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Abstract: In recent years, the active-matrix organic light-emitting diode (AMOLED) displays have
been greatly required. A voltage compensation pixel circuit based on an amorphous indium gallium
zinc oxide thin-film transistor is presented for AMOLED displays. The circuit is composed of five
transistors–two capacitors (5T2C) in combination with an OLED. In the circuit, the threshold voltages
of both the transistor and the OLED are extracted simultaneously in the threshold voltage extraction
stage, and the mobility-related discharge voltage is generated in the data input stage. The circuit
not only can compensate the electrical characteristics variation, i.e., the threshold voltage variation
and mobility variation, but also can compensate the OLED degradation. Furthermore, the circuit can
prevent the OLED flicker, and can achieve the wide data voltage range. The circuit simulation results
show that the OLED current error rates (CERs) are lower than 3.89% when the transistor’s threshold
voltage variation is ±0.5V, lower than 3.49% when the mobility variation is ±30%.

Keywords: pixel circuit; voltage programming; threshold voltage variation; mobility variation;
OLED degradation

1. Introduction

OLEDs (organic light-emitting diodes) have gained widespread attention for their
advantages such as low power consumption, high contrast, fast response time, thinner, and
more foldable characteristics. According to the different driving methods, OLED driving
technology can be divided into PMOLEDs (passive-matrix OLEDs) and AMOLED (active-
matrix OLEDs). PMOLED has the advantages of a simple structure and low cost. However,
PMOLED requires a larger driving voltage, and its power consumption is significantly
higher than the AMOLED. As shown in Figure 1, AMOLEDs use independent thin-film
transistors to control each pixel, so that each pixel can be continuously and independently
driven and lit. Therefore, AMOLED is suitable for large and high-resolution displays, and
has high application prospects for the displays [1–4].

In AMOLED pixel circuits, the oxide thin-film transistor (TFT) has great advantages,
such as high carrier mobility, high light transmittance, good uniformity, and low off current,
so it is widely applied to drive OLED, especially for large size AMOLED [5–9].

On the one hand, the TFT’s electrical characteristics variation, i.e., the threshold
voltage variation and mobility variation would lead to the OLED current change. On the
other hand, the OLED degradation would also lead to the OLED current change. The
OLED current change brings out the uniformity of displays [10,11]. Therefore, in AMOLED
displays, the circuit is needed to compensate the TFT’s electrical characteristics’ variation
and the OLED degradation. Generally, the compensation circuit is divided into the current
compensation circuit and the voltage compensation circuit.

The current compensation circuit can successfully compensate the TFT’s electrical
characteristics’ variation [12,13]. However, the compensation speed is relatively slow at
low gray level. This problem could be solved by the voltage compensation circuit [14–16].
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Therefore, lots of valuable voltage compensation pixel circuits have been reported [17–30].
In [17–21], the circuits can compensate the threshold voltage variation successfully.

In [22–25], the circuits can compensate both threshold voltage and mobility variations
successfully. In [26–28], the circuits can compensate both threshold voltage variation and
OLED degradation successfully. To obtain higher uniformity of displays, it would be better
if the circuits can compensate the above three items.

In [29], the circuit can compensate the above three items successfully, but the circuit
cannot prevent the OLED flicker. In [30], the circuit not only can compensate the above
three items, but also can prevent the OLED flicker successfully. However, the data voltage
must be less than the OLED threshold voltage. Thus, the data voltage range is limited.

In this paper, a voltage compensation pixel circuit is proposed. In the threshold
voltage extraction stage, the circuit can extract the threshold voltages of both the TFT and
the OLED simultaneously. In the data input stage, the circuit can generate the mobility-
related discharge voltage. The simulation results show that the circuit can compensate three
items: the threshold voltage variation, the mobility variation, and the OLED degradation,
can prevent the image flicker, and can achieve the wide data voltage range.

2. Materials and Methods

The circuit structure and the driving schematic diagram are shown in Figure 2. As
shown in Figure 2a, the circuit consists of one driving TFT (T2), four switching TFTs (T1,
T3, T4, T5), and two capacitors (C1, C2).

As shown in Figure 2b, the driving schematic diagram contains four stages: (1) the
initialization stage, (2) the threshold voltage extraction stage, (3) the data input stage, and
(4) the emission stage.

The working principle of the circuit is described as follows.

2.1. Initialization Stage

In the initialization stage, as shown in Figure 2b, SCAN1, SCAN3, and SCAN4 are high.
SCAN5 is low. Therefore, T1, T3, and T4 are turned on. T5 is turned off. The schematic of
the circuit in this stage is shown in Figure 3a.

Because T1 and T4 are turned on, the voltage of node B is charged to VDD.
Because T3 is turned on, no current flows through the OLED. Therefore, the OLED

flicker is prevented.
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Figure 2. (a) Schematic of the proposed pixel circuit and (b) timing diagram: (1) initialization stage, 
(2) threshold voltage extraction stage, (3) data input stage, and (4) emission stage. 
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stage, (c) data input stage, and (d) emission stage.

2.2. Threshold Voltage Extraction Stage

In the threshold voltage extraction stage, as shown in Figure 2b, SCAN1, SCAN3, and
SCAN4 go to low. SCAN5 remains low. Therefore, T1, T3, T4, and T5 are turned off. The
schematic of the circuit in this stage is shown in Figure 3b.

Because T1 is turned off, no current flows through the OLED. Therefore, the OLED
flicker is prevented.

The voltage of node B is gradually discharged until T2 is turned off. The voltage of
node B goes to

VB = VTH_T2 + VTH_OLED. (1)

Consequently, the threshold voltages of both T2 and OLED are extracted simultane-
ously in this stage.

2.3. Data Input Stage

In the data input stage, as shown in Figure 2b, SCAN1, SCAN3 and SCAN4 remain
low; SCAN5 goes to high. Therefore, T1, T3, and T4 are turned off; T5 is turned on. The
schematic of the circuit in this stage is shown in Figure 3c.

Because T1 is turned off, no current flows through the OLED. Therefore, the OLED
flicker is prevented.

In [29], to prevent OLED flicker, the data voltage range is limited: it is much less than
the OLED threshold voltage. In this paper, the above limitation is avoided.

At the beginning and the end of this stage, t is defined as t0 and t0 + T, respectively.
They are indicated in Figure 2b.

At the time t0, the data voltage (VDATA) is input to the circuit; VC and VB are ex-
pressed as

VC(t = t0) = VDATA + VTH_OLED, (2)

VB(t = t0) = VTHT2 + VTH_OLED. (3)
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After the time T, VC remains unchanged; VB discharges through C1, C2, and T2. At
the time t0 + T, VC and VB are expressed as

VC(t = t0) = VDATA + VTH_OLED, (4)

VB(t = t0) = VTH_T2 + VTH_OLED − (VDATA + VTH_OLED)×
C2

C1 + C2
− ∆Vµ. (5)

where ∆Vµ is the discharged voltage related to the mobility of T2.
The expression of ∆Vµ is derived as follows. When DATA is input to the circuit, T2

keeps the diode-connected structure. Therefore, the mobility-related discharge voltage
∆Vµ is stored in C1. By the law of discharge conservation, we have [30]

(C1 + C2)
dVGS_T2

dt
=

1
2

µCOX
W
L
(VGS_T2 −VTH_T2)

2. (6)

where µ is the mobility of T2, COX is the gate oxide capacitance per unit area, and W
L is the

width–length ratio of T2.
Integrating (6), we have

∫ VGS_T2(t=t0+T)

VGS_T2(t=t0)

1

(VGS_T2 −VTH_T2)
2 dVGS_T2 =

∫ t=t0+T

t=t0

µCOX
W
L

2(C1 + C2)
dt. (7)

where
VGS_T2(t = t0) = VB(t = t0)−VC(t = t0), (8)

VGS_T2(t = t0 + T) = VB(t = t0 + T)−VC(t = t0 + T). (9)

Substituting (2)–(5) to (9), we obtain

∆Vµ = (VDATA + VTH_OLED)×
C2

C1 + C2
− 1

µCOX
W
L

2(C1+C1)
T + 1

(VDATA+VTH_OLED)× C2
C1+C2

. (10)

Consequently, the mobility-related discharge voltage ∆Vµ is generated in this stage.

2.4. Emission Stage

In the emission stage, as shown in Figure 2b, SCAN1 goes to high, SCAN3 and SCAN4
remain low, and SCAN5 goes to low. Therefore, T1 is turned on, and T3, T4, and T5 are
turned off.

The schematic of the circuit in this stage is shown in Figure 3d.
The driving TFT (T2) operates in the saturation region; the OLED current is expressed

as follows:
IOLED =

1
2

µCOX
W
L
(VGS_T2 −VTH_T2)

2. (11)

Substituting (9) to (11), we obtain

IOLED =
1
2

µCOX
W
L
((VDATA + VTH_OLED)×

C2
C1 + C2

−VDATA − ∆Vµ)
2
. (12)

Substituting (10) to (12), we obtain

IOLED =
1
2

µCOX
W
L
(

1
µCOX

W
L

2(C1+C1)
T + 1

(VDATA+VTH_OLED)× C2
C1+C2

−VDATA)
2
. (13)
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From (12), it is found that the OLED current is independent of the threshold voltage
VTH_T2. That is, when VTH_T2 varies, IOLED remains stable. Therefore, the circuit can
compensate the threshold voltage variation.

From (10), it is found that when the mobility µ increases, ∆Vµ will increase, and vice
versa. Consequently, in (12), when the mobility varies, IOLED remains stable. Therefore,
the circuit can compensate the mobility variation. This point also can be explained by (13).

In (13), when µ increases, both 1
2 µCOX

W
L and µCOX

W
L

2(C1+C1)
T will increase; thus, IOLED remains

stable, and vice versa.
From (13), it is found that the OLED current is positively correlated with VTH_OLED.

Therefore, the circuit can compensate the OLED degradation [29–31].

3. Results and Discussions

In the circuit simulation, to evaluate the compensation performance, the SPICE model
(level = 35) is used for the oxide TFTs. The TFTs’ threshold voltage and mobility are 1.5 V
and 50 cm2/V, respectively. The TFTs’ threshold voltage variation and mobility variation
are ±0.5 V and ±30%, respectively [9,14,28]. The OLED model is equivalent to a TFT and
a COLED in parallel [22,27,32]. The oxide TFT and the OLED models are verified by the
experimental data [8,33], which are shown in Figure 4.
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The values of the design parameters are shown in Table 1; the range of the values is rea-
sonable, which is consistent with the previous pixel circuit applications [11,19,20,27,32,34].

Table 1. Design parameters of the circuit.

Parameters (Unit) Value Parameters (Unit) Value

WT2 (µm) 3 VDD (V) 5
LT2 (µm) 3 C2 (pF) 0.2

WT1,T3,T4,T5 (µm) 22 COLED (pF) 0.2
LT1,T3,T4,T5 (µm) 3 SCAN1,3,4,5 (V) −5~5

C1 (pF) 0.4 DATA (V) VDATA~0

Figure 5a shows the transient waveforms of VB, i.e., the gate voltage of T2, at
VDATA = −4 V. It is found that when ∆VTH_T2 = ±0.5 V, ∆VB approximates ±0.5 V in
the threshold voltage extraction stage, i.e., VB senses the threshold voltage variation suc-
cessfully. Figure 5b shows the transient waveforms of the OLED current IOLED. It is found
that IOLED = 0 except for the emission stage, i.e., the OLED flicker is prevented. In the emis-
sion stage, when ∆VTH_T2 = −0.5, 0, and +0.5 V, the transient waveforms of IOLED = 94.11,
90.59, and 87.06 n A, respectively. The current error rates (CERs) are 3.74% and 0, 3.89%,
respectively. Thus, the circuit compensates ∆VTH_T2 successfully.
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at VDATA = −4 V, where (1) initialization stage, (2) threshold voltage extraction stage, (3) data input
stage, (4) emission stage, and (c) current error rates versus VDATA when the threshold voltage varies.

The CER for ∆VTH_T2 is defined as

IOLED(∆VTH_T2 = 0)− IOLED(∆VTH_T2 = ±0.5 V)

IOLED(∆VTH_T2 = 0)
× 100%. (14)

Figure 5c shows the transient waveforms of CER vary when ∆VTH_T2 is +0.5 V and
−0.5 V, respectively. It is found that the CERs are less than ±9.59% within the whole data
range. Thus, the threshold voltage variation ∆VTH_T2 is compensated successfully.

Figure 6a shows the transient waveforms of VB at VDATA = −4V. It is found that when
∆u=±30%, the variation of VB is similar to ∆u, i.e., VB senses the mobility variation success-
fully. Figure 6b shows the transient waveforms of the OLED current IOLED. It is found that
IOLED = 0 except for the emission stage, i.e., the OLED flicker is prevented. In the emission
stage, when ∆u = −30, 0, and +30%, the transient waveforms of IOLED = 88.06, 90.59, and
93.87 n A, respectively. The current error rates are 2.81% and 0, 3.49%, respectively. Thus,
the circuit compensates ∆u successfully.

The CER for ∆u is defined as

IOLED(∆u = 0)− IOLED(∆u = ±30%)

IOLED( ∆u = 0)
× 100%. (15)

Figure 6c shows the transient waveforms of CER varies when ∆u is +30% and −30%,
respectively. It is found that the CERs are less than ±9.28% within the whole data range.
Thus, the mobility variation ∆u is compensated successfully.

In this paper, the circuit can compensate the OLED degradation. It is explained as
follows. For the long time operation, the OLED luminance degrades while VTH_OLED
increases [29–31]. Therefore, IOLED (13) increases. The increase in IOLED brings about the
increase in the OLED luminance. Thus, the OLED luminance degradation is compensated.

In Figures 5a,b and 6a,b, the time of the third stage, i.e., the data input stage, is set
to 3.8 us. It is suitable for the 8K4K ultrahigh definition (7680 × 4320, UHD) for high-
performance display [11,35,36].

As shown in Table 2, the valuable publications are compared with this paper. In [29],
the circuit can compensate the threshold voltage variation, the mobility variation, and the
OLED degradation successfully, but the circuit cannot prevent the OLED flicker. In [30] and
this paper, the circuits not only can compensate the above three items successfully, but also
can prevent the OLED flicker.
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Table 2. Comparison between this paper and the previous publications.

Publications Structure VTH
Compensation

µ
Compensation

OLED
Degradation

Prevent Image
Flicker

2015 [22] 5T2C
√ √

-
√

2015 [27] 5T2C
√

-
√ √

2015 [28] 4T1C
√

-
√ √

2016 [30] 4T2C
√ √ √ √

2017 [26] 4T1C
√

-
√ √

2018 [23] 6T2C
√ √

-
√

2018 [29] 5T2C
√ √ √

-
2020 [19] 6T1C

√
- -

√

2020 [20] 9T2C
√

- -
√

2022 [17] 6T2C
√

- -
√

This paper 5T2C
√ √ √ √

However, in [30], VDATA must be less than VTH_OLED, that is, the range of VDATA is
limited. In this paper, the range of VDATA is not limited by VTH_OLED. Therefore, the circuit
achieves the wide data voltage range.

Figure 7 shows the layout structure of the circuit. SCAN1, SCAN3, SCAN4, and
SCAN5 are transverse lines, which are set to 4 um. These transverse lines are shared by the
pixels of the same row. VDD, GND, and DATA are the vertical lines, which are set to 6 um.
VDD and GND are shared by the entire display panel. DATA is shared by the pixels of the
same column. The total layout area is 180 um × 110 um. The proposed layout achieves an
aperture ratio of 39.14%.
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4. Conclusions

The pixel circuit is presented for improving AMOLED displays uniformity. In the
threshold voltage extraction stage, the threshold voltages of the driving TFT and the OLED
are extracted. In the data input stage, the discharge voltage related to mobility is generated.
Consequently, the circuit not only compensates the threshold voltage variation, the mobility
variation, and the OLED degradation, but also prevents the image flicker and achieves the
wide data voltage range.
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