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Abstract: Nowadays, high-performance audio communication devices demand superior audio
quality. To improve the audio quality, several authors have developed acoustic echo cancellers based
on particle swarm optimization algorithms (PSO). However, its performance is reduced significantly
since the PSO algorithm suffers from premature convergence. To overcome this issue, we propose a
new variant of the PSO algorithm based on the Markovian switching technique. Furthermore, the
proposed algorithm has a mechanism to dynamically adjust the population size over the filtering
process. In this way, the proposed algorithm exhibits great performance by reducing its computational
cost significantly. To adequately implement the proposed algorithm in a Stratix IV GX EP4SGX530
FPGA, we present for the first time, the development of a parallel metaheuristic processor, in which
each processing core simulates the different number of particles by using the time-multiplexing
technique. In this way, the variation of the size of the population can be effective. Therefore,
the properties of the proposed algorithm along with the proposed parallel hardware architecture
potentially allow the development of high-performance acoustic echo canceller (AEC) systems.

Keywords: FPGA; parallel metaheuristic processor; particle swarm optimization; Markovian switching
technique; AEC system; spiking neural P systems

1. Introduction

Over the last ten years, tremendous efforts have been made to develop high-performance
acoustic echo cancellers, which can offer high-quality and realistic sound needed in the
newest acoustic communications. In particular, some authors have used the PSO algorithm
as an adaptive echo canceling algorithm since this can be easily implemented and exhibits
a fast convergence rate [1]. For example, Mahbub et al. [1,2] presented an AEC system
based on the PSO to compute the error minimization in the frequency domain and time
domain, respectively. Pichardo et al. [3] introduced a convex combination to improve the
performance of the digital filter at the cost of increasing the overall computational cost.
Recently, Kimoto et al. [4] introduced a multichannel adaptive echo-canceling algorithm
based on PSO. Specifically, their technique considers a pre-processing of the input signals.
Despite achieving these advanced approaches, there are still remaining tasks to significantly
improve the performance of these systems in terms of echo return loss enhancement (ERLE)
and convergence rate. Unfortunately, PSO suffers from premature convergence problems,
especially in the case of multi-modal optimization problems. This reduces its performance
since it losses the ability to find the optimal solution. To deal with this, several authors
have proposed modifications to the conventional PSO [5–10]. However, a small number
of solutions have been applied to adaptive acoustic echo cancellers. On the other hand,
the implementation of the PSO algorithm in FPGA devices, to simulate AEC systems,
faces great challenges to build optimal hardware architectures. To date, several hardware
architectures have been developed to implement the PSO algorithm to be applied in
adaptive filtering [11–13]. However, none of these architectures have been proposed to
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simulate AEC systems. Here, we present for the first time, the implementation of the PSO
algorithm in an FPGA for AEC systems. Specifically, we include the Markovian switching
technique [14] into the conventional PSO algorithm to create a high-performance AEC
system since considers quick convergence to the global optimum and also keeps the swarm
global search simultaneously by taking advantage of the current search information.

From the engineering point of view, the implementation of the AEC systems based on
the PSO algorithm requires a large number of particles. As a consequence, a large area of
consumption is required. To overcome this, we proposed criteria to dynamically decrease
the number of particles over the filtering process. In addition, we use the block-processing
scheme to easily implement the proposed algorithm in a parallel hardware architecture.

2. Proposed Markov Switching PSO Algorithm

In this section, we present a new variant of the PSO to improve search performance.
Specifically, we dynamically adjust the velocity of the particle according to an evolutionary
factor. In this manner, the premature convergence of the PSO can be prevented and this
can be also especially useful in dealing with multi-modal and high-dimensional problems.
Figure 1 shows the structure of the proposed variant of the PSO algorithm applied to adap-
tive filtering and Figure 2 shows the required steps to perform the proposed PSO algorithm.

Figure 1. Structure of the proposed Markov switching PSO algorithm applied to adaptive filtering.
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Figure 2. Flowchart of the proposed Markov switching PSO algorithm.

To perform the proposed PSO algorithm, the following steps are required:

• Specification of the control parameters. Here, the proposed Markov switching PSO
algorithm has a population matrix W with P adaptive filters, where each particle
denotes an adaptive filter, as shown in Equation (1). Here, the order N of each adaptive
filter determines the dimension of each particle. Therefore, the whole population is
defined as follows:

W =


w1

1 w2
1 . . . wP

1
w1

2 w2
2 . . . wP

2
...

...
. . .

...
w1

N w2
N . . . wP

N

 (1)

• Creation of the initial population. At the first iteration n = 1, the position wi(n) of each
particle is initialized, where i = 1, 2, . . . , P.

wi(n) = (ub− lb) · r + lb (2)

where r denotes a Gaussian process of length, N. The value lb is a lower bound and
ub is an upper bound.

• Calculation of the signal filtering . The calculation of signal counteraction or also called
residual noise e(n) is given by

ei(n) = d(n) + yi(n) (3)

d(n) denotes the desired signal and y(n) the filter output of the i-th filter.



Micromachines 2023, 14, 809 4 of 16

• Evaluation of the fitness function. To compute the best position, the PSO algorithm uses
the mean squared error (MSE) of each P error signal as a fitness function of each
adaptive filter. The evaluation of the position wi(n) can be computed as follows:

fi(n) =
1
N

N

∑
k=1

e2
i (k) (4)

• Calculation of the distance between particles and the obtention of the value of Markov chain.
Here, the velocity and position are obtained by using the following equations:

vi(n) = φ · vi(n− 1) + c1(ξ(n)) · r1[wpbesti
−wi(n)] + c2(ξ(n)) · r2[wgbest −wi(n)] (5)

wi(n) = wi(n− 1) + vi(n) (6)

where r1 and r2 are the vectors of random numbers of length N, wpbesti
and wgbest

are the personal best position and global best position, respectively, and φ the inertia
weight. Here, we define r1 and r2 in the interval [0, 1]. c1(ξ(n)) and c2(ξ(n)) are the ac-
celeration coefficients determined by a non-homogeneous Markov chain ξ(n)(n ≥ 0).
The value of the Markov chain is taken in a finite state space: S = {1, 2, . . . , L}.
Π(n) = (πij(n))LxL, where Π(n) denotes the probability transition matrix of the
Markov chain, where πij(n) ≥ 0(i, j ∈ S) and ∑N

j=1 πij(n) = 1. It is important to keep
in mind that the matrix Π is dynamically adjusted by evaluating an evolutionary
factor (E f ) [14] according to the population distribution properties [15]. Based on
these characteristics, the E f approach can be exploited at the maximum to define four
states: convergence, exploration, exploitation and jumping out. In particular, these
four states are, respectively, represented by ξ(n) = 1, ξ(n) = 2, ξ(n) = 3 and ξ(n) = 4
in the Markov chain.
The average distance, di, between each particle and the other particles is computed
as follows:

di(n) =
1
P

P

∑
j=1

√√√√ N

∑
k=1

(xi(k)− xj(k))2 (7)

where P and N denotes the swarm size and the dimensions of each particle, respec-
tively. Hence, the evolutionary factor E f can be obtained as follows [15]:

E f =
dg − dmin

dmax − dmin
(8)

where dg represents the globally best particle among di. dmax and dmin are the maxi-
mum and minimum distances in di, respectively.
Here, we obtain the value of the Markov chain, which is based on the value of
evolutionary factor E f , as follows [14]:

ξ(n) =


1, 0 ≤ E f < 0.25,
2, 0 ≤ E f < 0.5,
3, 0 ≤ E f < 0.75,
4, 0 ≤ E f < 1,

(9)

where the probability transition matrix is given by:

Π =


χ 1− χ 0 0

1−χ
2 χ 1−χ

2 0
0 1−χ

2 χ 1−χ
2

0 0 1− χ χ

 (10)
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Based on the probability distribution matrix Π, the Markov process may switch its
state at the next iteration. To guarantee the classification accuracy and the search
diversity, the value of the probability χ is equal to 0.9 [14]. Here, the initial values of
acceleration coefficients c1 and c2 are selected by trial-and-error for all states in order
to guarantee the best performance of the purposed algorithm. Table 1 shows their
values based on the evolutionary state, which are automatically adjusted.

Table 1. Strategies for selecting c1 and c2.

State Mode c1 c2

Convergence ξ(n) = 1 2 2
Exploitation ξ(n) = 2 2.1 1.9
Exploration ξ(n) = 3 2.2 1.8
Jumping-out ξ(n) = 4 1.8 2.2

• Update the personal and global best position. To get the value of the personal best
wpbesti

(n), a comparison between the current value of fi[wi(n)] and the value of
f [wpbesti

(n− 1)] is performed as follows:

wpbesti
(n) =

{
wi(n), if fi[wi(n)] < f [wpbesti

(n− 1)]
wpbesti

(n− 1), otherwise
(11)

The wi(1) defined as wpbesti
(1) is used to calculate Equation (11) at the first generation.

To calculate the global best position, wgbest, we compare the result of f [wpbestmin
(n)]

with the evaluation of the best global position f [wgbest(n− 1)], where wpbestmin
(n) =

wpbestg(n), g = arg min1≤i≤P{wpbestj,i
(n)}. The computation of the global best posi-

tion, wgbest is obtained as follows:

wgbest(n) =
{

wpbestmin
(n), if f [wpbestmin

(n)] < f [wgbest(n− 1)]
wgbest(n− 1), otherwise

(12)

• Update population. Equations (5) and (6) are used to update the velocity and position of
each particle, respectively, and Equation (13), which is in the function of the power of
the instantaneous error, is used to update the population size.

P = b2(Pmax − Pmin)

1 + e−e(n)2 − (Pmax − Pmin)c+ Pmin (13)

where Pmax and Pmin are the maximum and minimum number of particles, respectively.

3. Pure Software Implementation

Before implementing the proposed Markov switching PSO algorithm in parallel hard-
ware architectures, we simulate it in Matlab software for testing and comparison purposes.
Here, we use the AEC structure, in which the existing approaches and the proposed adap-
tive filter are used, as shown in Figure 3. As can be observed, x(n) is the far-end input
signal, e(n) denotes the residual echo signal, d(n) represents the sum of the echo signal,
y(n), and the background noise, e0(n).

To simulate the proposed Markov switching PSO algorithm, we consider the following
conditions:

• We use an impulse response as an echo path obtained from the ITU-T G168 recom-
mendation [16]. This echo path is modeled using N = 500 coefficients, as shown in
Figure 4.

• The echo signal is mixed with white Gaussian noise (SNR = 20 dB).
• The input signal is an AR(1) process, which is produced by filtering white Gaussian

noise by means of the system 1
(1−0.95z−1)

.
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Figure 3. Structure of Acoustic Echo Canceller.

Figure 4. Impulse response of the acoustic echo path.

• In the proposed Markov switching PSO algorithm, the swarm size is defined in the
range of 100–20 particles, while the swarm size, which is used in the simulation of an
existing approach, is set to 100.

• To probe the tracking capabilities of the proposed Markov switching PSO algorithm,
4 different experiments were simulated: (1) Changing SNR from 20 dB to 10 dB in
the middle of iterations, (2) causing an abrupt change to the impulse response of
the acoustic echo path in the middle of the adaptive filtering process by multiplying
the acoustic path by −1, (3) causing an abrupt change to the impulse response of
the acoustic echo path in the middle of the adaptive filtering process by shifting the
acoustic path, and (4) simulating a double talk-scenario at the middle of iterations.

• Acceleration coefficients of the conventional PSO were selected to obtain the best
performance.

• The maximum number of iterations is set to 4,000,000.
• We verify the performance of the proposed algorithm in terms of echo return loss

enhancement, (ERLE = 10log10(
d(n)2

e(n)2 )).

Here, we simulate the conventional PSO [17] and the proposed Markov switching PSO
algorithm to compare their performance. As can be observed from Figure 5, the proposed
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algorithm shows better performance in comparison with the conventional PSO in terms of
echo return loss enhancement (ERLE) and convergence speed.

Figure 5. ERLE of the proposed Markov switching PSO algorithm and conventional PSO algorithms
by computing the AR(1) process input signal. (a) Changing the SNR from 20 dB to 10 dB at the middle
of the iterations. (b) Multiplying the acoustic path by −1 in the middle of the adaptive filtering
process. (c) Shifting the acoustic path in the middle of the adaptive filtering process. (d) Simulating
the double-talk scenario.
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To make a coherent comparison between the proposed algorithm and existing algo-
rithms we carried out an experiment in which the acoustic path is multiplied by−1 midway
through the iterations. The algorithms that were simulated for this comparison and their
tuning parameters are described in the following list:

1. Grey wolf optimization (GWO) [18]

• Population size = 50
• lower bound = −1
• Upper bound = 1
• a decreases linearly from 2 to 0

2. PSO [19]

• Population size = 100
• Lower bound = −1
• Upper bound = 1
• Acceleration coefficient, c1 = 1.6
• Acceleration coefficient, c2 = 1
• Inertia weight = 0.8

3. Differential evolution (DE) [20]

• Population size = 50
• Lower bound = −1
• Upper bound = 1
• Crossover rate = 0.35
• Scaling factor = 0.8
• Combination factor = 0.25

4. Artificial bee colony optimization (ABC) [21]

• Population size = 50
• Lower bound = −1
• Upper bound = 1
• Evaporation parameter = 0.1
• Pheromone = 0.6

5. Hybrid PSO–LMS [22]

• Population size = 60
• Lower bound = −1
• Upper bound = 1
• Acceleration coefficient, c1 = 0.00005
• Acceleration coefficient, c2 = 1.2
• Inertia weight = 1
• Convergence factor = 1× 10−9

6. Modified ABC (MABC) [23]

• Population size = 50
• Lower bound = −1
• Upper bound = 1
• Evaporation parameter = 0.1
• Pheromone = 0.6
• Convergence factor = 3× 10−5

As can be observed from Figure 6, the proposed algorithm shows the best performance
in terms of convergence speed and ERLE level. In addition, the proposed algorithm
requires a lower computational cost when compared with the GWO, PSO, ABC, PSO-LMS
and MABC algorithms, as shown in Table 2. To obtain these data, we consider a double-
talk scenario, in which the proposed Markov switching PSO algorithm requires fewer
multiplications and additions when compared with most of the existing algorithms during
the whole simulation. The reason for this is that the number of particles, P, which are used
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to model the proposed Markov switching PSO algorithm, is reduced during the filtering
process. Specifically, we initially use 100 particles, after some iterations, this number is
reduced to 20 particles. In contrast, the existing approaches need a larger population to
obtain acceptable performance at the cost of increasing the computational burden. In AEC
applications, this aspect is crucial because one of the objectives of the proposed Markov
switching PSO algorithm is to improve the computational cost without losing performance
and this is possible by using the Markov Switching technique.

Figure 6. ERLE of the proposed Markov switching PSO algorithm and existing approaches [18–23]
by computing the AR(1) process input signal when multiplying the acoustic path by −1 at the middle
of the adaptive filtering process.

Table 2. Number of additions and multiplications required by the conventional PSO algorithm [17]
and the proposed algorithm.

Operation Algorithm Equation Number of
Operations

Addition

GWO 9NP + 1 4.5000× 1014

PSO 5NP + 2 5.0000× 1014

DE 2NP 1.0000× 1014

ABC 5NP− 3 2.4999× 1014

PSO-LMS 5NP + 2N + 2 3.0200× 1014

MABC 5NP + 2N − 2 3.0200× 1014

Proposed Algorithm 7NP + 8 2.2271× 1014

Multiplication

GWO 15NP + 1 7.5000× 1014

PSO 5NP + 2 5.0000× 1014

DE NP 5.0000× 1013

ABC 4NP + 3 2.0001× 1014

PSO-LMS 5NP + 4N 3.0101× 1014

MABC 4NP + 2N + 4 2.4201× 1014

Proposed Algorithm 7NP + 7 2.2271× 1014
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4. Hardware Implementation

Once the performance of the proposed Markov-PSO adaptive filter was verified, we
develop a parallel metaheuristic processor to simulate it at high processing speeds by
expanding the minimum area consumption. To achieve a low area consumption; first,
we use the time multiplexing technique to simulate particles virtually; second, we use
optimized neural multipliers and adders since is the most demanding arithmetic circuit in
terms of area and processing speed. In addition, the use of these circuits has allowed us to
optimize the processing time since each operation is performed at a single clock cycle [24].
As can be observed from Figure 7, the proposed parallel metaheuristic processor is mainly
composed of the following components:

• Markov-PSO processing core, M-PSO PC. This represents the basic processing element to
compute the signal-filtering process and update the population. The proposed M-PSO
PC mainly uses neural multipliers Πmul [24] and adders Πadd [24]. Additionally, this
circuit has a slave control unit CUs1, pseudo-random number generators, RNG, and
a Markov processor core, MP (Figure 8). In particular, the MP core is in charge of
performing the calculation of the distance between particles by means of the optimized
square root circuit [25], as shown in Figure 9.

• A master control unit, CUm. This module is in charge of controlling the data flow
and synchronization. Specifically, this component performs the time multiplexing
technique to simulate several particles at different times by using the same M-PSO
PC. In addition, this component sends the control signals to store the input samples,
x(n), in the BRAMs. In this way, the block-processing technique can be properly
implemented.

• Distribution module, DM. The main function of this component is to evaluate and indi-
cate the personal and global best. Therefore, this component transfers this information
to each M-PSO PC in parallel. Therefore, the update process can be done at high
processing speeds.

It should be noted that we presented a neural adder circuit, ∏add, and a neural multi-
plier, ∏mul , to perform addition and multiplication of fixed-point numbers, respectively,
in [24]. To implement the AEC system in an FPGA device, the fixed point representation is
highly demanded since the simulation of metaheuristic algorithms requires high-precision
calculations. Therefore, we created advanced neurons, which are based on spiking neural P
systems, by improving their structural and functional capabilities. In particular, we used
cutting-edge variants of the SN P systems, such as anti-spikes, dendritic trunk, dendritic
delays and rules on the synapses. As a result, we create high-precision neural adders and
multipliers by employing a low number of synapses and neurons with simple spiking rules.
In general, both circuits exhibit the following features:

• Scalability. These circuits can process numbers with any required length by only
adding neurons in a regular and homogenous neural structure.

• Compactness. To obtain a great improvement in terms of area, we designed the circuit
by using a low number of neurons and synapses. Specially, we optimized the number
of synapses since the routing of a large number of synaptic connections creates place
and routing problems, especially when they are implemented in advanced FPGAs.

• High performance. In this application, the real-time filtering process is highly demanded.
Therefore, we achieved neural multiplier and adder to perform their respective opera-
tions by expending a single and ten clock cycles, respectively.

Once the proposed parallel metaheuristic processor was debugged, we integrate it
into the structure of the AEC system to validate its performance, as shown in Figure 10.
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Figure 7. Digital implementation of the proposed Markov switching PSO algorithm in the parallel
metaheuristic processor.
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Figure 8. Digital circuit scheme of the Markov-PSO processing core.
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Figure 9. Digital circuit scheme of the Markov proccesor.

 

2 

 
 
 
 
 
 
 

 

Figure 10. General scheme of the components of the AEC system.

To demonstrate the computational capabilities of the meta-heuristic processor, we
develop two sets of experiments. Particularly, we simulate single-talk and double-talk
scenarios by employing two different input signals, x(n). In addition, under these scenarios,
the proposed metaheuristic processor computes the AR(1) process and the speech signal
by considering an under-modeling case. Specifically, we employ 512 coefficients to model
the adaptive filter, while the echo path [26] is configured by using 1024 coefficients. In real-
world echo noise applications, the performance of the AEC can be crucially decreased by
the variations of background noise. For a single-talk scenario, we decreased the SNR from
20 to 10 dB in the middle of the iterations, as shown in Figure 11. It should be noted that
the background noise variation does not affect the performance of the proposed algorithm.
On the other hand, the proposed metaheuristic processor was implemented in Stratix IV
GX EP4SGX530 FPGA. Here, this implementation, which involves the use of eight BRAMs
and 20 M-PSO PCs, requires 384,748 LEs. This represents 72.429% of the total area of the
FPGA. In this way, we can simulate 100 particles virtually since each M-PSO PC simulates
five particles serially. The processing time to simulate all of these particles is 89.1 µs, which
are obtained by multiplying the number of clock cycles (11,143), which are obtained by
means of Equation (14), by the system clock period (8 ns). It should be noted that the
required processing time in the FPGA device is less in comparison when this algorithm
is simulated in a server, which includes a Xeon E5-2630 processor working at 2.6 GHz
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and 64 Gb RAM, since the simulation of the algorithm on this computer requires 1.47 ms,
considering the simulation of 100 particles. This can be considered the worse case since the
number of particles decreases over the filtering process. As a consequence, the processing
time also decreases. This factor is vital in the simulation of real-time AEC systems since
the maximum latency of the system is 125 µs, i.e., the input signal is sampled at 8 KHz.
On the other hand, the simulation of the proposed Markov-PSO adaptive filter consumes
up to 328 mW, by considering the worst case (one hundred particles). After observing the
results of the above experiments, we prove that the metaheuristic processor is capable of
processing a variable number of particles to perform the proposed Markov switching PSO
algorithm at high processing speeds.

Ncc = 128 + (y− 12 + 1 + x) · 5 + (y− 12 + 1 + x) · x
20

+ (1000 + 1) · x
20

(14)

where y represents the number of coefficients and x depicts the number of particles.

Figure 11. (a) AR(1) process and (b) speech signal used in a single-talk scenario; (c) AR(1) process
and (d) speech signal used in a double-talk scenario.
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5. Conclusions

In this work, we present, for the first time the development of a high-speed and
compact FPGA-based parallel metaheuristic process to efficiently simulate a new variant of
the PSO algorithm based on the Markovian switching technique. Here, we grouped our
contributions as follows:

• From the AEC model point of view. In this work, we made intensive efforts to reduce the
computational cost of the AEC systems to be implemented in resource-constrained
devices. In addition, we significantly improve the convergence properties of these
systems by using an improved metaheuristic swarm intelligence method to be used
in practical acoustic environments. Specifically, we present a new variant of the PSO
algorithm based on the Markovian switching technique. The use of this technique has
allowed us to guarantee a higher convergence rate and higher ERLE in comparison
when the conventional PSO algorithm is used. To make feasible the implementation
of the proposed variant of the PSO algorithm in embedded devices, we use the block-
processing scheme. In this way, the proposed algorithm can be easily implemented
in parallel hardware architectures. As a consequence, it can be simulated at high
processing speeds. In addition, we significantly reduce the computational cost of the
proposed conventional PSO algorithm. To achieve this aim, we propose a method to
dynamically decrease the number of particles of this new variant of the PSO algorithm
over the filtering process.

• From the digital point of view. In this work, we present for the first time, the development
of a parallel hardware architecture to simulate a variable number of particles by using
the proposed time-multiplexing control scheme. In this way, we properly implement
the proposed Markov switching PSO algorithm, in which the number of particles
decreases according to the simulation needs, in a Stratix IV GX EP4SGX530 FPGA.

Finally, we carry out several experiments to prove that the proposed Markov switching
PSO algorithm along with new techniques potentially allows the creation of practical and
real-time AEC processing tools.

Author Contributions: Conceptualization, G.S. (Giovanny Sánchez) and J.C.S.; Formal Analysis,
Methodology and Supervision, J.G.A. and G.S. (Giovanny Sánchez); Software, Validation, Investiga-
tion, E.A., G.S. (Guillermo Salinas) and E.P.; Writing-Reviewing and Editing, G.S. (Guillermo Salinas)
and E.P.; Project Administration, J.C.S. and E.V.; Resources, Funding Acquisition, G.S. (Gabriel
Sánchez) and L.K.T. All authors have read and agreed to the published version of the manuscript.

Funding: The authors would like to thank the Instituto Politécnico Nacional for the financial support.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Acknowledgments: The authors would like to thank the Consejo Nacional de Ciencia y Tecnologia
(CONACyT) and the IPN for the financial support to carry out this work.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mahbub, U.; Acharjee, P.P.; Fattah, S.A. An acoustic echo cancellation scheme based on particle swarm optimization algorithm. In

Proceedings of the TENCON 2010—2010 IEEE Region 10 Conference, Fukuoka, Japan, 21–24 November 2010; pp. 759–762.
2. Mahbub, U.; Acharjee, P.P.; Fattah, S.A. A time domain approach of acoustic echo cancellation based on particle swarm

optimization. In Proceedings of the IEEE International Conference on Electrical & Computer Engineering (ICECE 2010), Dhaka,
Bangladesh, 18–20 December 2010; pp. 518–521.

3. Pichardo, E.; Anides, E.; Vazquez, A.; Garcia, L.; Avalos, J.G.; Sánchez, G.; Pérez, H.M.; Sánchez, J.C. A Compact and High-
Performance Acoustic Echo Canceller Neural Processor Using Grey Wolf Optimizer along with Least Mean Square Algorithms.
Mathematics 2023, 11, 1421. [CrossRef]

http://doi.org/10.3390/math11061421


Micromachines 2023, 14, 809 16 of 16

4. Kimoto, M.; Asami, T. Multichannel Acoustic Echo Canceler Based on Particle Swarm Optimization. Electron. Commun. Jpn. 2016,
99, 31–40. [CrossRef]

5. Tang, J.; Zhao, X. Particle swarm optimization with adaptive mutation. In Proceedings of the 2009 IEEE WASE International
Conference on Information Engineering, Taiyuan, China, 10–11 July 2009; Volume 2, pp. 234–237.

6. Ratanavilisagul, C.; Kruatrachue, B. Selective crossover base on fitness in multiswarm optimization. In Proceedings of the
International Conference on Emerging Trends in Computer and Image Processing (CIP’11), Bangkok, Thailand, 11–14 September
2011; pp. 12–15.

7. Chi, Y.; Cai, G. Particle swarm optimization with opposition-based disturbance. In Proceedings of the 2010 2nd International
Asia Conference on Informatics in Control, Automation and Robotics (CAR 2010), Wuhan, China, 6–7 March 2010; Volume 2,
pp. 223–226.

8. Mauryan, R.; Thanushkodi, K.; Sakthisuganya, A. Reactive power optimization using quantum particle swarm optimization. J.
Comput. Sci. 2012, 8, 1644–1648.

9. Lu, S.; Yu, S. An improved particle swarm optimizer with attraction and repulsion. In Proceedings of the 2012 7th International
Conference on Computing and Convergence Technology (ICCCT), Seoul, Republic of Korea, 3–5 December 2012; pp. 735–740.

10. Arani, B.O.; Mirzabeygi, P.; Panahi, M.S. An improved PSO algorithm with a territorial diversity-preserving scheme and enhanced
exploration–exploitation balance. Swarm Evol. Comput. 2013, 11, 1–15. [CrossRef]

11. Zermani, A.; Manita, G.; Feki, E.; Mami, A. Hardware implementation of particle swarm optimization with chaotic fractional-order.
Neural Comput. Appl. 2023, 1–20. [CrossRef]

12. Da Costa, A.L.; Silva, C.A.; Torquato, M.F.; Fernandes, M.A. Parallel implementation of particle swarm optimization on FPGA.
IEEE Trans. Circuits Syst. II Express Briefs 2019, 66, 1875–1879. [CrossRef]

13. Shaikh, U.T.; Kalwar, I.H.; Memon, T.D.; Shaikh, F. Design of IIR filter using PSO algorithm and its implementation in FPGA.
Indian J. Sci. Technol. 2017, 10, 1–5. [CrossRef]

14. Tang, Y.; Wang, Z.; Fang, J.A. Parameters identification of unknown delayed genetic regulatory networks by a switching particle
swarm optimization algorithm. Expert Syst. Appl. 2011, 38, 2523–2535. [CrossRef]

15. Zhan, Z.H.; Zhang, J.; Li, Y.; Chung, H.S.H. Adaptive particle swarm optimization. IEEE Trans. Syst. Man Cybern. Part B Cybern.
2009, 39, 1362–1381. [CrossRef] [PubMed]

16. lnternational Telecommunication Union ITU-T. Digital Network Echo Cancellers. In Standardization Sector of ITU; lnternational
Telecommunication Union ITU-T: Geneva, Switzerland, 2002.

17. Rout, N.K.; Das, D.P.; Panda, G. Particle swarm optimization based active noise control algorithm without secondary path
identification. IEEE Trans. Instrum. Meas. 2011, 61, 554–563. [CrossRef]

18. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
19. Krusienski, D.; Jenkins, W. Adaptive filtering via particle swarm optimization. In Proceedings of the The Thrity-Seventh Asilomar

Conference on Signals, Systems & Computers, Pacific Grove, CA, USA, 9–12 November 2003; pp. 571–575.
20. Reddy, K.S.; Sahoo, S.K. An approach for FIR filter coefficient optimization using differential evolution algorithm. AEU-Int. J.

Electron. Commun. 2015, 69, 101–108. [CrossRef]
21. Bansal, J.C.; Sharma, H.; Jadon, S.S. Artificial bee colony algorithm: A survey. Int. J. Adv. Intell. Paradig. 2013, 5, 123–159.

[CrossRef]
22. Krusienski, D.; Jenkins, W. A particle swarm optimization-least mean squares algorithm for adaptive filtering. In Proceedings of

the Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA,
7–10 November 2004; Volume 1, pp. 241–245.

23. Ren, X.; Zhang, H. An Improved Artificial Bee Colony Algorithm for Model-Free Active Noise Control: Algorithm and
Implementation. IEEE Trans. Instrum. Meas. 2022, 71, 1–11. [CrossRef]

24. Maya, X.; Garcia, L.; Vazquez, A.; Pichardo, E.; Sanchez, J.C.; Perez, H.; Avalos, J.G.; Sanchez, G. A high-precision distributed
neural processor for efficient computation of a new distributed FxSMAP-L algorithm applied to real-time active noise control
systems. Neurocomputing 2023, 518, 545–561. [CrossRef]

25. Hasnat, A.; Bhattacharyya, T.; Dey, A.; Halder, S.; Bhattacharjee, D. A fast FPGA based architecture for computation of square
root and Inverse Square Root. In Proceedings of the 2017 Devices for Integrated Circuit (DevIC), Kalyani, India, 23–24 March
2017; pp. 383–387.

26. Paleologu, C.; Ciochina, S.; Benesty, J. Variable step-size NLMS algorithm for under-modeling acoustic echo cancellation. IEEE
Signal Process. Lett. 2008, 15, 5–8. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1002/ecj.11818
http://dx.doi.org/10.1016/j.swevo.2012.12.004
http://dx.doi.org/10.1007/s00521-023-08295-5
http://dx.doi.org/10.1109/TCSII.2019.2895343
http://dx.doi.org/10.17485/ijst/2017/v10i36/119177
http://dx.doi.org/10.1016/j.eswa.2010.08.041
http://dx.doi.org/10.1109/TSMCB.2009.2015956
http://www.ncbi.nlm.nih.gov/pubmed/19362911
http://dx.doi.org/10.1109/TIM.2011.2169180
http://dx.doi.org/10.1016/j.advengsoft.2013.12.007
http://dx.doi.org/10.1016/j.aeue.2014.07.019
http://dx.doi.org/10.1504/IJAIP.2013.054681
http://dx.doi.org/10.1109/TIM.2022.3196440
http://dx.doi.org/10.1016/j.neucom.2022.11.017
http://dx.doi.org/10.1109/LSP.2007.910276

	Introduction
	Proposed Markov Switching PSO Algorithm
	Pure Software Implementation
	Hardware Implementation
	Conclusions
	References

