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Abstract: This paper proposes a bi-directional acoustic micropump driven by two groups of oscillating
sharp-edge structures: one group of sharp-edge structures with inclined angles of 60◦ and a width
of 40 µm, and another group with inclined angles of 45◦ and a width of 25 µm. One of the groups
of sharp-edge structures will vibrate under the excitation of the acoustic wave generated with a
piezoelectric transducer at its corresponding resonant frequency. When one group of sharp-edge
structures vibrates, the microfluid flows from left to right. When the other group of sharp-edge
structures vibrates, the microfluid flows in the opposite direction. Some gaps are designed between
the sharp-edge structures and the upper surface and the bottom surface of the microchannels, which
can reduce the damping between the sharp-edge structures and the microchannels. Actuated with an
acoustic wave of a different frequency, the microfluid in the microchannel can be driven bidirectionally
by the inclined sharp-edge structures. The experiments show that the acoustic micropump, driven
by oscillating sharp-edge structures, can produce a stable flow rate of up to 125 µm/s from left to
right, when the transducer was activated at 20.0 kHz. When the transducer was activated at 12.8 kHz,
the acoustic micropump can produce a stable flow rate of up to 85 µm/s from right to left. This
bi-directional acoustic micropump, driven by oscillating sharp-edge structures, is easy to operate and
shows great potential in various applications.

Keywords: acoustic wave; sharp-edge structure; bi-directional pump; micropump

1. Introduction

A micropump is an important micro-actuator in MEMS (Micro-Electromechanical
Systems), which can realize the directional driving of microfluidics, and is widely used
in microsensors, microbiochemical analysis, and various occasions involving microfluid
transportation [1]. In recent years, with the rapid development of lab-on-chip technology, it
is more urgent to realize the automatic and accurate driving of microfluidics [2,3]. Therefore,
the development of the micropump also affects the further integration and performance
improvement of microfluidic devices, which is a hot spot in the research of MEMS.

In the past two decades, there has been a surge in studies exploring micropump
technologies [4–6]. In view of the need for rapid and accurate control of microfluidics
in lab-on-chip applications, scholars have explored micropumps with multiple driving
modes, including optically-driven pumps [7,8], electro-osmotic pumps [9,10], electrokinetic
pumps [11,12], dielectric pumps [13,14], magnetic pumps [15,16], laser-driven pumps [17],
pneumatic membrane pumps [18–20], bio-hybrid pumps [21,22], and diffuser pumps [23,24].
Recently, the acoustic streaming effect produced by acoustic waves in microfluids has at-
tracted considerable interest, and several microdevices have been explored, including
micromixers [25–29], particle manipulation [30–34], and flow control [35,36]. Due to the
simple structure, ease of manufacturing, good biocompatibility, fast response, and other
acoustic driving characteristics, acoustically oscillating bubbles and acoustically oscillating
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sharp-edge structures have emerged as promising tools for precise control of the flow in
lab-on-chip applications [37]. Admittedly, common problems associated with bubble-based
platforms still exist. For example, the size of the bubble in the microchannel could change
over time, which could result in an undesired change of the bubble’s resonant frequency for
long-term operation [38]. The acoustic streaming generated by the sharp-edge structures
excited by the acoustic wave is used to disturb the flow field, and drive the fluid flow in the
microchannel, which has the advantages of convenient and stable operation, compared with
the acoustic wave-driven microfluid with bubbles. The sharp-edge structures are fabricated
on the wall of a microfluidic channel and protrude in the fluid domain. When oscillating in
response to acoustic excitation, a sharp-edge structure induces acoustic streaming around
its tip [39]. The phenomenon of acoustic streaming is used in a wide variety of microfluidic
applications. Zhang et al. investigated experimentally, using particle image velocimetry,
the mixing performance of sharp-edge structures at low-frequency acoustic excitation
under different experimental conditions (tip angle, vibration amplitude, flow rate). Their
results show that the sharper the edge tip, the larger the size of streaming vortices and the
spatial extent of the induced streaming, thereby greatly enhancing the mixing efficacy [40].
Experimental investigations by Huang et al. have shown that a sharp-edge-based acoustic
micromixer is capable of providing rapid and homogeneous mixing inside a microfluidic
channel, and is free from the drawbacks of bubble-based acoustic micromixers [26]. Mo-
hanty showed that vibrating protrusions inside a microchannel are capable of steering
fluid away from their relative orientation, which is brought forth by the symmetry-broken
design of these protrusions. Additionally, they showed that the flow direction is sensitive to
switching acoustic frequencies [41]. The investigation of the acoustic streaming produced
by sharp-edge structures is also important for cell and microparticle manipulation and
liquid-drop control [42–46].

For the recent micropump based on sharp-edge structures actuated with acoustic
waves, the top of the sharp-edge structure is integrated with the top of the microchannel,
and the bottom is partially bonded with the glass substrate, due to its small size. When
the sharp-edge structure is excited, there is deformation damping between the top of the
sharp-edge structure and the top of the microchannel, while there is also some friction
between the bottom of the sharp-edge structure and the glass substrate, which reduces the
amplitude of the sharp-edge structure, thus affecting the pumping rate. This is different
from the existing acoustic-driven micropump with sharp-edge structures as there is a
separate gap between the sharp-edge structure and the upper and the lower surfaces of
the microchannel, which reduces the damping between the sharp-edge structures and the
microchannel, and improves the pumping effect of the micropump. In addition, we propose
an acoustic micropump driven by two groups of oscillating sharp-edge structures. The two
groups of sharp-edge structures have different inclination angles and widths so they have
different resonance frequencies. One of the groups of sharp-edge structures will vibrate
under the excitation of the acoustic wave, generated with a piezoelectric transducer, at its
corresponding resonant frequency. When one group of sharp-edge structures vibrates, the
microfluid flows from left to right. When the other group of sharp-edge structures vibrate,
the microfluid flows in the opposite direction, which satisfies the need for selectivity in the
direction of pumping.

2. Design and Working Mechanism
2.1. Design of Acoustic Micropump

Figure 1a shows the assembly diagram of the acoustic micropump, which is mainly
composed of a piezoelectric transducer, a PDMS circulating upper channel layer, a PDMS
sharp-edge structures layer, a circulating glass groove layer, and a glass substrate. Figure 1b
is an exploded view of the acoustic micropump structure. The PDMS circulating upper
channel layer, the PDMS sharp-edge structures layer, and the circulating glass groove layer
are bonded layer by layer to form a sealed microfluidic device with a microchannel. This
structure ensures that there are small gaps between the sharp-edge structures and the
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upper and lower surfaces of the microchannel. The piezoelectric transducer is bonded with
the glass substrate with epoxy. The sealed microfluidic device and the glass substrate are
bonded together with double-sided tape. When the sharp-edge structure is oscillating,
actuated with acoustic waves, there is little deformation damping between the sharp-edge
structures and the PDMS circulating upper channel layer, and there is also little friction
between the bottom of the sharp-edge structures and the circulating glass groove. As a
result of that, the vibration amplitude of the sharp-edge structure is larger, stronger acoustic
streaming can be generated, and the pumping effect of the micropump can be improved.
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Figure 1. Structure diagram of acoustic micropump: (a) Overview of acoustic micropump; (b) Ex-
ploded view of acoustic micropump.

The structural dimensions of PDMS circulating upper channel and circulating glass
groove are shown in Figures 2a and 2b, respectively. The structural dimensions of PDMS
circulating upper channel are shown in Figure 2a: the width of the pump circulating
channel is 600 µm, and the width of the flow channel connecting the pump chamber with
the inlet and outlet is 200 µm. The structural dimensions of the circulating glass groove are
shown in Figure 2b: the width of the circulating glass groove is 600 µm, and the depth of
the circulating glass groove is 25 µm.

The schematic of the PDMS sharp-edge structures layer is shown in Figure 3a, and its
structural dimensions are shown in Figure 3b. The total length of the sharp-edge structures
layer channel is 7.2 mm, and the thickness of the sharp-edge structures layer is 80 µm.
Two groups of sharp-edge structures are designed in the microchannel. One group of the
sharp-edge structures is inclined left, with a width of 25 µm and tilt angle of 45◦, and the
other group of the sharp-edge structures is inclined right, with a width of 40 µm and tilt
angle of 60◦.
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2.2. Working Mechanism of Acoustic Micropump

When the piezoelectric transducer is applied with a sinusoidal excitation signal at a
resonant frequency, the piezoelectric transducer vibrates and generates acoustic waves.
Under the excitation of acoustic waves, the corresponding sharp-edge structures in the
micropump are driven to vibrate too. The vibrating sharp-edge structure will generate a
pair of asymmetric reverse vortices near its contact with the fluid, which is acoustic stream-
ing [47–49], as shown in Figure 3. Actuating with the arrayed acoustic streaming, the fluid
in the microchannel can be driven in one selected direction along the microchannel when
one group of inclined sharp-edge structures is actuated in the corresponding frequency.

We calculated the dimensionless constant of the Reynolds number to determine
whether the fluid flow state in microchannel is laminar or turbulent. The Reynolds number
is usually described by the following expression [50]

Re =
ρvd
µ

(1)

where ρ is the density of the fluid, v is the fluid flow rate, d is the feature size, and µ is the
dynamic viscosity of the fluid. When the Reynolds number is greater than 2300, the flow
state of the fluid in the pipeline is turbulent, and when it is less than 2300, the flow state is
laminar. The Reynolds number in microchannel is calculated to be 150, which means that
there is laminar flow in microchannel.

3. Fabrication Process of Acoustic Micropump

The fabrication process of the circulating glass groove layer is as follows. First, the
positive photoresist was spin-coated on both sides of the cleaned glass sheet, exposed to
UV light for one minute, and then developed. After that, the glass sheet was put into
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a corrosion solution mixed with hydrofluoric acid and ammonium fluoride (1:1.5) at a
temperature of 55 ◦C for 25 min. Finally, the glass was rinsed with acetone to remove the
positive photoresist and a groove with a depth of about 25 µm was obtained.

The PDMS circulating upper channel layer was fabricated with standard soft lithog-
raphy. A layer of SU-8 2050 (Microchem Corp., Westborough, MA, USA) photoresist was
spin-coated on a silicon wafer to produce the desired master mold, followed by UV expo-
sure and development. Then, a mixture of a PDMS (Sylgard 184, Dow Corning) with a
10:1 base-to-curing agent ratio was prepared and placed in a vacuum desiccator (Bel-Art
Scienceware, Nanjing, China) to remove air bubbles in the mixture. After that, the PDMS
mixture was poured onto the master mold and placed on a hot plate to bake for 30 min at
95 ◦C. Then, the PDMS was peeled off gently, and punched with one inlet and one outlet.

The fabrication process of the PDMS sharp-edge structures layer is similar to the
fabrication process of the PDMS circulating upper channel layer. The difference is that the
sharp-edge structures are a series of separated cantilevers, and there is no polymerized
PDMS on the top of the sharp-edge structures. The fabrication process of the desired master
mold and the mixture of PDMS with curing agent of the PDMS sharp-edge structures layer
is the same as that of the PDMS circulating upper channel layer. Chelating organosilane
AATMS((3-(2-aminoethyl)-aminopropyltrimethoxysilane) was used in the fabrication of the
PDMS sharp-edge structures layer preventing the PDMS from polymerizing on the top of
the sharp-edge structures. A glass slide was immersed in a 6% w/w solution of the AATMS
molecules in methanol for 1 h, and then baked in an oven at 110 ◦C for 10 min to covalently
link the silane groups to the glass. The glass slide will be used as an inhibiting glass plate in
PDMS polymerization. The PDMS prepolymer was poured on the mold and the inhibiting
glass plate was placed on top of the liquid prepolymer. After which, a light pressure was
applied to planarize the prepolymer layer. The clamping pressure is not critical but must
be enough to create a residual prepolymer squeeze film of no more than a few micrometers
on top of all protruding features. In our case, we used two clips that exerted about 10 kPa
in total on the mold. The prepolymer was then cured in an oven for 30 min at 95 ◦C. After
curing, the thin squeeze film of prepolymer on top of the protruding mold features remains
unpolymerized while the bulk PDMS polymerized. The formation of residual film between
PDMS sharp-edge structures was also prevented, by inhibiting PDMS polymerization on
the protruding part of the mold. The process flow diagram is shown as Figure 4:
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The PDMS sharp-edge structures layer, attached to the inhibiting glass plate, bonded
with the circulating glass groove layer after plasma treatment. The inhibiting glass plate
was removed by gently shearing it off from the PDMS sharp-edge structures film. The
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PDMS circulating upper channel layer was aligned and reversibly bonded with the PDMS
sharp-edge structures layer with a microscope, forming a sealed microfluidic device.

A piezoelectric transducer (SY-27T-3.5A1, Yaoze Electronics, Shenzhen, China) and
the glass substrate were bonded together with AB epoxy (DP460, 3M, Maplewood, MN,
USA), and the sealed microfluidic device and the glass substrate were bonded together,
with double-sided tape (9080, 3M, Maplewood, MN, USA). A photograph of the acoustic
micropump is shown in Figure 5.
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4. Results and Discussion
4.1. Composition of Experimental System

The experimental test system is shown in Figure 6. There was a CCD camera (YH5001-3,
Shanghai Optical Instrument Factory, Shanghai, China) and a power signal generator (ATG-
2042, Agitek, Xi’an Antai Test Equipment Co., Ltd., Xi’an, China). The CCD camera was
mounted on a microscope (6XD-3, Shanghai Yongheng Optical Instrument Manufactur-
ing Co., Ltd., Shanghai, China) and connected to a computer, which was used to record
the images.
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4.2. Working Frequency of Acoustic Micropump

Some deionized water mixed with polystyrene beads, with a diameter of 5 µm, was
injected into the micropump. The polystyrene beads were used to characterize the acoustic
streaming. We injected the mixed solution into the micropump, and after the solution
had stabilized, sinusoidal excitation signal was applied to the piezoelectric transducer
connected to the power signal generator. We considered the frequency at which the acoustic
streaming phenomenon is most obvious, and the microbead in the micropump moved faster,
as the resonance frequencies of the micropump. To determine the resonance frequencies
corresponding to different directions of motion, by sweeping the frequency with a 100 Hz
increment from 1 kHz to 30 kHz, we observed that the acoustic streaming patterns were
most visible around the tips of the oscillating sharp-edge structures with an inclined angle
of 60◦ when the piezoelectric transducer was activated at 20.0 kHz; when the applied
frequency is around 20 kHz, the movement speed of the microbeads significantly slowed
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down, or even stopped. Therefore, we set 20.0 kHz as the resonant frequency of the sharp-
edge structure with an inclined angle of 60◦ Similarly, obvious acoustic streaming patterns
were developed around the tips of the oscillating sharp-edge structures with an inclined
angle of 45◦ when the piezoelectric transducer was activated at a frequency of 12.8 kHz.
The microscopy images of acoustic streaming at resonance frequency around sharp-edge
structures are shown in Figure 7.
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4.3. Pumping Rate of Acoustic Micropump

In order to visualize the pumping flow, we used polystyrene beads with a diameter
of 5 µm, and polystyrene beads with a diameter of 10 µm, to characterize the speed in the
micropump, respectively. During the experiment, we found that the movement of beads
with a diameter of 5 µm under the microscope was not as clear as that of beads with a
diameter of 10 µm, so the speed of the beads with a diameter of 10 µm was considered
as flow speed in our experiment. Deionized water solution, with polystyrene beads with
a diameter of 10 µm, was injected into the micropump. According to the experiments of
frequency selection, the working frequency for the group sharp-edge structure with an
angle of 60◦ is 20.0 kHz and the working frequency for the group sharp-edge structure with
angle of 45◦ is 12.8 kHz. During the experiment, a sinusoidal excitation signal was applied
to the piezoelectric transducer through a signal generator at resonant frequency, while
the input voltage was adjusted to observe the movement of the beads in the micropump.
We used a camera connected to a computer to capture the motion state of the polystyrene
beads in the micropump, then selected appropriate time points as the starting point and
end point, and measured the motion distance of the polystyrene beads during this period
on the computer, to calculate the motion speed of the polystyrene beads. Figure 8 shows
the movement of polystyrene beads in the micropump within 3 s when the piezoelectric
transducer was excited with 200 Vpp at a frequency of 20.0 kHz. The polystyrene beads
(circled in red) moved from left to right (Video S1). The pumping flow rate could be
calculated by multiplying the cross-sectional area of the channel with the flow speed. The
micropump flow rate was about 15 mL/min when the pumping rate was about 125 µm/s.
The images in Figure 8 were captured in domain A that was shown in Figure 1b.

In order to verify that the micropump with a certain gap between the sharp-edge
structures and the upper and lower surfaces of the microchannel has a higher pumping
speed than the sharp-edge structures bonded on the substrate and directly connected on
the upper surface of the microchannel, a mold with sharp-edge structures and a circular
microchannel with the same dimension as shown in Figure 3 was fabricated. A PDMS copy
with the same dimension, sharp-edges, and microchannel was obtained with the mold
using casting and curing process, and then directly bonded with a glass substrate forming a
micropump. The result shows that the maximum pumping rate is about 25 µm/s, actuated
with a peak voltage of 200 Vpp, at various frequencies.
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Figure 8. Images showing the pumping behavior at 20.0 kHz by indicating the movement of
polystyrene beads in acoustic micropump at different time frames when (a) t = 0 s, (b) t = 1 s,
(c) t = 2 s, (d) t = 3 s.

Figure 9 shows the movement of polystyrene beads in the micropump when the
piezoelectric transducer was excited with 200 Vpp at frequency of 12.8 kHz, the polystyrene
beads (circled in red) moved from right to left (Video S2) and the pumping rate was about
85 µm/s. Similarly, the micropump flow was calculated to be approximately 10 mL/min.
The images were also captured in domain A, as shown in Figure 1b.

As shown in Figure 10, the relationship between the micropump pumping flow rate
and the voltage was obtained by adjusting the applied voltage. It was observed that the
acoustic streaming begins to occur around the sharp-edge structure of 60◦ in the micropump,
when the piezoelectric transducer was activated at 20.0 kHz, with the applied voltage of
100 Vpp. The polystyrene beads in the micropump start to move at a speed of 10 µm/s
(the micropump flow is approximately 0.12 mL/min) with an applied voltage of 100 Vpp.
As the input voltage increases, the velocity of the beads gradually increases. When the
input voltage increased to 200 Vpp, our micropump pumping rate reaches 125 µm/s (the
micropump flow is approximately 15 mL/min).

The relationship of the pumping flow rates with various applied voltages, activated at
12.8 kHz, is shown in Figure 11. The pumping flow rate reaches 85 µm/s (the micropump
flow is approximately 10 mL/min) when the input voltage increases to 200 Vpp.
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During the experiment, we considered that a portion of acoustic waves during the
propagation of microfluidics would be converted from mechanical energy to thermal energy,
resulting in an increase in the temperature of the fluid in the microchannel. In the future,
we will analyze the temperature changes of the microfluidics in the micropump during
operation, and design relevant tests to analyze the biocompatibility of the micropump.

5. Conclusions

This paper presents a bi-directional acoustic micropump driven by two groups of
oscillating titled sharp-edge structures with different widths and different tilt angles,
which can achieve the selection of pumping direction. In addition, by improving the
manufacturing process of the micropump, the cantilevered sharp-edge structures in the
microchannel were designed, which can reduce the damping of sharp-edge structures in
the channel. Through experimental comparison, this cantilevered sharp-edge structure
has a better driving effect in an acoustic micropump. The pumping rate is about 125 µm/s
(the micropump flow is approximately 15 mL/min) from left to right, actuated with a
voltage of 200 Vpp, at a frequency of 20.0 kHz. The pumping rate is about 85 µm/s
(the micropump flow is approximately 10 mL/min) from right to left, actuated with a
voltage of 200 Vpp, at a frequency of 12.8 kHz. The pumping rate in the micropump can
also be adjusted by adjusting the input voltage. The micropump in this paper not only
has advantages in simplicity, stability, reliability, cost-effectiveness, controllability, and
flexibility, but also has great value in many laboratory chip applications when combined.
Microfluidic directional driving devices with sharp-edge structures, excited with acoustic
waves, have potential biomedical applications, including on-chip laboratory, portable or
implantable drug delivery devices.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/mi14040860/s1, Video S1: The movement of polystyrene beads
in acoustic micropump when the piezoelectric transducer was excited with 200 Vpp at a frequency
of 20.0 kHz. Video S2: The movement of polystyrene beads in acoustic micropump when the
piezoelectric transducer was excited with 200 Vpp at a frequency of 12.8 kHz.
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