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Abstract: This paper proposes a deep learning model based on an artificial neural network with
a single hidden layer for predicting the diagnosis of multiple sclerosis. The hidden layer includes
a regularization term that prevents overfitting and reduces the model complexity. The purposed
learning model achieved higher prediction accuracy and lower loss than four conventional machine
learning techniques. A dimensionality reduction method was used to select the most relevant features
from 74 gene expression profiles for training the learning models. The analysis of variance test
was performed to identify the statistical difference between the mean of the proposed model and
the compared classifiers. The experimental results show the effectiveness of the proposed artificial
neural network.

Keywords: deep learning; artificial neural network; multiple sclerosis

1. Introduction

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system
(CNS) of autoimmune etiology, characterized by localized areas of demyelination, axonal
loss, and gliosis in the brain and spinal cord [1]. MS can be classified into three types based
on its progression: primary progressive MS (PPMS), relapsing-remitting MS (RRMS), and
secondary progressive MS (SPMS) [2]. The most common type is RRMS, accounting for 80%
of MS patients. Susceptibility to MS is complex but involves environmental events, and
genetic factors [3]. On the genetic side, several genome-wide association screens (GWAS),
which incorporate large arrays of single nucleotide polymorphisms (SNPs), have now
identified many common MS-risk variants located in scattered genomic regions as being
associated with MS [4]. Although MS has a complex etiology, human leukocyte antigen
(HLA) genes have been implicated in disease susceptibility for four decades. HLA-Class II
alleles represent the more significant genetic contribution to MS risk, specifically within
the DR15 haplotype: HLA-DRB1*15:01, is a common finding in MS populations, primarily
those of Northern European descent [5].

In the last decade, there has been a significant increase in machine learning (ML) appli-
cations studying neurological diseases. ML algorithms are data science approaches to build
predictive models that can learn patterns and relationships within data while requiring
minimal human intervention [6]. The ML application in MS thus far has mainly been
for classifying participants into the different disease stages (clinically isolated syndrome
(CIS), RRMS, SPMS, among others), for predicting the diagnosis of MS, for predicting the
transition from CIS to clinically definite MS, for predicting disability progression, and for
predicting the patient’s possible response to pharmacological therapy to help the profes-
sional in choosing the most appropriate treatment [7]. However, there is no single clinical
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study or laboratory finding that can secure a definitive diagnosis of MS. The diagnosis is
made based on consensus clinical, imaging, and laboratory criteria [8]. Some studies have
focused on the diagnosis of MS using different blood serum markers [9]. Goyal et al. [10]
analyzed the serum level of eight cytokines: IL-1β, IL-2, IL-4, IL-8, IL-10, IL-13, IFN-γ,
and TNF-α in MS patients, to identify predictors of disease. The datasets were used as
input into four learning models. Random forest (RF) was identified as the best model
for MS diagnosis as it performed remarkably on all the considered criteria. In this paper,
a deep learning (DL) model based on an artificial neural network (ANN) with a single
hidden layer is proposed for predicting the diagnosis of MS in 144 individuals, 99 MS,
and 45 healthy controls, using their mRNA expression profiling as predictors. An extra
model is conformed adding a second hidden layer to the network structure, in order to
analyze whether a network with two hidden layers and fewer hidden neurons achieves
higher performance and a lower error rate. A comparison of the prediction performance of
the proposed ANN model and four conventional ML techniques was performed. Casalino
et al. [11] published a classification study to evaluate the effectiveness of three ML methods
in distinguishing pediatric MS from healthy children based on their miRNA expression
profiling. Encouraging results were obtained with a multi-layer perceptron (MLP) model
based on a set of features selected by a support vector machine (SVM) algorithm. Chen
et al. [12] integrated three peripheral blood mononuclear cell (PBMC) microarray datasets
and one peripheral blood T-cells microarray dataset, which allowed a comprehensive
analysis of the biological functions of MS-related genes. Differential expression analysis
identified 78 significantly expressed genes in MS. A subsequent analysis identified the
CXCR4, ITGAM, ACTB, RHOA, RPS27A, UBA52, and RPL8 genes as potential biomarkers
associated with MS diagnosis. An SVM was employed to establish an MS diagnostic model
with high prediction performance on different dataset platform chips. Among the studies
that suggest that genetics can predict the possible patient response to treatment, Fagone
et al. [13] applied the uncorrelated reduced centroid algorithm (UCRC) , to identify a subset
of genes that could predict the pharmacological response to natalizumab treatment between
RRMS patients. The results suggest that a specific gene expression profiling of CD4+T cells
can characterize the responsiveness to natalizumab. Jin et al. [14] proposed a bio-informatic
feature selection procedure to identify gene pairs with differentially correlated edges (DCE).
The proposed method was applied to a microarray data set to evaluate the effect of IFN-β
treatment in RRMS patients. Among 23 identified genes, seven had a confidence score
>2: CXCL9, IL2RA, CXCR3, AKT1, CSF2, IL2RB, and GCA. An SVM model was trained
with these genes and had good predictive results. While the data volume is complex
and multi-dimensional, there is much redundancy and irrelevant information. Feature
selection is a fundamental data dimensionality reduction technique often used in ML and
DL [15]. Selecting the features can significantly improve the computational efficiency of
the classification or regression algorithms while increasing the learning model’s perfor-
mance. In this paper, a feature selection method based on recursive feature elimination
with cross-validation [16] is performed to find the optimal number of relevant features in
74 gene expression profiles related to MS. Algorithms based on metaheuristic methods have
demonstrated an ability to search for suitable subsets of features for optimization problems.
For feature selection, Aviles et al. [17] proposed a methodology based on genetic algorithms
to find the parameter space that offers the slightest classification error to improve the
electromyography (EMG) process.

The complexity of a problem implicitly refers to the complexity of an algorithm for solv-
ing that problem, and to the measure of complexity that allows to evaluate the algorithm’s
performance [18]. Two different kinds of complexity measures can be identified: statics
based only on the structure of the algorithms, and dynamics that considers both the algo-
rithms and the inputs, and are thus based on the behavior of a computation. Achache [19]
dealt with the study of the polynomial complexity and numerical implementation for
a short-step primal-dual interior point algorithm for monotone linear complementarity
problems (LCP). In this paper, an algorithms complexity analysis based on two typical static
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measures: runtime, and program size, is performed. Additionally, the statistical hypothesis
test (ANOVA) is computed to analyze the statistical difference between the mean of the
proposed ANN model and the compared classifiers. Salamai et al. [20] implemented this
statistical test to identify the operational risks in the supply chain 4.0 based on a Sine Cosine
Dynamic Group (SCDG) algorithm, obtaining satisfactory results.

This paper is organized as follows. Section 2 explains the proposed research strategy.
Section 3 provides the experimental results. Section 4 discusses the proposed ANN model.
Finally, Section 5 presents the conclusions of the study.

2. Materials and Methods

A flowchart about the strategy followed in this research is shown in Figure 1, which
divides the proposal into five stages.

2.1 Data import:

• GSE17048 experiment

2.2 Data preprocessing:

• Standardization

• Feature selection

2.3 Training and Classification

2.4 Performance metrics:

• Confussion matrix

• Accuracy

• Sensitivity

• Specificity

• Logistic Loss

• AUC

Deep Learning models:

• Artificial Neural Network 

2.5 Statistical analysis:

• ANOVA

Machine Learning models: 

• K-Neighbors

• Gaussian Naive Bayes

• C-Support Vector

• Decision Tree

Figure 1. Proposed methodology. The gene data are obtained from the database and posteriorly
standardized. The most relevant features are selected to train the compared prediction models and
classify the individuals: healthy/MS. Then, the performance metrics are computed with the obtained
predictions and the results are compared. Finally, the ANOVA test is performed to validate the
effectiveness of the proposed ANN model.

2.1. Data Import

The dataset was collected from the GSE17048 expression profiling by array experiment,
available in the public repository of genomic data GEO [21]. Through the GPL6947 plat-
form (Illumina HumanHT-12 V3.0 expression beadchip), the mRNA expression profiling
of 74 genes were acquired from 144 individuals, 99 with MS (43 PPMS, 36 RRMS, and
20 PSMS) and 45 healthy controls. The complete dataset is composed of the HLA-DRB1
gene, because it has a deep link to the risk of MS [5], and 73 expression profiles were taken
as a reference from the 78 MS-related genes identified by Chen et al. [12], of which five were
not considered. The expression summary values were analyzed by GEO2R, an interactive
web tool that allows viewing a specific gene expression through the profile graph tab. The
expression values of the genes across the samples are displayed and presented as a table of
genes ordered by significance, and then they are integrated into an excel spreadsheet.
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2.2. Data Preprocessing

• Standardization: this technique normalizes the features by removing the mean and
scaling to unit variance [11]. Overfitting is a common problem in ML and DL, where a
model works well on the training data but not on the testing data, i.e., the model is
too complex with a high variance [22]. To avoid overfitting, the input data are divided
into 80% training (X_train) and 20% testing (X_test), based on Pareto analysis [23].
Additionally, the output labels are separated into 80% y_train and 20% y_test for
validation. After dividing the dataset, X_train and y_train are standardized.

• Feature selection: in linear models, the target value is modeled as a linear combination
of the features [24]. After standardizing the training data, the dimensionality reduction
technique: recursive feature elimination (RFE) with cross-validation is used to select
the most important features [16]. Given an external estimator that assigns weights
to features (for example, the coefficients of a linear model), the RFE goal is to select
features recursively, considering smaller and smaller sets of them. First, the estimator
is trained on the initial set of features. The importance of each one is obtained either
through any specific attribute, such as coefficients value (weights assigned to the
features, coef_) or feature importances (the impurity-based feature importances, fea-
ture_importances_). Then, the least important features are pruned from the current set.
That procedure is recursively repeated on the pruned set until the desired number of
elements to select is eventually reached. RFE with cross-validation (RFECV) performs
RFE in a cross-validation loop to find the optimal number of features. The scoring
strategy ”accuracy” optimizes the proportion of correctly classified samples.

2.3. Training and Classification

• Machine learning models: The K-Neighbors (KN) [25], Gaussian Naive Bayes
(GNB) [26], C-Support Vector (CSV) [27], and Decision Tree (DT) [28] techniques
are trained with the most relevant genetic features selected by RFECV method. The
Anaconda 3 2021.05 (Python 3.8.8 64-bit) software and the open-source development
internet application Jupyter Notebook are used to generate the pseudo codes that
are executed on a personal computer with Windows 10 Home, 11th Gen Intel Core
i5-1135G7 2.4 GHz processor, 8 GB memory, and 500 GB hard disk. Hyperparameters
are the settings that can be arbitrarily configured before starting the training process
to optimize the model performance, e.g., in Random Forest-based algorithms, the
number of estimators (number of decision trees) and the criterion or impurity measure.
In contrast, model parameters, such as weights in neural networks, are learned during
the model training process [29]. The hyperparameters of the four ML techniques are
set by default.

• Deep learning models: at the core of DP are neural networks, mathematical entities
capable of representing complex functions through a composition of simple functions.
The basic building block of these complex functions is the neuron. It is a linear
transformation of the input (for example, multiplying the input by a number, the
weight, and adding a constant, the bias) followed by applying a fixed nonlinear
function, the activation function [30]. Mathematically, the neuron output can be
expressed as o = f (w ∗ x+ b), with x as the input, w as the weight or scaling factor, and
b as the bias or offset. f is the activation function, commonly set to hyperbolic tangent.
A multi-layer neural network is a composition of functions such as Equations (1)–(4).

x1 = f (w0 ∗ x + b0) (1)

x2 = f (w1 ∗ x1 + b1) (2)

... (3)
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y = f (wn ∗ xn + bn) (4)

The output of a layer of neurons is used as an input for the following layer. Between
the input, and the output layer, there can be one or more non-linear layer, called hidden
layers. The leftmost layer or input layer, consists of a set of neurons representing
the input features. The output layer receives the values from the last hidden layer
and transforms them into output values.The number of hidden neurons Nh can be
determined by Equation (5),

Nh =
Nin +

√
Np

L
(5)

where Nin is the number of input neurons, Np the number of input samples, and L the
number of hidden layers [31].
The proposed ANN architecture is presented in Figure 2, where 144 is the number of in-
dividuals, 35 is the number of input neurons (features selected by RFECV method), 106
is the number of computed hidden neurons of a single dense-type hidden layer with
’tanh’ as the activation function, followed by a dropout-type layer with 0.1 frequency.
The second dense layer with ’sigmoid’ as activation function receives the values from
the dropout layer and transforms them into output predictions (healthy/MS). The
number of hidden layers is set to one for comparison purposes. An extra model is con-
formed by adding a second hidden layer to the network structure, in order to analyze
whether a network with two hidden layers and fewer hidden neurons (53 units) than
a single hidden layer (106 units) achieves higher performance and lower validation
loss [32].
In addition, the dense layer includes a kernel regularizer argument (kernel_regularizer
= l2 with learning rate, lr = 0.01), which implements a regularizer function applied
to the kernel weights matrix. The l2 regularization prevents overfitting and reduces
model complexity.

Dense 

layer 1

Dropout

layer 1

Dense 

layer 2

Input 

layer

(144, 35)

106 0.1

(35, 106) (144, 106)

. = .

'tanh' 

1

Output 

layer

(106, 1) (144, 1)

=

'sigmoid' 

Figure 2. Proposed ANN architecture; dense layer implements the operation: output =

activation(dot(input, kernel) + bias), where activation is the element-wise activation function, kernel
is a weights matrix, and bias is a bias vector; dropout is a regularization layer that randomly sets input
units to 0 with a frequency of rate at each step during training time, which helps prevent overfitting.
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2.4. Performance Metrics

The confusion matrix (CM), accuracy, sensitivity, specificity, logistic loss (log loss) or
cross-entropy loss, and area under the curve (AUC) metrics [10,20,22] are computed to
measure the predictive performance of the compared classifiers.

2.5. Statistical Analysis

The analysis of variance or ANOVA test is applied to identify the statistical difference
between the mean of the proposed ANN model and the compared classifiers [20]. Two
hypotheses, the null and the alternative one, are formulated. The null hypothesis is
H0 : µ(KN) = µ(GNB) = µ(CSV) = µ(DT) = µ(ANN1) = µ(ANN2) where µ is the
mean of samples, and the alternate hypothesis is H1: non-equal means. The p-value is the
significance level that shows whether there are significant differences between the means
of the data.

3. Results

In this paper, a performance comparison of the proposed ANN model and four
conventional ML techniques are carried out. The most relevant features from 74 genes
related to MS etiology were used as training inputs for predicting the susceptibility to
the disease.

3.1. Feature Selection

Figure 3 displays the feature importance results provided by an RF estimator.
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Figure 3. Feature importances; this graph presents the 74 genes divided into two blocks; (A): first
part; (B): second part.

Table 1 presents the selected features by RFECV method based on the highest impor-
tance score. The number of selected features was optimized using the accuracy scoring
strategy. The model with 35 features is optimal, presenting the highest accuracy achieved,
1.0 training accuracy, and 0.75 test accuracy. After the selection, the remaining 39 features
were excluded.
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Table 1. Features selected by RFE with five-fold cross-validation.

# Selected Feature Importance

1 SLC25A39 0.046594
2 YBX1 0.031416
3 NCOA4 0.028775
4 CHSY1 0.027680
5 PSAP 0.026925
6 CSDA 0.024730
7 RHOA 0.023475
8 RAC2 0.023392
9 CCDC59 0.021414
10 EIF4G1 0.021162
11 KLF13 0.020960
12 HBB 0.020262
13 HBG2 0.020044
14 NAE1 0.018367
15 LOC642210 0.018103
16 SNRPA1 0.018043
17 RPL36AL 0.017384
18 CD99 0.017245
19 YWHAB 0.017153
20 MYADM 0.015812
21 KLF2 0.015753
22 CORO1A 0.015732
23 RGS2 0.015477
24 LASP1 0.015034
25 C5AR1 0.014447
26 PCBP1 0.014407
27 HLA-DRB1 0.014128
28 NKG7 0.014030
29 RNF149 0.013935
30 ICAM3 0.013826
31 EIF3E 0.013390
32 METTL5 0.013029
33 LOC401206 0.012424
34 ITGAM 0.012246
35 LOC388720 0.011856

The learning models were trained with and without feature selection for analyzing
the computational efficiency and the algorithm’s complexity. Table 2 shows the results of
efficiency, based on a less runtime and less memory (dataset file), and complexity, based on
a larger runtime and larger program size. So, feature selection increased the efficiency of
all the compared classifiers. The complexity of ANN1 and ANN2 algorithms was superior
to the four ML algorithms.

Table 2. Efficiency and complexity results by classifier; KN: K-Neighbors; GNB: Gaussian Naive
Bayes; CSV: C-Support Vector; DT: Decision Tree; ANN1: Artificial neural network with a single
hidden layer; ANN2: Artificial neural network with two hidden layers; FS: Feature selection; ∗ the
differences of program size were negligible without, and with FS.

Classifier Runtime Memory Program Size ∗

without FS/with FS without FS/with FS

KN 2 ms/1 ms 109 KB/55 KB 2.53 KB
GNB 2 ms/1 ms 109 KB/55 KB 2.49 KB
CSV 3 ms/2 ms 109 KB/55 KB 2.47 KB
DT 3 ms/2 ms 109 KB/55 KB 2.5 KB

ANN1 18 ms by step/14 ms by step 109 KB/55 KB 5.56 KB
ANN2 28 ms by step/19 ms by step 109 KB/55 KB 5.58 KB
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3.2. Performance Comparison

The KN, GNB, CSV, DT, and ANN learning models were trained with 35 selected
features by the RFECV method. Then, the CM, accuracy, sensitivity, specificity, logistic
loss, and AUC metrics were computed with the output predictions for comparing the
classifiers performance.

The input data (5040 samples) were divided into 80% X_train (4032 samples) and 20%
X_test (1008) to avoid overfitting. In addition, the output labels (144) were divided into
80% y_train (115) and 20% y_test (29) for validation. The CM results of the proposed ANN
with a single hidden layer represent seven individuals predicted as negative (healthy),
19 individuals predicted as positive (MS) correctly, two individuals predicted as negative
(healthy) incorrectly, and one individual predicted as positive (MS) wrongly.

The results of the remaining performance metrics are presented in Table 3. Feature
selection improved the accuracy score of almost all classifiers.

Table 3. Performance results by classifier; KN: K-Neighbors; GNB: Gaussian Naive Bayes; CSV:
C-Support Vector; DT: Decision Tree; ANN1: Artificial neural network with a single hidden layer;
ANN2: Artificial neural network with two hidden layers; FS: Feature selection.

Classifier Accuracy Sensitivity Specificity Log_LOSS auc
without FS/with FS

KN 0.6896/0.8620 0.8333 1.0 4.764 0.9166
GNB 0.7931/0.7931 0.85 0.6666 7.146 0.7583
CSV 0.7586/0.7931 0.7692 1.0 7.1461 0.8846
DT 0.6551/0.6896 0.8666 0.5 10.7189 0.6833

ANN1 0.7931/0.8965 0.9047 0.8750 3.573 0.8898
ANN2 0.7241/0.8620 0.8636 0.8571 4.764 0.8603

A comparative graph of the performance results of Table 3 is shown in Figure 4.
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S
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accuracy sensitivity specificity log loss auc

Figure 4. Performance scores by classifier; KN: K-Neighbors; GNB: Gaussian Naive Bayes; CSV:
C-Support Vector; DT: Decision Tree; ANN1: Artificial neural network with a single hidden layer;
ANN2: Artificial neural network with two hidden layers; ANN1 achieved the highest proportion
of correct predictions (0.8965 accuracy), the lesser cross-entropy loss (3.573 log loss) and the highest
balanced accuracy (0.8898 AUC).

In the case of the proposed ANN, Figure 5 displays the training and validation accuracy
and loss results by several hidden layers. ANN with a single hidden layer achieved the
highest validation accuracy and the least validation loss.
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Figure 5. Loss and accuracy results of ANN models; (A): training and validation accuracy;
(B): training and validation loss; the compilation and fitting parameters were arbitrarily config-
ured; compilation: loss = ’binary_crossentropy’, optimizer = ’adam’ and metrics = ’accuracy’;
Fitting: batch_size = 32, epochs = 15.

4. Discussion

ML and DL are based on mathematical algorithms that find natural patterns in the
data, and they are emerging as very useful tools in the bio-informatics field [7]. These
classification models can be trained with gene expression data to improve the diagnosis of
some diseases, e.g., early MS [10–12], and help specialists to select the most appropriate
therapy for a individual patient [13,14]. In this paper, a DL model based on an ANN with a
single hidden layer was proposed for predicting the diagnosis of MS. As Table 3 shows,
higher prediction accuracy and a minimum loss were achieved compared with the four
conventional ML techniques. Therefore, the proposed ANN model can be an option in
providing short-term predictions of the susceptibility to MS based on individual’s genetics.
Moreover, it provides a new understanding of the etiology of MS and can be a valuable
support to specialists. To choose the correct number of hidden layers, for this particular
case of research, it was proven that a network with a single hidden layer is better than with
two hidden layers, because a network with a single hidden layer and more hidden neurons
achieved a higher validation accuracy, in addition, the validation loss parameter converges
faster, as Figure 5 shows.

The human genome is complex, and its volume is multi-dimensional. So, it requires
the application of a dimensionality reduction method that allows us to ignore irrelevant
information, improve the computational efficiency and increase the performance of the
learning models. Hence, the RFECV method was applied to select the 35 most relevant
features from 74 genes related to MS [12]. This method was chosen because it finds the
optimal number of features based on the highest accuracy achieved. From the results in
Tables 2 and 3, the feature selection improved the computational efficiency (runtime and
memory) and the prediction accuracy of the compared learning models. Regarding the
complexity (runtime and program size) of DL algorithms, it was larger than ML algorithms.

The ANOVA test was performed to analyze the statistical difference between the mean
of the proposed ANN model and the compared classifiers. Table 4 displays the descriptive
statistics of data.

Table 5 presents the ANOVA test results, which show that the differences between
the means are statistically significant (p < 0.05), hence, the alternative hypothesis H1
was accepted.
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Table 4. Descriptive statistics by classifier; KN: K-Neighbors; GNB: Gaussian Naive Bayes; CSV:
C-Support Vector; DT: Decision Tree; ANN1: Artificial neural network with a single hidden layer;
ANN2 Artificial neural network with two hidden layers.

KN GNB CSV DT ANN1 ANN2

Number of samples 29 29 29 29 29 29
Mean 0.8275 0.6896 0.8965 0.5172 0.7241 0.7586

Std. Deviation 0.3777 0.4626 0.3045 0.4997 0.4469 0.4279
Std. Error of Mean 0.0713 0.0874 0.0575 0.0944 0.0844 0.0808

Table 5. ANOVA test results; SS: Sum of Squares; DF: Degrees of Freedom; MS: Mean Squared; F: F
ratio; p-value: significance level.

Source SS DF MS F(DFn, DFd) p-Value

Between 2.4597 5 0.4919 2.7279 0.0213
Within 30.2972 168 0.1803 - -
Total 32.7570 173 - - -

The experimental results obtained in this research indicate the effectiveness of the
proposed ANN model, which can be a reference for future comparisons, using another
learning techniques and identifying training data from another genes related to MS.

5. Conclusions

Some ML applications in MS have been proposed by researchers for predicting disease
diagnosis using different genetic biomarkers. In this research paper, an ANN model is
trained with 35 relevant genetic features related to MS. A 0.8965 accuracy and a 3.573 log
loss were achieved compared with four conventional learning techniques. Thus, the DL
models significantly increase the prediction accuracy and diminish the prediction loss
compared with ML models. Hence, the proposed ANN model has a high potential of
clinical application to support specialists in predicting the diagnosis of MS based on
individual’s genetic features, allowing the emergence of new preventive treatments. To
reduce the computational cost, the relevant features from 74 genetic expression profiling
were selected by the RFECV method with 1.0 training accuracy and 0.75 test accuracy. So,
the 35 selected features of Table 1 can be convenient predictive biomarkers for improving
the comprehension of the influence of some genes on the susceptibility to MS, and play a
significant role in comprehending the MS etiology. The results obtained from the ANOVA
test confirm that the differences between the mean of the proposed ANN model and the
compared classifiers are statistically significant based on p-value score (p < 0.05).

Author Contributions: Conceptualization, E.R.P.d.L.-S., O.A.D.-R., A.M.H.-N. and J.D.M.-S.; method-
ology, E.R.P.d.L.-S., O.A.D.-R., A.M.H.-N. and J.D.M.-S.; software, E.R.P.d.L.-S., O.A.D.-R. and J.D.M.-
S.; validation, O.A.D.-R., A.M.H.-N., J.R.-R., C.P.-O. and J.D.M.-S.; formal analysis, O.A.D.-R., A.M.H.-
N., J.R.-R., C.P.-O. and J.D.M.-S.; investigation, E.R.P.d.L.-S., O.A.D.-R., A.M.H.-N., J.R.-R., C.P.-O.
and J.D.M.-S.; resources, O.A.D.-R., A.M.H.-N., J.R.-R., C.P.-O. and J.D.M.-S.; writing—original draft
preparation, E.R.P.d.L.-S. and J.D.M.-S.; writing—review and editing, E.R.P.d.L.-S. and J.D.M.-S.;
supervision, O.A.D.-R., A.M.H.-N., J.R.-R., C.P.-O. and J.D.M.-S.; project administration, E.R.P.d.L.-S.,
O.A.D.-R., A.M.H.-N. and J.D.M.-S. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The implemented pseudo codes, and the collected dataset are available
at https://github.com/ponceraf2020/Pseudo-code.git (accessed on 25 February 2023).

Conflicts of Interest: The authors declare no conflict of interest.

https://github.com/ponceraf2020/Pseudo-code.git


Micromachines 2023, 14, 749 11 of 12

References
1. Milo, R.; Miller, A. Revised diagnostic criteria of multiple sclerosis. Autoimmun. Rev. 2014, 13, 518–524. [CrossRef] [PubMed]
2. Murgia, F.; Lorefice, L.; Poddighe, S.; Fenu, G.; Secci, M.A.; Marrosu, M.G.; Cocco, E.; Atzori, L. Multi-platform characterization

of cerebrospinal fluid and serum metabolome of patients affected by relapsing–Remitting and primary progressive multiple
sclerosis. J. Clin. Med. 2020, 9, 863. [CrossRef]

3. Tarlinton, R.E.; Khaibullin, T.; Granatov, E.; Martynova, E.; Rizvanov, A.; Khaiboullina, S. The interaction between viral and
environmental risk factors in the pathogenesis of multiple sclerosis. Int. J. Mol. Sci. 2019, 20, 303. [CrossRef]

4. Goodin, D.S. Genetic and environmental susceptibility to multiple sclerosis. Med Res. Arch. 2021, 9.
mra.v9i6.2413. [CrossRef]

5. da Silva Bernardes, M.; Paiva, C.L.A.; Paradela, E.R.; Alvarenga, M.P.; Pereira, F.F.; Vasconcelos, C.C.; Alvarenga, R.M.P. Familial
multiple sclerosis in a Brazilian sample: Is HLA-DR15 involved in susceptibility to the disease? J. Neuroimmunol. 2019, 330, 74–80.
[CrossRef] [PubMed]

6. Hamet, P.; Tremblay, J. Artificial intelligence in medicine. Metabolism 2017, 69, S36–S40. [CrossRef]
7. Law, M.T.; Traboulsee, A.L.; Li, D.K.; Carruthers, R.L.; Freedman, M.S.; Kolind, S.H.; Tam, R. Machine learning in secondary

progressive multiple sclerosis: an improved predictive model for short-term disability progression. Mult. Scler. J.-Exp. Transl.
Clin. 2019, 5, 2055217319885983. [CrossRef] [PubMed]

8. Macin, G.; Tasci, B.; Tasci, I.; Faust, O.; Barua, P.D.; Dogan, S.; Tuncer, T.; Tan, R.S.; Acharya, U.R. An accurate multiple sclerosis
detection model based on exemplar multiple parameters local phase quantization: ExMPLPQ. Appl. Sci. 2022, 12, 4920. [CrossRef]

9. Nabizadeh, F.; Masrouri, S.; Ramezannezhad, E.; Ghaderi, A.; Sharafi, A.M.; Soraneh, S.; Moghadasi, A.N. Artificial intelligence
in the diagnosis of multiple sclerosis: A systematic review. Mult. Scler. Relat. Disord. 2022, 59, 103673. [CrossRef]

10. Goyal, M.; Khanna, D.; Rana, P.S.; Khaibullin, T.; Martynova, E.; Rizvanov, A.A.; Khaiboullina, S.F.; Baranwal, M. Computational
Intelligence Technique for Prediction of Multiple Sclerosis Based on Serum Cytokines. Front. Neurol. 2019, 10, 781. [CrossRef]

11. Casalino, G.; Castellano, G.; Consiglio, A.; Nuzziello, N.; Vessio, G. MicroRNA expression classification for pediatric multiple
sclerosis identification. J. Ambient. Intell. Humaniz. Comput. 2021. [CrossRef]

12. Chen, X.; Hou, H.; Qiao, H.; Fan, H.; Zhao, T.; Dong, M. Identification of blood-derived candidate gene markers and a new 7-gene
diagnostic model for multiple sclerosis. Biol. Res. 2021, 54, 12. [CrossRef] [PubMed]

13. Fagone, P.; Mazzon, E.; Mammana, S.; Di Marco, R.; Spinasanta, F.; Basile, M.S.; Petralia, M.C.; Bramanti, P.; Nicoletti, F.; Mangano,
K. Identification of CD4+ T cell biomarkers for predicting the response of patients with relapsing-remitting multiple sclerosis to
natalizumab treatment. Mol. Med. Rep. 2019, 20, 678–684. [CrossRef] [PubMed]

14. Tao, J.; Wang, C.; Tian, S. Feature selection based on differentially correlated gene pairs reveals the mechanism of IFN-therapy for
multiple sclerosis. Bioinform. Genom. 2020, 8, e8812. [CrossRef]

15. Ren, Z.; Ren, G.; Wu, D. Deep Learning Based Feature Selection Algorithm for Small Targets Based on mRMR. Micromachines
2022, 13, 1765. [CrossRef]

16. Artur, M. Review the performance of the Bernoulli Naïve Bayes Classifier in Intrusion Detection Systems using Recursive Feature
Elimination with Cross-validated selection of the best number of features. Procedia Comput. Sci. 2021, 190, 564–570. [CrossRef]

17. Aviles, M.; Sánchez-Reyes, L.M.; Fuentes-Aguilar, R.Q.; Toledo-Pérez, D.C.; Rodríguez-Reséndiz, J. A Novel Methodology for
Classifying EMG Movements Based on SVM and Genetic Algorithms. Micromachines 2022, 13, 2108. [CrossRef]

18. Bovet, D.P.; Crescenzi, P.; Bovet, D. Introduction to the Theory of Complexity; Prentice Hall: London, UK, 1994; Volume 7.
19. Achache, M. Complexity analysis and numerical implementation of a short-step primal-dual algorithm for linear complementarity

problems. Appl. Math. Comput. 2010, 216, 1889–1895. [CrossRef]
20. Salamai, A.A.; El-kenawy, E.S.M.; Abdelhameed, I. Dynamic voting classifier for risk identification in supply chain 4.0. CMC-

Comput. Mater. Contin. 2021, 69, 3749–3766. [CrossRef]
21. National Center for Biotechnology Information (NCBI)—Gene Expression Omnibus (GEO) Database. 2010. Available online:

https://www.ncbi.nlm.nih.gov/geo/geo2r (accessed on 25 August 2022).
22. Mirjalili, V.; Raschka, S. Python Machine Learning; Marcombo: Barcelona, Spain, 2020.
23. Roccetti, M.; Delnevo, G.; Casini, L.; Mirri, S. An alternative approach to dimension reduction for pareto distributed data: A case

study. J. Big Data 2021, 8, 39. [CrossRef]
24. Kaufmann, K.; Maryanovsky, D.; Mellor, W.M.; Zhu, C.; Rosengarten, A.S.; Harrington, T.J.; Oses, C.; Toher, C.; Curtarolo, S.;

Vecchio, K.S. Discovery of high-entropy ceramics via machine learning. Npj Comput. Mater. 2020, 6, 42. [CrossRef]
25. Sarker, I.H. Machine learning: Algorithms, real-world applications and research directions. SN Comput. Sci. 2021, 2, 160.

[CrossRef] [PubMed]
26. Ontivero-Ortega, M.; Lage-Castellanos, A.; Valente, G.; Goebel, R.; Valdes-Sosa, M. Fast Gaussian Na’́ıve Bayes for searchlight

classification analysis. Neuroimage 2017, 163, 471–479. [CrossRef] [PubMed]
27. Montolío, A.; Martín-Gallego, A.; Cegoñino, J.; Orduna, E.; Vilades, E.; Garcia-Martin, E.; Del Palomar, A.P. Machine learning in

diagnosis and disability prediction of multiple sclerosis using optical coherence tomography. Comput. Biol. Med. 2021, 133, 104416.
[CrossRef] [PubMed]

28. Kotsiantis, S.B. Decision trees: A recent overview. Artif. Intell. Rev. 2013, 39, 261–283. [CrossRef]
29. Villegas-Mier, C.G.; Rodriguez-Resendiz, J.; Álvarez-Alvarado, J.M.; Jiménez-Hernández, H.; Odry, Á. Optimized Random Forest

for Solar Radiation Prediction Using Sunshine Hours. Micromachines 2022, 13, 1406. [CrossRef]

http://doi.org/10.1016/j.autrev.2014.01.012
http://www.ncbi.nlm.nih.gov/pubmed/24424194
http://dx.doi.org/10.3390/jcm9030863
http://dx.doi.org/10.3390/ijms20020303
http://dx.doi.org/10.18103/mra.v9i6.2413
http://dx.doi.org/10.1016/j.jneuroim.2019.02.004
http://www.ncbi.nlm.nih.gov/pubmed/30836273
http://dx.doi.org/10.1016/j.metabol.2017.01.011
http://dx.doi.org/10.1177/2055217319885983
http://www.ncbi.nlm.nih.gov/pubmed/31723436
http://dx.doi.org/10.3390/app12104920
http://dx.doi.org/10.1016/j.msard.2022.103673
http://dx.doi.org/10.3389/fneur.2019.00781
http://dx.doi.org/10.1007/s12652-021-03091-2
http://dx.doi.org/10.1186/s40659-021-00334-6
http://www.ncbi.nlm.nih.gov/pubmed/33795012
http://dx.doi.org/10.3892/mmr.2019.10283
http://www.ncbi.nlm.nih.gov/pubmed/31180553
http://dx.doi.org/10.7717/peerj.8812
http://dx.doi.org/10.3390/mi13101765
http://dx.doi.org/10.1016/j.procs.2021.06.066
http://dx.doi.org/10.3390/mi13122108
http://dx.doi.org/10.1016/j.amc.2010.03.015
http://dx.doi.org/10.32604/cmc.2021.018179
https://www.ncbi.nlm.nih.gov/geo/geo2r
http://dx.doi.org/10.1186/s40537-021-00428-8
http://dx.doi.org/10.1038/s41524-020-0317-6
http://dx.doi.org/10.1007/s42979-021-00592-x
http://www.ncbi.nlm.nih.gov/pubmed/33778771
http://dx.doi.org/10.1016/j.neuroimage.2017.09.001
http://www.ncbi.nlm.nih.gov/pubmed/28877514
http://dx.doi.org/10.1016/j.compbiomed.2021.104416
http://www.ncbi.nlm.nih.gov/pubmed/33946022
http://dx.doi.org/10.1007/s10462-011-9272-4
http://dx.doi.org/10.3390/mi13091406


Micromachines 2023, 14, 749 12 of 12

30. Stevens, E.; Antiga, L.; Viehmann, T. Deep Learning with PyTorch; Manning Publications: Shelter Island, NY, USA, 2020.
31. Madhiarasan, M.; Deepa, S. A novel criterion to select hidden neuron numbers in improved back propagation networks for wind

speed forecasting. Appl. Intell. 2016, 44, 878–893. [CrossRef]
32. Han, W.; Nan, L.; Su, M.; Chen, Y.; Li, R.; Zhang, X. Research on the prediction method of centrifugal pump performance based

on a double hidden layer BP neural network. Energies 2019, 12, 2709. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s10489-015-0737-z
http://dx.doi.org/10.3390/en12142709

	Introduction
	Materials and Methods
	Data Import
	Data Preprocessing
	Training and Classification
	Performance Metrics
	Statistical Analysis

	Results
	Feature Selection
	Performance Comparison

	Discussion
	Conclusions
	References

