization process, resulting in deteriora-
tion in correlation efficiency and temperature sensitivity [14,15]. The analog correlator has
the advantages of large bandwidth, high sensitivity, and low cost [16–18]; therefore, it is
adopted in the correlation radiometer system to meet the high-precision requirements of
human body temperature measurement.

In addition, both direct multiplication technology [19,20] and add-and-square technol-
ogy [21,22] can be used to implement the analog correlator. Due to the need to customize
the special multiplier chip, the cost and difficulty of the analog correlator, which uses
direct multiplication technology, to achieve broadband is relatively high [23]. By com-
parison, the analog correlator using add-and-square technology is generally based on the
six-port technique [24]; due to its low cost and ease in achieving large bandwidth, the
six-port technique is widely used in the fields of reflectometers [25–27], receivers [28–30],
correlators [31,32], and so on. Therefore, the add-and-square analog complex correlator
makes it easier to achieve large bandwidth, and the sensitivity of a correlation radiometer
is inversely proportional to the root of the bandwidth [21], which also means that the
radiometer can achieve higher temperature sensitivity. In summary, the use of an analog
complex correlator can improve the working bandwidth of the correlation radiometer sys-
tem, thus improving the temperature sensitivity of the system. In addition, compared with
the total power radiometer, the correlated radiometer based on analog complex correlator
has better temperature sensitivity in theory. On the other hand, the correlation radiometer
system applied to human body temperature measurement needs to meet the application
requirements of handheld, so the volume of the radiometer needs to be miniaturized, which
also puts forward the demand for miniaturization of the analog correlator.

In this paper, an add-and-square analog complex correlator is designed using the
six-port technique and its operating frequency is 32–36 GHz. The six-port network in the
designed correlator is implemented using the integrated six-port chip, which has been
introduced in our previous work [33]. The basic theory of the correlator is introduced and
the influence of reflected signal on the correlator during mismatch of the detection circuit
is analyzed, which provides assistance for the integrated design of the analog correlator.
Further, the analysis results show that the reverse isolation between the detection circuit
and the six-port network is necessary so that the correlator can achieve better performance.
Then, the designed correlator is measured under the point frequency signal and noise
signal so the dynamic range of input power, equivalent noise bandwidth, and correlation
efficiency of the designed correlator can be obtained. Finally, the correlation radiometer
based on the correlator is introduced and processed, and the temperature sensitivity of the
radiometer is measured.

The rest of this article is organized as below. In Section 2, we introduce the basic
theory of the correlator and then analyze the influence of reflected signal on the correlator
during mismatch of the detection circuit to guide the design of the analog correlator.
Section 3 presents the design and integration of the designed analog complex correlator.
In Section 4, the performance of the proposed correlator is measured and analyzed. In
Section 5, a correlation radiometer system based on the designed correlator for human
body temperature measurement is introduced, and the temperature sensitivity is tested.
Finally, the paper is concluded in Section 6.

2. Analysis of the Analog Complex Correlator

Generally, an ideal correlator can be used to measure the amplitude and phase infor-
mation between two input signals. The typical block diagram of the add-and-square analog
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complex correlator [34,35] is illustrated in Figure 1, and we can see that the correlator is
mainly composed of the six-port network, detection circuit, and differential amplifier circuit.
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Figure 1. The typical block diagram of add-and-square analog correlator.

2.1. Theory of the Analog Complex Correlator

In this section, the basic theory of the correlator will be introduced in the ideal case,
assuming that two input signals, S1 and S2, are represented by V1(t) and V2(t), respectively.
Then, the output of the signal after passing through the six-port network is

S3 = 1
2
[
V1(t) + V̂2(t)

]
S4 = 1

2
[
V̂1(t) + V2(t)

]
S5 = 1

2
[
V̂1(t) + V̂2(t)

]
S6 = 1

2 [−V1(t) + V2(t)]

(1)

where V̂1(t) means the Hilbert transform of V1(t). Here, the Hilbert transform is used to
represent a signal phase shift of 90 degrees, which is convenient for subsequent derivation
in the article. Assuming the signal conversion coefficient is 1, then the useful output
direct current (DC) voltage after the square-law detector and low-pass filter (LPF) can be
expressed [36] as

V3 = E[v3(t)] = 1
4 E
[
V2

1 (t)
]
+ 1

4 E
[
V̂2

2 (t)
]
+ 1

2 E
[
V1(t)V̂2(t)

]
V4 = E[v4(t)] = 1

4 E
[
V̂2

1 (t)
]
+ 1

4 E
[
V2

2 (t)
]
+ 1

2 E
[
V̂1(t)V2(t)

]
V5 = E[v5(t)] = 1

4 E
[
V̂2

1 (t)
]
+ 1

4 E
[
V̂2

2 (t)
]
+ 1

2 E
[
V̂1(t)V̂2(t)

]
V6 = E[v6(t)] = 1

4 E
[
V2

1 (t)
]
+ 1

4 E
[
V̂2

2 (t)
]
− 1

2 E[V1(t)V2(t)]

(2)

In the application of the correlation radiometer, the received signal can be regarded as
a Gaussian white noise signal with a mean value of 0, and then, according to the property
of Hilbert transform, the real and imaginary parts of the correlator can be obtained by
differential amplification of V3 ∼ V6 (assuming the gain is 1)

Vreal = V5 −V6 = E[V1(t)V2(t)]

Vimag = V4 −V3 = E
[
V̂1(t)V2(t)

] (3)

In addition, when V1(t) and V2(t) are represented by point frequency signals a cos(ωt + θ1)
and b cos(ωt + θ2), respectively, the output of the correlator can be expressed as

Vreal =
1
2 ab cos(θ1 − θ2)

Vimag = 1
2 ab sin(θ1 − θ2)

(4)
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From Equation (4), we can see that the output of the analog complex correlator will
form a correlation circle with the phase difference of two input signals varying from
0◦ to 360◦, and the performance of the analog correlator can be evaluated through the
correlation circle.

2.2. Influence of Detector Mismatch on Correlation Results

In order to analyze the effect of detector mismatch on the correlator, assume that the
reflection coefficient of each port in the six-port circuit is the same and expressed by Γs;
the coupling coefficient of each output port is the same and expressed by Γc; the reflection
coefficient of the detection circuit is expressed by ΓD; the phase shift of the transmission line
between the six-port network and the detector is expressed by θl . If multiple coupling and
reflection are ignored, the signals of each channel entering the detector can be expressed as

S′3 = 1
2

[(
1 + ΓDΓSej2θL

)√
1− Γ2
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1− Γ2
D
)(
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2
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The four input signals pass through a square-law detector with a second-order voltage
conversion coefficient of 1 and pass through LPF to filter out the high-frequency term, and
then the DC output can be expressed as
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Therefore, the output of the real part and the imaginary part of the complex correlator
can be expressed as

V′real =
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According to the above formula, the following discussion can be carried out. Firstly,
assuming that the six-port network is ideal, which means Γs = Γc = 0, then Equation (7)
can be simplified as

V′real =
(
1− Γ2

D
)
E[(V1(t)V2(t))]

V′ imag =
(
1− Γ2

D
)
E
[(

V̂1(t)V2(t)
)] (8)
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From Equation (8), we can see that the output of the correlator is the same as that of
Equation (3). The only difference is the decline in correlator output caused by the reflection
of the sensor. In this case, the reflected signal of the detection circuit will be absorbed by the
50-ohm load resistance or the internal resistance of the signal source after passing through
the six-port network, and the reflected signal does not affect the correlator. In the case
that the six-port network is not ideal, the input and output ports of the six-port network
have reflection and coupling between them. The reflected signals from the detector input
will form crosstalk inside the six-port network, thus affecting the output of the correlator.
Therefore, the analysis of detector mismatch should be established in the case that the
six-port network is not ideal.

Secondly, assuming that the two input signals are uncorrelated, then Equation (7) can
be simplified as

V′real =
[(

1 + ΓDΓSej2θL
)√

1− Γ2
SΓC −

(
1− Γ2

S
)
Γ2

C

](
1− Γ2

D
)
•E
[
V2

2 (t)
]

V′ imag =
[(

1 + ΓDΓSej2θL
)√

1− Γ2
SΓC −

(
1− Γ2

S
)
Γ2

C

](
1− Γ2

D
)
•E
[
V2

1 (t)
] (9)

It shows that, even if the input signal is uncorrelated, the output of the correlator is
still not zero due to the reflection of the detection circuit and the reflection and coupling of
the six-port network. In addition, the phase shift θl of the transmission line between the
detector and the six-port network will also affect the output of the correlator. The specific
impact will be explained by the following simulation by establishing simulation model in
ADS (Advanced Design System), which is shown in Figure 2.
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Firstly, when the isolation and return loss of each port in the six-port network are fixed
at 20 dB and the reverse isolation is fixed at 20 dB, the influence of the phase shift of the
transmission line of the detector and the six-port network on the correlation results can
be simulated.

Figure 3 shows the simulation results of the variation in the correlation circle and its
radius with the phase shift θl . It is worth noting that the ideal case in the figure refers to the
ideal reverse isolation between the detector and the six-port network, and we can see that,
with the change in θl , the radius of the correlation circle will increase or decrease. This is
due to the crosstalk caused by the reflected signal in the correlator, not the actual correlation
result between the two input signals. Therefore, the increase or decrease in the correlation
circle radius should be avoided, and it is necessary to increase the reverse isolation between
the six-port network and the detector. The demand for reverse isolation degree can be
determined when θl has the greatest influence, that is, when θl is 15◦ and 105◦, respectively.
Therefore, the simulation results of the variation in correlation circle radius with the reverse
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isolation under the condition that the θl is 15◦ and 105◦, respectively, are shown in Figure 4.
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It can be seen that, under different Γc&Γs, reverse isolation has different influence on
the radius of the correlation circle. Since the return loss of the six-port integrated chip is
about 10 dB [33], the corresponding Γc&Γs is 0.316. If we take a 2% deterioration in the
radius of the correlation circle as the evaluation criterion, then the reverse isolation needs
to be greater than 30 dB.

2.3. Analysis of Transmission Line between Six-Port and Detector on Correlation Results

In the simulation results in Figure 3, we can also find an interesting conclusion: when
the reverse isolation between the detector and the six-port network is ideal, the phase shift
θl of the transmission line between them has no effect on the relevant results.
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Assuming that the length of transmission lines between the six-port network and
the detector is different, these transmission lines are lossless, and the schematic diagram
is shown in Figure 5. Further, when two input signals, S1 and S2, are represented by
cos(ωt + θ1) and cos(ωt + θ2), respectively, then the four outputs of the six-port network
can be expressed as

S3 = 1
2 [cos(ωt + θ1 + θl3) + sin(ωt + θ2 + θl3)]

S4 = 1
2 [sin(ωt + θ1 + θl4) + cos(ωt + θ2 + θl4)]

S5 = 1
2 [sin(ωt + θ1 + θl5) + sin(ωt + θ2 + θl5)]

S6 = 1
2 [− cos(ωt + θ1 + θl6) + cos(ωt + θ2 + θl6)]

(10)

where θli ( i = 3 ∼ 6) represents the phase shift of the four-way transmission line. Take the
signal of port 3 as an example; its output after passing through the square-law detector can
be expressed as

v3 = 1
4 [cos(ωt + θ1 + θl3) + sin(ωt + θ2 + θl3)]

2

= 1
8 [1 + cos(2ωt + 2θ1 + 2θl3)] +

1
8 [1− cos(2ωt + 2θ2 + 2θl3)]

+ 1
4 [sin(2ωt + θ1 + θ2 + 2θl3)− sin(θ1 − θ2)]

(11)Micromachines 2023, 14, x FOR PEER REVIEW 8 of 21 
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After the signal passes through the LPF and filters out the high-frequency term, the
DC output can be expressed as

V3 =
1
8
− 1

4
sin(θ1 − θ2) (12)

It can be seen that the DC signal output after detection and integration is independent
of the length of the transmission line. Therefore, when the isolation between the six-port
and the detector is ideal and the transmission line loss is not considered, the length of
the transmission line between the six-port and the detector does not affect the correlation
results. Therefore, in the design of the correlator, under the premise of ensuring the isolation
between the six-port network and the detector, the length of the transmission line between
them can be different.

3. Design of the Ka band Analog Complex Correlator

According to the analysis in Section 2, the schematic diagram of the designed analog
complex correlator with the operating frequency of 32 to 36 GHz is illustrated in Figure 6.
Further, we can see that the designed correlator is made up of three parts: the integrated
six-port chip, four amplification circuits, and four detectors. Furthermore, the integrated
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six-port chip integrates the functions of amplification, phase shifting, and six-port signal
distribution network. Behind the integrated chip are four amplifier chips; using the reverse
isolation characteristics of transistors, amplifiers can provide good reverse isolation between
the six-port network and detectors and can also amplify the input radio frequency (RF)
signals. Finally, four square-law detectors perform a square operation on the input signal
and filter the high-frequency signal through the LPF, resulting in a DC signal containing
the correlation results.
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Figure 6. The circuit diagram of the designed correlator based on the integrated six-port chip.

Next, we will briefly introduce the basic situation of the six-port chip, then design
the square-law detector, and finally complete the integration and implementation of the
designed analog correlator.

3.1. Introduction of the Integrated Six-Port Chip

The six-port chip that is used in the correlator has been completed in our previous
work [33]. The six-port chip is designed and fabricated using the 0.15 um GaAs process,
and the size of the final fabricated chip, which is shown in Figure 7, is 5 mm × 2 mm.
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Figure 7. The designed six-port chip used in the analog correlator.

From Figure 7, we can see that the six-port chip integrates two amplifiers with three-
stage transistors, two phase shifters with low-pass and high-pass structures, and a six-port
network. The input signals will enter ports 1 and 2 of the chip, then pass through amplifiers
and phase shifters; finally, the signals are distributed by the six-port network and output
from ports 3 to 6. For the designed six-port chip, two amplifiers need 3 V DC voltage with
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the total current of 73 mA. In addition, the phase shift range of a single phase shifter is
greater than 180◦ and less than 360◦. Therefore, two phase shifters in the six-port chip need
to work together to ensure that the phase difference of two input signals can be changed in
the range of 0◦ to 360◦.

3.2. Design and Measurement of the Detector

The design of the detector includes the selection of the detector diode, the design of
output LPF, and the design of the input matching network [37]. In this paper, the zero-bias
Schottky diode produced by Skyworks is selected as the detection diode, and the model is
SMSA7630-061. The use of a zero-bias diode can avoid DC biasing of the detector output
and reduce the complexity of the detection circuit. The LPF uses microstrip branches to
suppress the input RF signal, and the simulation and measurement results of the LPF are
shown in Figure 8, and the suppression of LPF to the fundamental signal (32 to 36 GHz) is
greater than 38 dB. It should be noted that this filter is only used for filtering RF signals, so
an RC low-pass filter needs to be added later to adjust the integration time of the correlator.
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Since the parameters of the detector diode are not accurate in the Ka band, it is
necessary to obtain the matching state of the detector diode before designing the input
matching network of the detector. Then, the calibration model according to TRL (through,
reflect, and line) calibration has been designed and measured [38], and the test structure
is also designed to measure the matching state of the detector diode. The TRL calibration
model and test structure are shown in Figure 9a, and the measurement and calibration
results of the test structure are shown in Figure 9b. After the calibration, the design of the
input matching network can be completed based on the matching points of the diodes on
the Smith chart. In order to obtain higher voltage sensitivity, the input matching network
adopts the matching mode of lossless microstrip branch. Then, the final fabricated detector
and its measurement results are shown in Figure 9c, and we can see that the return loss of
the detector is better than 7.5 dB when the working frequency is 32 to 36 GHz. Figure 9d
shows the output voltage of the detector versus input power, which indicates that the input
power of the detector should be less than −6 dBm to ensure the detector operates within
the square-law detection range. Moreover, with the input power of −25 dBm, the voltage
sensitivity of the detector can be calculated to be 0.8 V/mw. It should be noted that, if
the matching state of the detector does not meet the requirements for the reverse isolation
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between six-port and detector, then the amplifier chip is necessary to avoid the impact of
the reflected signal from the detector on the correlator.
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test structure; (b) the measurement and calibration results of the test structure; (c) the final fabricated
detector and its return loss; (d) the output voltage of the detector versus input power.

3.3. Integration of the Analog Correlator

The integration of the Ka band analog complex correlator can be completed based
on the integrated six-port chip and the detection circuit, which have been designed and
measured, and the final fabricated analog complex correlator is illustrated in Figure 10.
In order to prevent the DC signal generated by the detector from entering the six-port
network, the band pass filter (BPF), which plays the role of suppressing clutter and DC
block, is added between the detector and amplifier chip.
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4. Measurement of the Ka band Analog Complex Correlator

The measurement of the analog correlator includes the test of the dynamic range of
input power, correlation efficiency, and noise characteristics. The dynamic range of input
power and correlation efficiency can be measured by using a vector network analyzer to
provide two channel single-frequency signals with equal amplitude and controllable phase.
Then, the block diagram and the test site of the single-frequency measurement are shown
in Figure 11.
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It can be seen that both the integrated six-port chip and the amplifier chip in the
correlator require the 3 V DC power supply, which is provided by the Rohde and Schwarz
HMP 2030 programmable power supply, and the total current is 232 mA. Furthermore, the
phase shifting function in the six-port chip requires a variable DC voltage of 0 to 1.5 V to
complete the phase control of the input signals, which is also provided by the programmable
power supply. The variation in the output voltage provided by the DC power supply can
be controlled by the computer, and the DC voltage output by the correlator is also collected
by a digital multimeter and then transmitted to the computer. This method completes the
semi-automatic measurement of the correlator and obtains a series of correlation circles.
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In actual measurement results, the measured correlation circle is not ideal and will be
accompanied by a series of errors [35], so calibration is needed to eliminate the measurement
errors, and the calibration model [36] is shown as:

Vreal = ab cos(θ1 − θ2) + Cr
Vimag = abg sin(θ1 − θ2 + φ) + Ci

(13)

where g is the quadrature amplitude error of the correlator and φ is the quadrature phase
error, Cr and Ci are the DC offset error of the correlator. Then, these error parameters can
be calculated through the least squares method.

4.1. Measurement of Dynamic Range of Input Power

In order to measure the dynamic range of the input power for the designed correlator,
the frequency of the input signal should be fixed at the center frequency (34 GHz), and
the phase difference of the input signals is controlled by the vector network analyzer.
Correspondingly, the control voltage of two phase shifters is set to 0 V and remains
unchanged. When the power of the input signal changes from −30 dBm to −50 dBm, the
measured correlation circle is represented in Figure 12a, and the calibration results of the
correlation circle are represented in Figure 12b–d.
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Figure 12. The measurement and calibration result of the correlator under the condition that the fre-
quency of the input signals is 34 GHz and the power varies from −30 dBm to −50 dBm: (a) measured
correlation circle; (b) calibrated correlation circle; (c) the correlation circle radius versus input power;
(d) the variation in maximum phase detection error with input power.
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Figure 12c shows the variation in the correlation circle radius with input power. By
fitting the measurement curve with a straight line, we can see that, when the input power
of the correlator is less than −35 dBm, the output voltage of the correlator is proportional
to the input power, and the detector operates in the square-law detection region. When
the input power of the correlator is greater than −35 dBm, the input power of the detector
exceeds the square-law detection range, which is inappropriate for the correlator, so the
input signal power of the designed correlator should be less than −35 dBm. Further, from
Figure 12d, the maximum phase detection error is less than 2.8◦ when the power of the
input signal is less than −35 dBm. In addition, using the calibrated data, we can also know
that the quadrature amplitude error of the designed correlator is less than ±0.7 dB, and the
quadrature phase error is less than ±2◦.

In the above measurement, the maximum input power of the correlator is obtained.
Next, it is necessary to measure the minimum input power of the correlator. According
to the measurement scheme in Figure 11, and by amplifying the DC output voltage of the
correlator with a differential amplifier, the test results of the correlator at lower input power
can be obtained. When the input power varies from −70 to −50 dBm, the correlation circle
can be obtained by 500 times differential amplification of the four output voltage signals of
the correlator. The measurement and calibration results are represented in Figure 13.
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used in the field of temperature measurement, the power of the input signal can be as low 

Figure 13. The measurement result of the correlator under the condition that the frequency of the
input signals is 34 GHz and the power varies from −50 dBm to −70 dBm: (a) measured correlation
circle with input power varies from −50 dBm to −60 dBm; (b) measured correlation circle with input
power varies from −60 dBm to −70 dBm; (c) the correlation circle radius versus input power; (d) the
variation in maximum phase detection error with input power.
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It can be seen that the measured correlation circle fluctuates and has a –1 V DC bias,
which is caused by the differential amplifier. The DC bias can be eliminated by calibration,
and the fluctuation of the correlation circle will cause the maximum phase detection error
to deteriorate to 5◦. Moreover, it can be found in Figure 13c that the output voltage of the
correlator is proportional to the input power, which means that, when the correlator is used
in the field of temperature measurement, the power of the input signal can be as low as
–70 dBm. To sum up, the dynamic range of input power of the Ka band analog complex
correlator is −70 dBm to −35 dBm.

4.2. Measurement of the Correlation Efficiency and Equivalent Bandwidth

The correlation efficiency and the equivalent bandwidth of the analog correlator can
be calculated using the amplitude and phase characteristics of the correlator’s passband.
Essentially, the correlation efficiency reflects the working bandwidth utilization of the corre-
lator. Therefore, the expression of the correlation efficiency and the equivalent bandwidth
of the correlator are similar, and they are formulated as [16,19]:

η =

∣∣∫ |W( f )| cos[δ( f )]d f
∣∣2∫

B|W( f )|2d f
(14)

Be =

∣∣∫ W( f )d f
∣∣2∫

|W( f )|2d f
(15)

where η means the correlation efficiency of the analog correlator, |W( f )| is the amplitude
response of the correlator, and cos[δ( f )] is the phase response. Moreover, B and Be are the
working bandwidth and equivalent bandwidth. It should be noted that the correlation
efficiency of the analog correlator needs to be greater than 90% [19,37].

In order to measure the correlation efficiency and the equivalent bandwidth of the
designed correlator, the power of the input signal is −35 dBm, and the phase difference
of the two input signals is controlled by the phase shifter in the six-port chip. Then, the
measurement and calibration results are represented in Figure 14, with the frequency of the
input signal varying from 30 GHz to 38 GHz.

The phase and amplitude response of the correlator within the operating bandwidth
is needed to calculate the correlation efficiency and equivalent bandwidth. The amplitude
response of the correlator can be equivalent to the normalized fluctuation of the correlation
circle radius, and the phase response can be equivalent to the maximum phase detection er-
ror of each frequency point. Through this method, the final calculated correlation efficiency
is 92.5% and the equivalent bandwidth is 3.42 GHz. Then, some important characteristics
of the designed correlator are compared with others’ work, which is represented in Table 1.
It is obvious that the proposed analog correlator has the highest working frequency, and
the correlation efficiency is deteriorated, which is caused by the fluctuation in the output
of the correlator in the passband and the deterioration in the maximum phase detection
error. Furthermore, the deterioration in the maximum phase detection error is caused by
the phase shift accuracy of phase shifter in six-port chip.

Table 1. Comparison of the analog correlator.

Reference This Work [37] [21] [13]

Freq(GHz) 32–36 4–8 3.5–8 1.5–2.5

Input Power * (dBm) −35 −30 −20 −17

Equivalent Bandwidth (GHz) 3.42 3.94 4.2 0.92

Correlation Efficiency 92.5% 99.3% 96.6% 95.9%
* The input power during measurement.
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Figure 14. The measurement and calibration results of the correlator under the condition that the
power of the input signals is −35 dBm and the frequency varies from 30 to 38 GHz: (a) measured
correlation circle; (b) calibrated correlation circle; (c) the variation in correlation circle radius with
frequency; (d) the amplitude response and phase response versus frequency.

4.3. Broadband Noise Measurement

In practical application, the correlator needs to complete the correlation calculation on
the broadband noise signal. Therefore, the designed correlator needs to be measured when
the input signal is a noise signal to observe the characteristics of the analog correlator in
the actual working environment. Therefore, the measurement platform for correlator noise
characteristics evaluation has been designed and shown in Figure 15.
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It can be seen that the correlated noise signal is generated by the noise source, and the
output of the noise source is followed by a variable attenuator, which is used to change the
power of the input noise signal. Then, a power divider is adopted to split the noise signal
into two outputs, which can be used as two input noise signals of the analog correlator.
In addition, the phase difference of two input noise signals can be controlled through the
integrated six-port chip. Finally, the DC output voltage of the correlator is collected by a
digital multimeter and the data are transmitted to the computer for processing.

During the measurement, the phase difference of two input signals varies from −180◦

to 180◦, and the power of the noise signal varies from −51 dBm to −31 dBm. Then, the
measurement and calibration results for different input power are shown in Figure 16.
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Figure 16. The broadband noise measurement and calibration result of the correlator with input noise
power varies from −51 dBm to −31 dBm: (a) measured correlation circle with input power varies
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It can be seen that, in the case of broadband noise signal input, the output voltage of
the correlator is proportional to the input noise power. In addition, the maximum phase
detection error is also deteriorated, which is not only due to the impact of the phase shift
control accuracy of the phase shifter but also affected by the phase shift of the broadband
noise signal.
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5. The Millimeter-Wave Radiation Temperature Measurement System Based on the
Designed Analog Correlator

The millimeter-wave radiation temperature measurement system is based on the
designed analog complex correlator, and the block diagram is shown in Figure 17.
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Figure 17. The block diagram of the millimeter-wave radiation temperature measurement system.

The external noise signal is received by the horn antenna and converted to the mi-
crostrip line through the waveguide microstrip conversion structure. Then, the noise signal
passes through the 180◦ hybrid bridge and is added or subtracted from the noise signal
generated by the reference resistance to obtain two signals combined by external noise and
internal resistance noise. If the equivalent noise temperature of the noise signal received
by the antenna and the noise signal generated by the reference resistance is expressed as
TA and Tre f respectively, the output of the two noise signals after passing through the 180
hybrid bridge can be expressed as

V1 =
√

2
2

(
VTA + VTre f

)
V2 =

√
2

2

(
VTA −VTre f

) (16)

Then, two signals enter the analog complex correlator, and output of the correlator
can be expressed as

Vreal = G
(

TA − Tre f

)
cos θ

Vimag = G
(

TA − Tre f

)
sin θ

(17)

where G represents the gain coefficient, we can see that the output of the correlator is
proportional to the difference between antenna temperature TA and reference temperature
Tre f . Then, the DC signal output by the correlator is transmitted to the system terminal for
processing after passing through the amplification and digital acquisition circuit. According
to the block diagram in Figure 17, the final designed thermometer is shown in Figure 18.

It can be seen that the size of the fabricated thermometer is 140 mm× 47 mm × 20 mm,
which meets the handheld demand of human body temperature measurement. In addition,
Figure 18 only shows the front side of the thermometer and only completes the data
amplification and sampling of correlation results. The subsequent data processing and
display functions are integrated on the digital board into the back of the thermometer.

Since the input power required by the analog correlator can be as low as −70 dBm,
only one low-noise amplifier (LNA) in the thermometer can meet the input power demand
of the analog correlator, which effectively reduces the influence of gain fluctuation on the
thermometer output voltage. Furthermore, it can be seen that, shown in Figure 18, the
length of the transmission line between the six-port network and the detector is different,
which has no effect on the output of the correlator according to the previous analysis.



Micromachines 2023, 14, 867 18 of 22

Micromachines 2023, 14, x FOR PEER REVIEW 17 of 21 
 

 

 

Figure 17. The block diagram of the millimeter-wave radiation temperature measurement system. 

The external noise signal is received by the horn antenna and converted to the mi-

crostrip line through the waveguide microstrip conversion structure. Then, the noise sig-

nal passes through the 180° hybrid bridge and is added or subtracted from the noise signal 

generated by the reference resistance to obtain two signals combined by external noise 

and internal resistance noise. If the equivalent noise temperature of the noise signal re-

ceived by the antenna and the noise signal generated by the reference resistance is ex-

pressed as AT  and refT  respectively, the output of the two noise signals after passing 

through the 180 hybrid bridge can be expressed as 

( )

( )

1

2

2
2

2
2

A ref

A ref

T T

T T

V VV

V VV

+=

−=

 (16) 

Then, two signals enter the analog complex correlator, and output of the correlator 

can be expressed as 

( )
( )

cos

sin

A refreal

A refimag

T TV G

T TV G





−=

−=
 (17) 

where G represents the gain coefficient, we can see that the output of the correlator is 

proportional to the difference between antenna temperature AT  and reference tempera-

ture refT . Then, the DC signal output by the correlator is transmitted to the system termi-

nal for processing after passing through the amplification and digital acquisition circuit. 

According to the block diagram in Figure 17, the final designed thermometer is shown in 

Figure 18. 

 

Figure 18. The final designed thermometer. Figure 18. The final designed thermometer.

For the measurement of the thermometer, the noise source is used as the input of
the thermometer. By changing the input power of the noise signal, the equivalent noise
temperature can be calculated, and then the output voltage of the designed thermometer at
different input temperatures is measured. The test site of the thermometer is represented in
Figure 19, and the measurement results of the thermometer are represented in Figure 20.
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Figure 19. The test site of the thermometer.

Figure 20a shows the measurement results of the thermometer output voltage at
12 different equivalent noise temperatures, and ten measurements are completed at each
equivalent noise temperature to determine the fluctuation of the thermometer output
voltage at a fixed input temperature. Then, the variation in the average output voltage
of the thermometer with the equivalent input noise temperature is shown in Figure 20b,
and the standard deviation of the thermometer output voltage is shown in Figure 20c.
It can be seen that the standard deviation of the thermometer is less than 0.6 mV at all
input temperatures.
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The temperature sensitivity of the thermometer can be calculated according to the
slope of the output voltage changing with the input temperature in Figure 20b and the
standard deviation in Figure 20c. Then, the thermometer temperature sensitivity is shown
in Figure 20d, and we can see that, when the input noise temperature is less than 150 ◦C,
the temperature sensitivity of the thermometer is less than 0.2 K. For the application of
human body temperature measurement, the input temperature is within the range of 25 ◦C
to 40 ◦C, so the temperature sensitivity of the thermometer is less than 0.2 K.
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6. Conclusions

In this paper, a Ka band (32 to 36 GHz) add-and-square analog correlator using
an integrated six-port chip is presented for the millimeter-wave radiation temperature
measurement system. The designed correlator adopts the six-port technique to obtain
broadband characteristics. Then, a six-port chip, which integrates the functions of amplifi-
cation, phase shifting, and six-port signal distribution network, is used to miniaturize the
correlator, and the size of the six-port chip is 5 mm × 2 mm. In addition, the analysis and
simulation prove that it is necessary to increase the reverse isolation between the six-port
network and the detector. Based on the above conclusions, an analog correlator has been
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designed, fabricated, and measured. From the measurement results, we can see that the
dynamic range of the input power is −70 dBm to −35 dBm. Moreover, the correlation
efficiency of the designed correlator is 92.5%, and the equivalent bandwidth is 3.42 GHz.
According to the broadband noise measurement, the output voltage of the correlator is
proportional to the input noise power, which reveals that the correlator is suitable for
the field of human body temperature measurement. Finally, a millimeter-wave radiation
temperature measurement system based on the Ka band correlator is also designed. The
measurement results reveal that the temperature sensitivity of the thermometer for human
body temperature measurement is less than 0.2 K.

In the next step, it is necessary is to complete the calibration of the thermometer and test
the actual body temperature. In addition, it is also necessary to solve the difficulty of phase
shift control accuracy of the phase shifter in a six-port chip to improve the phase detection
error of the correlator. On the premise of completing the above work, the correlator
can be used in the existing passive millimeter-wave security imaging system [39,40] to
eliminate local oscillator (LO) links in the original system and reduce the volume of the
system. Furthermore, passive-millimeter-wave imaging technology and optical imaging
technology [41,42] can be integrated to obtain millimeter-wave and optical information
of the measured human body, which is conducive to improving the detection rate of
dangerous things in the security imaging system.
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