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Abstract: This study aimed to investigate the performance of zinc-coated brass wire in wire-cut
electrical discharge machining (EDM) using an ultrasonic-assisted wire on tungsten carbide. The
research focused on the effect of the wire electrode material on the material removal rate, surface
roughness, and discharge waveform. Experimental results demonstrated that using ultrasonic vibra-
tion improved the material removal rate and reduced surface roughness compared to conventional
wire-EDM. Cross-sectional SEM of the white layer and discharge waveform were investigated to
explain the phenomena of ultrasonic vibration in the wire-cut EDM process.
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1. Introduction

Wire Electrical Discharge Machining (WEDM) is a widely used process in the manufac-
turing industry for producing high-precision components in a variety of materials [1]. One
of the challenging materials to machine with WEDM is superalloy due to its high hardness
and strength. Sharma et al. investigated the effect of wire diameter on the surface integrity
of Inconel 706, a material used in gas turbine applications, using WEDM. They also investi-
gated the effect of wire material on productivity and surface integrity of WEDM-processed
Inconel 706 for aircraft application [2,3]. One of the challenges for materials in WEDM is
tungsten carbide. Many researchers have explored the use of wire-cut EDM to improve
the cutting performance of tungsten [4–10]. Naveed et al. investigated the machining
of curved profiles on tungsten carbide–cobalt composite using WEDM. They found that
the machining parameters, such as wire tension and flushing pressure, significantly affect
the machining accuracy and surface roughness of the machined surface [4]. Jangra et al.
optimized the multi-machining characteristics in WEDM of WC-5.3% Co composite using
an integrated approach of Taguchi, GRA, and entropy method [5,6]. They concluded that
the proposed method can significantly improve the machining performance of WEDM.
Muthuraman and Ramakrishnan optimized the WEDM parameters for WC-Co composites
using the desirability approach [7]. They found that the optimal combination of machining
parameters can significantly improve the MRR and surface finish of the machined surface.
Masooth et al. investigated by modifying the Wire-cut electric discharge machining setup
as turning process [8]. The results revealed that the pulse on time (T-on) and pulse off time
(T-off) are more important than wire feed and wire tension. Shah et al. investigated that
WEDM of tungsten carbide is influenced by various parameters such as pulse duration,
voltage, and wire speed [9]. Parihar et al. investigated the effect of WEDM on the mi-
crostructure and mechanical properties of functionally graded cemented tungsten carbide.
The study found that WEDM produced surface damage but the bulk FGCC microstructure
is not affected by machining and the internal structure of the damaged layer had less WC
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grains as compared to top machined surface [10]. Many researchers compared the perfor-
mance of wire-cut EDM with and without the zinc-coated brass wire electrode [11–15]. The
results showed that using a zinc-coated brass wire electrode significantly improved the
surface roughness and reduced the kerf width and geometrical accuracy compared to the
conventional wire-cut EDM. This is because zinc-coated brass wire electrodes have been
shown to provide better electrical conductivity and corrosion resistance compared to brass
electrode materials. The coating is typically applied to a brass wire using heat treatment to
ensure a tight attachment of the zinc layer to the wire surface. The zinc-coated brass wire
has been found to produce smoother surfaces and reduce wire breakage during WEDM
operations on tungsten [14]. Endo et al. investigated the instability and the machining effi-
ciency is reduced as a result of poor flushing condition in a very small gap and observed the
wire vibration applied to the workpiece, machining efficiency to improve lower discharge
energy and feed rate such that EDM at a constant feed rate can further improve the machin-
ing efficiency [15]. Hirao et al. found that ultrasonic vibration-assisted EDM is expected
to have a better effect on finish machining, especially when there is a small gap between
the electrode and workpiece [16]. Similarly, Wansheng et al. and Gao et al. confirmed that
vibration assistance in EDM improved both the material removal rate (MRR) and surface
roughness [17,18]. Guo et al. [19] implemented ultrasonic vibration in wire-EDM and found
a significant relationship between surface integrity and residual stresses. Their results
indicated that surface roughness is relative to the discharge energy. Singh et al. developed
ultrasonic vibration (UV) in EDM, which has the potential to enhance surface morphology
with high accuracy and repeatability [20]. When vibration is applied to the micro-WEDM
process, discharges are more effective with fewer short circuits [21]. Additionally, there
exists an optimum relationship between vibration parameters, energy, and feed rate, such
that EDM at a constant feed rate can further improve machining efficiency [22,23]. This
study focused on the combination of ultrasonic vibration assistance and a zinc-coated brass
wire electrode to evaluate their effects on the WEDM process for tungsten. The study will
highlight the material removal rate, surface roughness, and discharge waveform during
the process.

2. Materials and Methods

The wire-cut EDM machine used for the study is the Mitsubishi Wire-Cut System
model FA-Advance series. Figure 1 shows photographs of the Wire-EDM machine. The
schematic diagram of the ultrasonic setup for vibration in WEDM is shown in Figure 2,
depicting two modes of vibration, namely vibrated wire and vibrated workpiece [18]. In this
study, the vibrated wire configuration was chosen to investigate its efficacy for this purpose.
The depiction of the ultrasonic arrangement for the wire and workpiece is presented in
Figure 3. The vibration of the wire plays a crucial role in expelling and dislodging debris
from the workpiece, further facilitated by the elevated pressure generated in the dielectric
fluid. The amplitude of the wire increases with frequency, resulting in an increased number
of node and antinode displacements. This higher frequency and amplitude of wire vibration
also generates elevated pressure in the dielectric fluid, facilitating the expulsion of debris
from the workpiece. The correlation between frequency, amplitude, and wire vibration is
shown in Figure 4.
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The experimental procedure began with the preparation of the workpiece and the
setup of the WEDM machine with a zinc-coated brass wire and ultrasonic vibration. Table 1
shows element compositions of tungsten carbide. Figure 5 presents a schematic of zinc-
coated brass wire and Table 2 shows CuZn37 alloy compositions for brass wire. Table 3
shows physical properties of tungsten carbide and Table 4 illustrates properties of zinc-
coated brass wire. Parameters considered for the experiment included peak current, pulse
duration, pulse off time, wire tension, and frequency of the ultrasonic vibration, with a
selected frequency of 40 kHz [22]. The machine conditions are shown in Table 5.

Table 1. Element Compositions of Tungsten Carbide.

Element W Co C Ti

Weight % 73.98 9.18 11.41 5.43

Micromachines 2023, 14, 862 4 of 11 
 

 

 
Figure 4. Relationship between wire vibration amplitude and frequency during ultrasonic vibration-
assisted WEDM. 

Table 1. Element Compositions of Tungsten Carbide. 

Element W Co C Ti 
Weight % 73.98 9.18 11.41 5.43 

 
Figure 5. Schematic of zinc-coated brass wire. 

Table 2. Brass wire–CuZn37 alloy compositions. 

Element Cu Al Fe Ni Pb Sn Zn Others Total 
min 62.0 - - - - - Rem. - 
max 64.0 0.05 0.1 0.3 0.1 0.1 - 0.1 

Table 3. Physical properties of tungsten carbide. 

Melting Point 
(°C) 

Density  
(g cm−3) 

Thermal 
Expansion (°C) Hardness (HRA) Elastic Modulus 

(GPa) 
2800 15.7  5 × 10−6 87.4 648 

Table 4. Properties of zinc-coated brass wire. 

Standard Wire 
Diameter  

(mm) 

Wire Diameter 
Tolerance  

(mm) 

Tensile Strength 
(MPa) 

Fracture Load  
(N) 

Conductivity  
(%) 

0.25 +/−0.001 883 (min) 43.3 (min) 20 (min) 

Table 5. Machining Conditions. 

Voltage (V) Current (A) Wire Speed (m/min) USM (kHz) 
12 5 8 40 

 
  

Figure 5. Schematic of zinc-coated brass wire.

Table 2. Brass wire–CuZn37 alloy compositions.

Element Cu Al Fe Ni Pb Sn Zn Others Total

min 62.0 - - - - - Rem. -
max 64.0 0.05 0.1 0.3 0.1 0.1 - 0.1

Table 3. Physical properties of tungsten carbide.

Melting Point
(◦C)

Density
(g cm−3)

Thermal
Expansion (◦C)

Hardness
(HRA)

Elastic Modulus
(GPa)

2800 15.7 5 × 10−6 87.4 648
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Table 4. Properties of zinc-coated brass wire.

Standard Wire Diameter
(mm)

Wire Diameter Tolerance
(mm)

Tensile Strength
(MPa)

Fracture Load
(N)

Conductivity
(%)

0.25 +/−0.001 883 (min) 43.3 (min) 20 (min)

Table 5. Machining Conditions.

Voltage (V) Current (A) Wire Speed (m/min) USM (kHz)

12 5 8 40

3. Results and Discussion
3.1. Amplitude Measurment

To better comprehend the relationship between the amplitude of ultrasonic vibration
and WEDM performance, it is essential to measure the amplitude during the machining
process. Figure 6 presents the process of measuring the amplitude during the vibration-
assisted WEDM process, where sensors were utilized to record the amplitude and frequency
of both the tool terminals and the aluminum alloy transducer head. The vibration amplitude
was measured at a frequency of 40 kHz, and the resulting displacement of the wire vibration
is illustrated in Figure 7. The amplitude of the vibration obtained was found to range
between 18 and 52 nm, as shown in the Figure 7.
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3.2. Effect of Vibration Assistance on Materials Removal Rate and Surface Roughness

This comparison yields valuable insights into the performance differences between
these two methods. When using the Wire-EDM machine, MRR is calculated by using the
following equation:

MRR = (Feed rate) × (wire diameter) × (work height) (1)

where ‘Feed rate’ in mm/min was measured during each trial, and wire diameter and work
height in mm are constant. Surface Roughness number (Ra) was expressed in microns and
the cut-off lengths were 2 mm. The number of samples used during the machining experi-
ments varied depending on the specific conditions being tested. In general, experiments
were carried out with at least three samples for each set of machining parameters to ensure
the validity of the results. Figure 8 shows a comparison of material removal rate and surface
roughness between USV-WEDM and conventional WEDM, yielding valuable insights into
the performance differences between these two methods. The application of ultrasonic
vibrations to the wire electrode via the transducer resulted in a significant increase in
MRR, indicating the effectiveness of ultrasonic wire vibration mode. Furthermore, the
use of ultrasonic vibrations also improved surface roughness. The benefits of ultrasonic-
assisted vibration on materials removal rate in WEDM are due to several factors, including
improved material removal rate by breaking down surface layers of the workpiece and
making it easier for electrical discharge to remove the material. In addition, ultrasonic
vibrations can increase the rate of thermal removal by promoting the breakdown of surface
layers, which enhances material removal efficiency. Additionally, this phenomenon is also
linked to the enhancement of surface roughness [17].
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3.3. Scanning Electron Microscope (SEM) Analysis

The scanning electron microscope (SEM) image of the surface integrity of USV-WEDM
is investigated to show differences compared to that of traditional WEDM. Figure 9 presents
a SEM image comparing the surface integrity of USV-WEDM to that of traditional WEDM.
The photograph shows a subtle variation in the impact of wire vibration on the wire surface,
leading to a substantial enhancement in surface quality. The use of ultrasonic vibrations
during the WEDM process can lead to the formation of finer spheroid features, as shown in
the image. The analysis of the white layer formed during the WEDM process is crucial to
understanding the surface finish quality. The white layer is a hardened and brittle layer
that forms when the surface of the workpiece is heated to very high temperatures and melts
before rapidly cooling down. Figure 10 illustrates the cross-sectional surfaces of the test
specimen exhibiting the white layer of (a) vibration-assisted WEDM (USV-WEDM) and
(b) traditional WEDM. The photograph clearly shows that the use of ultrasonic vibration
during the WEDM process can lead to a thinner and more uniform surface with a reduced
recast layer compared to traditional WEDM, resulting in improved surface finish. This is
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because the ultrasonic vibration helps to break down the surface layers and promote more
thorough and efficient discharging, which results in less thermal damage to the workpiece
and reduced recast layer formation [23–25].
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Tungsten carbide is a highly sought-after material for its hardness and durability, but
it is also known to be brittle, making it difficult to cut using traditional machining methods
such as wire-cut electrical discharge machining (WEDM). The use of ultrasonic vibration
in the WEDM process can cause the material to crack or break under the white layer due
to several reasons. Firstly, high-frequency ultrasonic vibration generates surface stress on
the tungsten carbide workpiece, which can lead to cracking or breakage. Secondly, the
combination of ultrasonic vibration and electrical discharge in the WEDM process can
generate high temperatures and rapid cooling cycles, leading to thermal shock on the
surface of the tungsten carbide workpiece. Thirdly, tungsten carbide’s material properties,
such as high hardness and low ductility, make it susceptible to breakage under high stress
and high temperature conditions [26]. Finally, process parameters such as the vibration
frequency, amplitude, and power, as well as the wire speed, discharge current, and pulse
duration, can affect the material removal rate and the likelihood of breakage in the WEDM
process. These factors must be considered when working with tungsten carbide to avoid
unwanted cracks or breakages under the white layer.

The surface integrity of wire surfaces was examined using a Scanning Electron Mi-
croscope (SEM). Figure 11 illustrates the topography of the wire surface postprocess, with
spherical particles representing melted material that solidified as globules and adhered to
the wire surface.
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stability of the zinc-coated brass wire, minimizing the risk of wire breakage and ensuring 
consistent cutting performance. 

3.4. Waveform Analysis 

To understand the benefits of USV-EDM, it is important to perform a waveform 
analysis of the process. This involves measuring and comparing the electrical waveforms 
generated by USV-EDM and traditional EDM wire cutting processes. By assessing the 
waveform characteristics, critical information can be obtained regarding the performance 
of the process and potential areas for improvement. Figure 12a depicts the voltage and 
current waveforms with ultrasonic vibration assistance, while Figure 12b shows the 
waveforms for conventional WEDM. Effective discharge represents the normal discharge 
generated at the set value. The number of effective discharges collected in 1 ms is 
illustrated in Figure 13, which demonstrates that ultrasonic-assisted WEDM generates 
more discharges than traditional WEDM. The effective discharge waveform in USV-EDM 
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tions. The ultrasonic vibration improves the stability of the discharge, reducing the risk of 
short circuits and resulting in more efficient material removal and better surface finish. 

Figure 11. SEM photographs of wire surface. (a) Wire surface with USV-WEDM; (b) Wire surface
with WEDM.

The surface appears granular with uneven dispersion of spheroid features for normal
WEDM; and short discharges are evident in area A, potentially due to insufficient flow
of dielectric fluid causing inhomogeneous temperature distribution [17,18]. On the other
hand, for the USV-WEDM, only a few fine spheroid features are observed, indicating a
more thorough discharge process. Additionally, ultrasonic vibration may improve the
stability of the zinc-coated brass wire, minimizing the risk of wire breakage and ensuring
consistent cutting performance.

3.4. Waveform Analysis

To understand the benefits of USV-EDM, it is important to perform a waveform
analysis of the process. This involves measuring and comparing the electrical waveforms
generated by USV-EDM and traditional EDM wire cutting processes. By assessing the
waveform characteristics, critical information can be obtained regarding the performance of
the process and potential areas for improvement. Figure 12a depicts the voltage and current
waveforms with ultrasonic vibration assistance, while Figure 12b shows the waveforms
for conventional WEDM. Effective discharge represents the normal discharge generated
at the set value. The number of effective discharges collected in 1 ms is illustrated in
Figure 13, which demonstrates that ultrasonic-assisted WEDM generates more discharges
than traditional WEDM. The effective discharge waveform in USV-EDM is more stable than
in traditional EDM due to the removal of debris by ultrasonic vibrations. The ultrasonic
vibration improves the stability of the discharge, reducing the risk of short circuits and
resulting in more efficient material removal and better surface finish.
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4. Conclusions

The application of ultrasonic vibrations to wire-cut electrical discharge machining
(WEDM) has been demonstrated to have a significant impact on the material removal
rate (MRR) and surface roughness (SR) of the workpiece. The use of ultrasonic vibration
showed improved stability and increased MRR compared to a traditional WEDM. It was
also noted that when the wire was vibrated, an effective discharge could be obtained more
easily. The use of ultrasonic vibrations in WEDM has been shown to have a positive impact
on machining performance, offering improved stability and better surface finish.

The limitation of our study is that only under specific experimental conditions was
a limited range of ultrasonic vibration parameters considered. While the experiment
settings led to improved machining performance and surface finish, there may be other
combinations of parameters that could lead to even better results. Lastly, future studies
could also focus on the development of advanced control systems for USV-EDM, which
could improve the precision and repeatability of the machining process. This could involve
the integration of advanced sensors and control algorithms to enable real-time monitoring
and adjustment of the machining parameters.
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