Chitosan–Imidazolium Core–Shell Nanoparticles of Gd-Mn-Mo Polyoxometalate as Novel Potential MRI Nano-Agent for Breast Cancer Detection
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Instruments
2.2. Preparations
2.2.1. Synthesis of Chitosan–Imidazolium Conjugate (CSIm)
2.2.2. Preparation of POM@CSIm NPs
2.3. Characterizations
2.4. Relaxivity Measurements
2.5. Ex Vivo Hemolysis Assessment
2.6. Cell-Based In Vitro Studies
2.6.1. Cell Culture
2.6.2. MTT Assay
2.6.3. Cellular Uptake
2.7. In Vitro MR Imaging
2.8. In Vivo Studies
2.8.1. Animal Caring
2.8.2. Tumor Induction
2.8.3. In Vivo MR Imaging
2.9. Statistical Analysis
3. Results and Discussion
3.1. Characterization of NPs
3.2. Relaxivity Measurements
3.3. In Vitro Cell Based Assessments
3.3.1. MTT Assay
3.3.2. Cellular Uptake
3.4. Ex Vivo Hemolysis Assay
3.5. In Vitro Imaging
3.6. In Vivo Imaging
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Isfahani, P.; Arefy, M.; Shamsaii, M. Prevalence of severe depression in Iranian women with breast cancer: A meta-analysis. Depress. Res. Treat. 2020, 2020, 5871402. [Google Scholar] [CrossRef] [PubMed]
- Berry, D.A.; Cronin, K.A.; Plevritis, S.K.; Fryback, D.G.; Clarke, L.; Zelen, M.; Mandelblatt, J.S.; Yakovlev, A.Y.; Habbema, J.D.F.; Feuer, E.J. Effect of screening and adjuvant therapy on mortality from breast cancer. N. Engl. J. Med. 2005, 353, 1784–1792. [Google Scholar] [CrossRef]
- McGale, P.; Correa, C.; Cutter, D.; Duane, F.; Ewertz, M.; Gray, R.; Mannu, G.; Peto, R.; Whelan, T.; Darby, S. Effect of radiotherapy after mastectomy and axillary surgery on 10-year recurrence and 20-year breast cancer mortality: Meta-analysis of individual patient data for 8135 women in 22 randomised trials. Lancet 2014, 383, 2127–2135. [Google Scholar] [PubMed]
- Aminolroayaei, F.; Shahbazi-Gahrouei, D.; Shahbazi-Gahrouei, S.; Rasouli, N. Recent nanotheranostics applications for cancer therapy and diagnosis: A review. IET Nanobiotechnol. 2021, 15, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Shahbazi-Gahrouei, D.; Khaniabadi, P.M.; Shahbazi-Gahrouei, S.; Khorasani, A.; Mahmoudi, F. A literature review on multimodality molecular imaging nanoprobes for cancer detection. Pol. J. Med. Phys. Eng. 2019, 25, 57–68. [Google Scholar] [CrossRef][Green Version]
- Lei, M.; Fu, C.; Cheng, X.; Fu, B.; Wu, N.; Zhang, Q.; Fu, A.; Cheng, J.; Gao, J.; Zhao, Z. Activated surface charge-reversal manganese oxide nanocubes with high surface-to-volume ratio for accurate magnetic resonance tumor imaging. Adv. Funct. Mater. 2017, 27, 1700978. [Google Scholar] [CrossRef]
- Khorasani, A.; Shahbazi-Gahrouei, D.; Safari, A. Recent Metal Nanotheranostics for Cancer Diagnosis and Therapy: A Review. Diagnostics 2023, 13, 833. [Google Scholar] [CrossRef]
- Lu, F.; Wang, M.; Li, N.; Tang, B. Polyoxometalate-Based Nanomaterials toward Efficient Cancer Diagnosis and Therapy. Chem.–Eur. J. 2021, 27, 6422–6434. [Google Scholar] [CrossRef]
- Bijelic, A.; Aureliano, M.; Rompel, A. Polyoxometalates as potential next-generation metallodrugs in the combat against cancer. Angew. Chem. Int. Ed. 2019, 58, 2980–2999. [Google Scholar] [CrossRef][Green Version]
- Liu, Z.; Niu, D.; Zhang, J.; Zhang, W.; Yao, Y.; Li, P.; Gong, J. Amphiphilic core–shell nanoparticles containing dense polyethyleneimine shells for efficient delivery of microrNa to Kupffer cells. Int. J. Nanomed. 2016, 11, 2785. [Google Scholar]
- Cardona-Serra, S.; Clemente-Juan, J.M.; Coronado, E.; Gaita-Ariño, A.; Camón, A.; Evangelisti, M.; Luis, F.; Martínez-Pérez, M.J.; Sesé, J. Lanthanoid Single-Ion Magnets Based on Polyoxometalates with a 5-fold Symmetry: The Series [LnP5W30O110]12− (Ln3+ = Tb, Dy, Ho, Er, Tm, and Yb). J. Am. Chem. Soc. 2012, 134, 14982–14990. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Li, M.; Zhang, Y.; Wang, R.; Song, Y.; Zhao, W.; Lin, S. A supramolecular complex based on a Gd-containing polyoxometalate and food-borne peptide for MRI/CT imaging and NIR-triggered photothermal therapy. Dalton Trans. 2021, 50, 8076–8083. [Google Scholar] [CrossRef] [PubMed]
- Zong, L.; Wu, H.; Lin, H.; Chen, Y. A polyoxometalate-functionalized two-dimensional titanium carbide composite MXene for effective cancer theranostics. Nano Res. 2018, 11, 4149–4168. [Google Scholar] [CrossRef]
- Gupta, R.; Khan, I.; Hussain, F.; Bossoh, A.M.; Mbomekalle, I.M.; de Oliveira, P.; Sadakane, M.; Kato, C.; Ichihashi, K.; Inoue, K.; et al. Two new sandwich-type manganese {Mn5}-substituted polyoxotungstates: Syntheses, crystal structures, electrochemistry, and magnetic properties. Inorg. Chem. 2017, 56, 8759–8767. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Li, W.; Li, X.; Pei, F.; Wang, X.; Lei, H. Mn(II)-monosubstituted polyoxometalates as candidates for contrast agents in magnetic resonance imaging. J. Inorg. Biochem. 2007, 101, 1036–1042. [Google Scholar] [CrossRef]
- Ahmed, S.; Ali, A.; Sheikh, J. A review on chitosan centred scaffolds and their applications in tissue engineering. Int. J. Biol. Macromol. 2018, 116, 849–862. [Google Scholar] [CrossRef]
- Frank, L.; Onzi, G.; Morawski, A.; Pohlmann, A.; Guterres, S.; Contri, R. Chitosan as a coating material for nanoparticles intended for biomedical applications. React. Funct. Polym. 2020, 147, 104459. [Google Scholar] [CrossRef]
- Dowaidar, M.; Nasser Abdelhamid, H.; Hällbrink, M.; Langel, Ü.; Zou, X. Chitosan enhances gene delivery of oligonucleotide complexes with magnetic nanoparticles–cell-penetrating peptide. J. Biomater. Appl. 2018, 33, 392–401. [Google Scholar] [CrossRef]
- Ma, K.; Cheng, Y.; Wei, X.; Chen, D.; Zhao, X.; Jia, P. Gold embedded chitosan nanoparticles with cell membrane mimetic polymer coating for pH-sensitive controlled drug release and cellular fluorescence imaging. J. Biomater. Appl. 2021, 35, 857–868. [Google Scholar] [CrossRef]
- Mahvash, S.; Zavareh, V.A.; Taymouri, S.; Ramezani-Aliakbari, M.; Dousti, F.; Mirian, M.; Rostami, M. Hybrid Nanocomposite of Imidazolium Based Chitosan and Anderson-type Manganese Polyoxomolybdate for Boosting Drug Delivery against Breast Cancer. Res. Sq. 2021. [Google Scholar] [CrossRef]
- Dousti, F.; Soleimanbeigi, M.; Mirian, M.; Varshosaz, J.; Hassanzadeh, F.; Kasesaz, Y.; Rostami, M. Boron phenyl alanine targeted ionic liquid decorated chitosan nanoparticles for mitoxantrone delivery to glioma cell line. Pharm. Dev. Technol. 2021, 26, 899–909. [Google Scholar] [CrossRef] [PubMed]
- Gong, P.; Li, Y.; Zhai, C.; Luo, J.; Tian, X.; Chen, L.; Zhao, J. Syntheses, structural characterization and photophysical properties of two series of rare-earth-isonicotinic-acid containing Waugh-type manganomolybdates. CrystEngComm 2017, 19, 834–852. [Google Scholar] [CrossRef]
- Sirviö, J.A.; Visanko, M.; Liimatainen, H. Synthesis of imidazolium-crosslinked chitosan aerogel and its prospect as a dye removing adsorbent. RSC Adv. 2016, 6, 56544–56548. [Google Scholar] [CrossRef][Green Version]
- Baksi, R.; Singh, D.P.; Borse, S.P.; Rana, R.; Sharma, V.; Nivsarkar, M. In vitro and in vivo anticancer efficacy potential of Quercetin loaded polymeric nanoparticles. Biomed. Pharmacother. 2018, 106, 1513–1526. [Google Scholar] [CrossRef]
- Nosrati, H.; Salehiabar, M.; Fridoni, M.; Abdollahifar, M.A.; Kheiri Manjili, H.; Davaran, S.; Danafar, H. New insight about biocompatibility and biodegradability of iron oxide magnetic nanoparticles: Stereological and in vivo MRI monitor. Sci. Rep. 2019, 9, 7173. [Google Scholar] [CrossRef][Green Version]
- Ahmad, M.W.; Xu, W.; Kim, S.J.; Baeck, J.S.; Chang, Y.; Bae, J.E.; Chae, K.S.; Park, J.A.; Kim, T.J.; Lee, G.H. Potential dual imaging nanoparticle: Gd2O3 nanoparticle. Sci. Rep. 2015, 5, 8549. [Google Scholar] [CrossRef][Green Version]
- Suo, H.; Gao, Z.; Xu, L.; Xu, C.; Yu, D.; Xiang, X.; Huang, H.; Hu, Y. Synthesis of functional ionic liquid modified magnetic chitosan nanoparticles for porcine pancreatic lipase immobilization. Mater. Sci. Eng. C 2019, 96, 356–364. [Google Scholar] [CrossRef]
- Arokia, A.; Nepolean Raj, T.J.; Elavarasi, C. Oxidation of Benzyl alcohol to Benzaldehyde catalysed by 9-Molybdomanganate. J. Funct. Mater. Biomol. 2021, 5, 438–440. [Google Scholar]
- Mdlalose, N.J.; Mdlalose, W.B.; Dlamini, S.T.; Mokhosi, S.R. Investigating the Structural and Magnetic Properties of Chitosan Coated CoFe2O4 Nanoparticles for Drug Delivery. Arch. Biomed. Eng. Biotechnol. 2020, 4, ABEB. [Google Scholar] [CrossRef]
- Shahbazi-Gahrouei, D. Novel MR imaging contrast agents for cancer detection. J. Res. Med. Sci. Off. J. Isfahan Univ. Med. Sci. 2009, 14, 141–147. [Google Scholar]
- Mortezazadeh, T.; Gholibegloo, E.; Alam, N.R.; Dehghani, S.; Haghgoo, S.; Ghanaati, H.; Khoobi, M. Gadolinium (III) oxide nanoparticles coated with folic acid-functionalized poly(β-cyclodextrin-co-pentetic acid) as a biocompatible targeted nano-contrast agent for cancer diagnostic: In vitro and in vivo studies. Magn. Reson. Mater. Phys. Biol. Med. 2019, 32, 487–500. [Google Scholar] [CrossRef] [PubMed]
- Weber, M.; Steinle, H.; Golombek, S.; Hann, L.; Schlensak, C.; Wendel, H.P.; Avci-Adali, M. Blood-contacting biomaterials: In vitro evaluation of the hemocompatibility. Front. Bioeng. Biotechnol. 2018, 6, 99. [Google Scholar] [CrossRef] [PubMed][Green Version]
Sample | Hydrodynamic Size (nm) | Zeta Potential (mV) |
---|---|---|
NPs | 250.5 nm ± 17.9 nm | −35.5 mV |
POM@CSIm NPs | 393.1 nm ± 22.4 nm | −30.6 mV |
Equipment | Element | Value (mg/L) |
---|---|---|
ICP-OES | Gd | 42.68 |
ICP-OES | Mo | 232.60 |
ICP-OES | Mn | 15.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aminolroayaei, F.; Shahbazi-Gahrouei, D.; Rostami, M.; Hejazi, S.H.; Farzadniya, A. Chitosan–Imidazolium Core–Shell Nanoparticles of Gd-Mn-Mo Polyoxometalate as Novel Potential MRI Nano-Agent for Breast Cancer Detection. Micromachines 2023, 14, 741. https://doi.org/10.3390/mi14040741
Aminolroayaei F, Shahbazi-Gahrouei D, Rostami M, Hejazi SH, Farzadniya A. Chitosan–Imidazolium Core–Shell Nanoparticles of Gd-Mn-Mo Polyoxometalate as Novel Potential MRI Nano-Agent for Breast Cancer Detection. Micromachines. 2023; 14(4):741. https://doi.org/10.3390/mi14040741
Chicago/Turabian StyleAminolroayaei, Fahimeh, Daryoush Shahbazi-Gahrouei, Mahboubeh Rostami, Seyed Hossein Hejazi, and Amin Farzadniya. 2023. "Chitosan–Imidazolium Core–Shell Nanoparticles of Gd-Mn-Mo Polyoxometalate as Novel Potential MRI Nano-Agent for Breast Cancer Detection" Micromachines 14, no. 4: 741. https://doi.org/10.3390/mi14040741