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Abstract: Counter-propagating optical tweezers are experimental platforms for the frontier explo-
ration of science and precision measurement. The polarization of the trapping beams significantly
affects the trapping status. Using the T-matrix method, we numerically analyzed the optical force
distribution and the resonant frequency of counter-propagating optical tweezers in different polar-
izations. We also verified the theoretical result by comparing it with the experimentally observed
resonant frequency. Our analysis shows that polarization has little influence on the radial axis motion,
while the axial axis force distribution and the resonant frequency are sensitive to polarization change.
Our work can be used in designing harmonic oscillators which can change their stiffness conveniently,
and monitoring polarization in counter-propagating optical tweezers.

Keywords: optical tweezers; T-matrix; polarization

1. Introduction

Optical tweezers, which take advantage of the interaction between light and matter, are
a method of observing and controlling levitated mesoscopic objects. Since being proposed
by Ashkin in 1970 [1], they have been important tools in biological [2], material [3], and
quantum physical [4] studies. The absence of mechanical support grants them good thermal
isolation and large degrees of freedom. Optical tweezers in vacuums offer even better
decoupling from the environment. They have great potential in fundamental science and
high-precision sensing, for example, in verifying the inverse square law of gravity [5] and
ultimate weak-force sensing [6].

The trap scheme of optical tweezers includes mainly single-beam and dual-beam
counter-propagating setups [7]. Single-beam optical tweezers are suitable for levitating
nanometer-sized objects. They usually need a large numerical aperture (NA) lens to
produce enough gradient force to cancel the scattering force, typically NA ≥ 0.8. As a
result, they usually have a short trapping distance between the focus point and the surface
of the lens or objective, typically a few millimeters. Counter-propagating optical tweezers,
though, cause some difficulty in alignment, have less restriction on NA. Therefore, they can
levitate a heavier object at a longer distance, which benefits measuring and controlling. In
detail, a levitated object with greater mass has higher acceleration sensitivity, and a longer
trapping distance indicates more spatial range for the movement of the sphere and the
space for other devices such as electrodes.

To investigate the dynamics of the levitated objects, it is important to calculate the
interaction force between light and matter in different conditions. The numerical method
of optical tweezers includes the geometric optics method [8], the dipole approximation
method [9], the FDTD method [10], and the T-matrix method [11]. The geometric method is
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used for levitated objects with sizes larger than the optical wavelength. It decomposes the
trap beam into infinitely thin beams that behave like plane waves traveling in straight lines
in a homogeneous medium. The dipole approximation method, on the contrary, is used for
objects with sizes smaller than the optical wavelength. It approximates the microsphere as
a dipole and calculates the force through electromagnetic field theory. The finite-difference
time-domain method (FDTD) and the T-matrix method can be applied to objects with
arbitrary sizes. The T-matrix method is based on the generalized Lorenz–Mie theory. While
the FDTD method, considering more physical details, is good at calculating the optical
force on particles of arbitrary shapes and compositions illuminated with various beams, the
T-matrix method used by this article can achieve similar results with fewer computational
resources, with a regular particle shape.

In comparison to single-beam optical tweezers, a counter-propagating setup includes
interference issues. Researchers have utilized cross polarization [12] and parallel polar-
ization [13], while the state of optical trapping with arbitrary polarization has not been
achieved. In this article, we numerically analyze the influence of polarization on counter-
propagating optical tweezers with the T-matrix method and experimentally verify the
theoretical results. We used the Jones vector [14] to define the polarization condition of the
counter-propagating beams, and calculated the optical force distribution, trap stiffness, and
resonant frequency with different polarization. We also changed the polarization condition
by rotating a half-wavelength plate on the experiment and comparing the observed reso-
nant frequency with the theoretical value. The result of this study can be used to design a
harmonic oscillator that can conveniently change its stiffness.

2. Materials and Methods
2.1. T-Matrix Method

Based on the size of the levitated object, there are three regimes: the geometrical
optics regime, the Rayleigh scattering regime, and the Mie scattering regime, with the size
of the levitated object larger, smaller, and close to the optical wavelength, respectively.
While the geometrical optics method [8] and the dipole approximation method [9] work
well in the geometrical optics regime and the Rayleigh scattering regime, respectively, the
FDTD method [10] and the T-matrix method [11] can both undertake all three regimes.
The FDTD method considers more physical parameters, thus adapting to more complex
conditions. The T-matrix method, developed from the general Lorenz–Mie theory, uses
fewer computational resources.

The interaction between light and matter comes from the change in photon momentum
and can be calculated by analyzing the field scattered by the levitated object. We can
represent the incident field Uinc by a set of base vector ψ

(inc)
n , in which each vector is a

solution of the Helmholtz function with the mode number n.

Uinc =
∞

∑
n

anψ
(inc)
n

where an is the coefficient of each vector. In numerical analysis, this summation is truncated
on a finite number nmax. The scattered field can also be represented by a set of base vectors
ψscat

k .

Uscat =
∞

∑
k

pkψ
(scat)
k

with the coefficient pk. Assuming the scattering process is linear, the relation between the
scattered field and the incident field is

pk =
∞

∑
n

Tknan

or
P = TA
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The T-matrix T only depends on the levitated object and the wavelength of the trapping
laser; as a result, we can calculate it once in numerical analysis.

In a coordinate system originated on the levitated object, we can expand the ingoing
field and outgoing field in ingoing and outgoing vector spherical wavefunctions (VSWFs),
respectively.

Ein =
∞

∑
n=1

n

∑
m=−n

anmM(2)
nm(kr) + bnmN(2)

nm(kr)

Eout =
∞

∑
n=1

n

∑
m=−n

pnmM(1)
nm(kr) + qnmN(1)

nm(kr)

where the VSWFs are
M(1,2)

nm (kr) = Nnh(1,2)
n (kr)Cnm(θ, φ)

N(1,2)
nm (kr) =

h(1,2)
n (kr)
krNn

Pnm(θ, φ) + Nn

(
h(1,2)

n−1 (kr)− nh(1,2)
n (kr)

kr

)
Bnm(θ, φ)

where h(1,2)
n (kr) is the first and second kind of spherical Hankel functions, Nn = [n(n + 1)]−1/2

are the normalization factors, Bnm(θ, φ) = r∇Ym
n (θ, φ), Cnm(θ, φ) = ∇× (rYm

n (θ, φ)), and
Pnm(θ, φ) = r̂Ym

n (θ, φ) are the vector spherical harmonics, and Ym
n (θ, φ) are the normalized

scalar spherical harmonics. θ is the angle with the z axis, and φ is the angle with the x axis
of the projection on the xy plane.

M(1)
nm and N(1)

nm represent the outgoing field, and M(2)
nm and N(2)

nm represent the ingoing
field. These fields are undefined at the origin. We can define the spherical vector without
singularity:

RgMnm(kr) =
1
2

[
M(1)

nm(kr) + M2
nm(kr)

]
RgNnm(kr) =

1
2

[
N(1)

nm(kr) + N(2)
nm(kr)

]
It is convenient to represent the incident field with ingoing and outgoing vectors, and

represent the scattered field with outgoing fields. However, this makes the incident field
and scattered field both carry momentum away from the levitated object. Thus, the pure
ingoing and outgoing fields in their corresponding representations are more suitable for
force calculation.

The axial optical force can then be calculated as:

Fz =
2n
c

∞
∑

n=1

n
∑

m=−n

m
n(n+1)Re(a∗nmbnm − p∗nmqnm)

− 1
n+1

[
n(n+2)(n−m+1)(n+m+1)

(2n+1)(2n+3)

] 1
2

×Re
(

anma∗n+1,m + bnmb∗n+1,m − pnm p∗n+1,m − qnmq∗n+1,m

)
and the radial optical force can be calculated by the same equation with the field rotated by
π/2.

2.2. Experimental Setup

As Figure 1 presented, we used the half-wave plate HWP1 and the polarized beam
splitter PBS1 to separate a 1064 nm laser beam into two beams. We named the transmitted
beam the forward trapping laser, and the reflected beam the backward trapping laser,
represented as dashed and solid lines, respectively. The forward trapping laser was a linear
polarized beam in the horizontal direction, and the backward trapping laser was a linear
polarized beam in the vertical direction. The two trapping beams, which were focused by
the lenses L1 and L2, levitated a 10-micron-diameter SiO2 sphere S in a vacuum chamber.
The pressure in the vacuum chamber was set to 10 mBar. The NA of L1 and L2 were
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0.0673. The power of both trapping beams arriving at the sphere was 100 mW. After being
scattered by the sphere, the forward trapping laser then transmitted through the polarized
beam splitter PBS2 and was detected by a homemade QPD. The half-wave plate HWP2,
mounted on a rotation stage, was used to control the polarization state of the trapping
laser. There was also a polarimeter we used to measure the polarization of the two trapping
beams which is not shown in the figure.
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Figure 1. Experimental setup. The 1064 nm trapping laser was separated by a polarized beam
splitter PBS1. We named the transmitted beam the forward trapping laser, and the reflected beam
the backward trapping laser, indicated by the dashed line and solid line, respectively. The power
of the two beams was adjusted to the same value by rotating the half-wave plate HWP1. The two
beams were then aligned and focused with the numerical aperture (NA) of 0.0673. The 10-micron-
diameter SiO2 sphere was trapped by the counterpropagating beams. The forward trapping laser,
after interacting with the levitated sphere, was detected by the quadrant photoelectric detectors.

Ideally, the two trapping laser beams were both linear polarized beams at the sphere’s
position. According to the analysis of the scattered field [15], ideally, each axis’s detec-
tion signal contained only the motion information in its direction. The calculated signal
Iz = I1 + I2 + I3 + I4 was proportional to the z axis displacement, or axial displacement,
and Iy = I1 + I2 − I3 − I4 and Ix = I1 + I3 − I2 − I4 were y and x axis displacement, respec-
tively, or radial displacement. When the alignment of the beam and the detector was not
perfect, the power of the beam was not equally divided by the four quadrants of the QPD,
and the detection signal was affected by the motion of other axes. For example, if the x axis
signal Ix = I1 + I3 − I2 − I4 has a non-zero average value, then the movement of the sphere
in the z axis, which causes the change in the total power Iz = I1 + I2 + I3 + I4, generates an
additional signal superimposed on the original x axis signal based on the unbalance of the
power radiated on two halves of the detection plane. Usually, the resonant frequency of the
axial motion and the radial motion is different, so we can observe two resonance peaks on
the PSD spectrum of one signal. To detect the axial and radial motion simultaneously, the
detection alignment was adjusted for large coupling in this work.

3. Results
3.1. Numerical Analysis

The interaction force between light and matter is important information for designing
the optical tweezers system. For counter-propagating optical tweezers, the optical force is
affected by the polarization condition of two trapping beams. Researchers have utilized
cross polarization [12] and parallel polarization [13] setups. However, the optical force
generated by arbitrary polarization has not been numerically analyzed.
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In order to describe the polarization condition of the counter-propagating beams, we
introduce the Jones vector [14]:

Jn =

(
Enxeiφnx

Enyeiφny

)
where n = 1, 2 indicates the forward or backward beam, respectively, Enx and Eny are the
amplitude terms, and eiφnx and eiφny are the phase terms. The counter-propagating setup
utilizes the two opposite lights to cancel the unwanted scattering force and strengthen the
gradient force, which requires the power of the two beams to be the same; E2

1x + E2
1y =

E2
2x + E2

2y. We introduced the power split ratio Pn into the normalized Jones vector:

J1 =

( √
P1eiφ1x

√
1− P1eiφ1y

)

J2 =

( √
P2eiφ2x

√
1− P2eiφ2y

)
If the polarization of the two trapping beams is orthogonal, for example, setting the

forward trapping beam into the linear polarized laser in the x direction and the backward
trapping beam into the linear polarized laser in the y direction, then it can be described by
P1 = 0, P2 = 1, φ1x = φ1y = φ2x = φ2y = 0.

First, we analyzed the influence of the power split ratio. Considering the spatial
symmetry, we only need to analyze the change in the power split ratio of one trapping
beam. We assume the backward trapping laser to be ideal and change the power split ratio
of the forward trapping laser in comparison with the orthogonal condition:

J1 =

( √
P1√

1− P1

)

J2 =

(
1
0

)
The calculated optical force distribution is shown in Figure 2. The simulation param-

eters are consistent with the experiment setup, which is a 10 µm-diameter SiO2 sphere
levitated by two 1064 nm trapping beams with an NA of 0.0673. For optical force in the
x direction and y direction to be similar in the regime of this research, we chose the x
direction force to represent the radial force. Figure 2a is the radial force distribution on
the radial displacement of the sphere. When the polarization of the two trapping beams
is orthogonal, P1 = 0, the radial force is proportional to the radial displacement in the
range of ∼1 µm, which is called the linear region. The optical tweezers can be described by
the harmonic oscillator in this region. As shown in the figure, the power split ratio only
slightly affects the maximum radial force. Figure 2b is the axial force distribution on the
axial displacement of the sphere. When the polarization of the two beams is orthogonal,
the axial force distribution has a similar trend compared with the radial force distribution,
though the linear region of the axial force is larger because of a smaller light field gradient,
about ∼10 µm, as shown in the inserted Figure 2b. We can learn from the figure that the
power split ratio has a significant influence on the axial force. A non-zero P1 can cause
interference and create multiple axial balance points, making the linear region reduce to
∼0.1 µm, a quantity related to the laser wavelength. With the P1 increase, the force gradient,
or trap stiffness, becomes larger.
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Figure 2. The optical force distribution of different power split ratios. (a) The radial force distribution
and (b) the axial force distribution in each direction of different power split ratios. The inserted figure
in (b) is the zoom-out axial force distribution of P1 = 0.

Although the trapped particle size is larger than the interference period, the random
motion of the center of mass is confined to a small range. In this work, the sphere was in
a low-vacuum environment with pressure P = 10 mBar at room temperature, T = 293 K.
With a typical trapping stiffness, k ≈ 1 × 10−4 (N/m), the root-mean-square (r.m.s.)
amplitude of a trapped microsphere at thermal equilibrium is

√
r2 =

√
kBT/k ≈ 6 nm [16],

where kB is the Boltzmann constant. It is two orders less than ∼0.1 µm, the linear region of
the z-axis optical force affected by interference. Thus, the influence of the interference on
the motion of the center of mass investigated in this work is reasonable.

Then, we consider the polarization phase. There are four phase terms, while the
absolute phase only translates the whole system in the z direction, which is not in the scope
of this work. Taking spatial symmetry into consideration, there are only two independent
variables. We fix one phase term, φ1x = 0, and define two kinds of phase differences: the
first kind is the difference between the polarization phase of two perpendicular radial
directions, ∆φ1 = φ1x − φ1y, and the second kind is the difference between the common
phase of two counter-propagating waves ∆φtot = φ1x − φ2x = φ1y − φ2y. We set the power
split ratio of two beams to P1 = P2 = 1

2 , for the phase difference, which only affects the
light which is elliptical or circular polarized:

J1 =

√
2

2

(
1

ei(−∆φ1)

)

J2 =

√
2

2

(
ei(−∆φtot)

ei(−∆φtot)

)
Figure 3 shows the optical force distribution with different phase differences. As we

can see from Figure 3a,c, the two kinds of phase difference do not affect the radial force
difference much. Figure 3b shows the axial force distribution of different phase differences
in the first kind. Not only did the axial balanced point translate in the axial direction, but
the maximum value and gradient of the axial force also changed with the second kind of
phase difference. As presented in Figure 3d, the axial force distribution translates by a
distance related to the wavelength in the axial direction when the second kind of phase
difference changes, with its maximum value and gradient at a balanced point unchanged.
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2 .

After analyzing the force distribution with different polarization conditions, we can
further calculate the trap stiffness and resonant frequency, which are more convenient for
experimental observations. In the linear region, the optical tweezers can be described with
the harmonic oscillator model. The trap stiffness is defined as the force gradient k = ∆Fr

∆r ,
where r is the displacement of the sphere and Fr is the optical force in the r direction. The
resonant frequency can also be calculated by f =

√
k/M
2π .

Figure 4 is the resonant frequency or trap stiffness in the axial and radial directions
in different polarization conditions. According to the force distribution calculation in the
previous context, the second kind of phase difference does not change the force gradient at
the balance point, so only the power split ratio and the first kind of phase difference need
to be considered. We can see from the figure that radial resonant frequency is not sensitive
to polarization change, as discussed above. Figure 4a shows us that as the power split
ratio increases, the axial resonant frequency also increases. As we can see from Figure 4b,
at the same power split ratio, the axial resonant frequency is negatively correlated with
the first kind of phase difference. The radial and axial resonant frequency of orthogonal
polarization is 2222 Hz and 105 Hz, respectively, the radial resonant frequency is about one
order greater than the axial one. However, this radial-to-axial ratio is very sensitive to the
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polarization condition. The axial resonant frequency becomes larger than the radial one as
the power split ratio P1 increases to 0.014.
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Figure 4. The resonant frequency or trap stiffness of different polarizations. The axial (blue) and
radial (magenta) resonant frequency or trap stiffness of (a) different power split ratios with P2 = 0
and (b) the first kind phase difference with P1 = P2 = 1

2 .

3.2. Experimental Verification

Figure 5a is a series of the PSD spectrum of the x-direction signal Ix, calculated from
the QPD. The rotation angle θ corresponds to the angle of polarization of the forward
trapping beam compared to the direction perpendicular to the backward trapping beam.
The polarization angle θ is controlled by the rotation angle of the half-wave plate HWP2
θ = 2η. Ideally, the PBS1 polarizes the forward (backward) propagating beam in the
horizontal (vertical) direction. The optical axis of the HWP2 is initially consistent with the
polarization direction of the forward light passing through it. When the HWP2 is rotated

by η, the polarization of the two beams becomes J1 =

(
1− sin2 2η

sin2 2η

)
=

(
1− sin2 θ

sin2 θ

)
,

J2 =

(
0
1

)
. There are two peaks on each spectrum, which are signals originating from the

radial motion and the coupling signal from the axial motion. We can see the peak with
a lower resonant frequency, which is related to the radial motion and is not sensitive to
the change in polarization, while the coupling signal from the axial motion at a higher
frequency changes significantly. The experimental resonant frequency is extracted from
Figure 5a by fitting the PSD curves near the resonant peaks with the Lorenz function [17],
plotted in Figure 5b. The blue plus and magenta stars are the experimental resonant
frequency of the axial and radial motion, respectively, while the lines are the calculated
frequency with the polarization of the two trapping beams measured by the polarimeter,

which is J1 =

(
0.9998

0.0177e2.7885i

)
, J2 =

(
0.2039e1.0755i

0.9790

)
. The experimental and numerical

results match well. Despite the experimental setup that attempts to achieve the orthogonal
polarization condition, the non-ideality of the optical elements and misalignment prevent
the fulfillment of the theoretical condition. For example, the PBSs we used in the experiment
have different extinction ratios of polarization of transmission and reflection, which is about
1000:1 for transmission and 20:1 to 100:1 for reflection, according to the factory data.
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Figure 5. The experiment result. (a) The power spectrum density of the radial axis of the different
polarization angles. The coupling between the radial and axial axis is enlarged to make their signal
appear to be at the same spectrum. (b) The axial (blue) and radial (magenta) resonant frequency
or trap stiffness of different angles between the polarization of two beams. The plus and star signs
are experimentally detected by the QPD; the lines are theoretical calculations based on the trapping
condition.

4. Discussion

In conclusion, we calculated the optical force distribution and resonant frequency of
counter-propagating optical tweezers in different polarizations. The analysis has great
potential in applications. A harmonic oscillator that can change its stiffness conveniently
can be designed based on this work. For example, the traditional parametric feedback
cooling is mainly based on the single-beam optical trap, such that modulate the trap stiffness
by changing the power of the trapping laser is convenient [18]. However, in the dual-beam
counter-propagating optical tweezers, the power of the two beams is required to be equal
to cancel the unwanted scattering force. This makes it difficult to adjust the optical power.
We can now achieve the same feedback effect by changing the polarization condition, while
keeping the power of the trapping beams constant. Moreover, the traditional parametric
feedback uses the difference in axial and radial resonant frequencies to distinguish the two
feedback signals in the frequency domain. However, the axial (radial) feedback signal still
generates a modulation in radial (axial) motion because of its feedback mechanism, which
is ignorable only when the motion of the particle has been cooled down. The parametric
feedback based on the polarization modulation acts only on axial motion because the radial
trap stiffness is far less sensitive to polarization. Additionally, according to the observed
resonant frequency of the axial and radio frequency, one can also estimate the polarization
of the trapping beams without an extra detector.
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Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Micromachines 2023, 14, 760 10 of 10

References
1. Ashkin, A. Acceleration and Trapping of Particles by Radiation Pressure. Phys. Rev. Lett. 1970, 24, 156–159. [CrossRef]
2. Shabestari, M.H.; Meijering, A.E.C.; Roos, W.H.; Wuite, G.J.L.; Peterman, E.J.G. Recent advances in biological single-molecule

applications of optical tweezers and fluorescence microscopy. Methods Enzymol. 2017, 582, 85–119.
3. Grier, D.G. Optical tweezers in colloid and interface science. Curr. Opin. Colloid Interface Sci. 1997, 2, 264–270. [CrossRef]
4. Kaufman, A.M.; Lester, B.J.; Reynolds, C.M.; Wall, M.L.; Foss-Feig, M.; Hazzard, K.R.A.; Rey, A.M.; Regal, C.A. Two-particle

quantum interference in tunnel-coupled optical tweezers. Science 2014, 345, 306–309. [CrossRef] [PubMed]
5. Geraci, A.A.; Papp, S.B.; Kitching, J. Short-range force detection using optically cooled levitated microspheres. Phys. Rev. Lett.

2010, 105, 101101. [CrossRef] [PubMed]
6. Ranjit, G.; Cunningham, M.; Casey, K.; Geraci, A.A. Zeptonewton force sensing with nanospheres in an optical lattice. Phys. Rev.

A 2016, 93, 053801. [CrossRef]
7. Gieseler, J.; Gomez-Solano, J.R.; Magazzù, A.; Castillo, I.P.; García, L.P.; Gironella-Torrent, M.; Viader-Godoy, X.; Ritort, F.; Pesce,

G.; Arzola, A.V.; et al. Optical tweezers—From calibration to applications: A tutorial. Adv. Opt. Photonics 2021, 13, 74–241.
[CrossRef]

8. Ashkin, A. Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophys. J. 1992, 61, 569–582.
[CrossRef] [PubMed]

9. Tebbenjohanns, F.; Frimmer, M.; Novotny, L. Optimal position detection of a dipolar scatterer in a focused field. Phys. Rev. A 2019,
100, 043821. [CrossRef]

10. Hu, M.; Li, N.; Li, W.; Wang, X.; Hu, H. Fdtd simulation of optical force under non-ideal conditions. Opt. Commun. 2022, 505,
127586. [CrossRef]
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