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Abstract: Laser interferometer technology is used in the precision positioning stage as an encoder.
For better resolution, laser interferometers usually work with interpolation devices. According
to the interpolation factor, these devices can convert an orthogonal sinusoidal signal into several
square-wave signals via digital processing. The bandwidth of the processing will be the limitation of
the moving speed of the positioning stage. Therefore, the user needs to make a trade-off between the
interpolation factor and the moving speed. In this investigation, a novel analog interpolation method
for a heterodyne laser interferometer has been proposed. This method is based on the principle
of the lock-in amplifier (LIA). By using the proposed interpolation method, the bandwidth of the
laser encoder system can be independent of the interpolation factor. This will be a significant benefit
for the ultra-high resolution encoder system and the laser interferometers. The concept, design,
and experiment are revealed in this manuscript. The experimental results show that the proposed
interpolation method can reach nanometer resolution with a heterodyne laser interferometer, and the
bandwidth of the signal is independent of the resolution.
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1. Introduction

Precision positioning technology is one of the most important techniques in the mod-
ern manufacturing industry, and the encoding system is the key to it. Advanced encoder
systems are usually based on laser interferometers, due to their high initial resolution and
the connection to the definition of the meter [1]. The common initial resolutions of the
laser interferometers are about 0.32 µm or 0.16 µm, depending on the optical structure [2]
(Table S1, Supplementary Material). The initial resolution of the laser interferometer is
several times higher than that of a grating-based encoder system [3], and laser interferom-
eters also have the feature of error reduction [4–6]. Therefore, the interferometry−based
encoders have high potential in precision positioning.

However, the initial resolution of the interferometer systems is on a sub-micrometer
scale, which is far from enough for the precision positioning. Therefore, interpolation
technology is applied for better resolutions [7]. From the previous research, the interpo-
lation technologies are based on digital signal processing, especially the analog-to-digital
converter (ADC), processing algorithms, and microcontroller unit (MCU) [8–11]. The block
diagram and the sketch of the signal converting of the interpolation module are shown in
Figures 1 and 2. Through this processing, the orthogonal sinusoidal signal is converted into
several square-wave signals via the interpolation module. This means that the frequency of
the output signal (square wave) is several times higher than the input signal (sinusoidal
wave), and the bandwidth of the output signal is based on the clock of the MCU. The cutoff
frequency of the output signals is related to the bandwidth of the aforementioned digital
processing, and it is the limitation of the moving speed of the target positioning stage.
Table 1 shows the relationship between the interpolation factor, the moving speed, and the
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requirement of the signal bandwidth with an initial resolution of 0.32 µm. A higher resolu-
tion requires a higher signal bandwidth, which means that the clock of the MCU and the
efficiency of the algorithm are the limitations of the moving speed for the positioning stage.
With the commercial interpolation module, people need to make a trade-off between the
interpolation factor (resolution) and the moving speed (Table S2, Supplementary Material).
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Therefore, in this research, a novel analog interpolation method has been proposed.
This method is based on the principle of LIA, and it is designed for the heterodyne laser
interferometer. By using the proposed interpolator, the bandwidth of the encoder system
can be independent of the resolution. This is an obvious advantage for the encoder system
of the next-generation manufacturing equipment.

2. Materials and Methods
2.1. Laser-Interferometry-Based Encoder

In a feedback-controlled positioning system, an encoder is required as the sensor to
provide the positioning information to the controller. An encoder system can be classified
into two typical types according to measurement principle and optical structure. One is
called a grating-based encoder, and the other is called an interferometry-based encoder. For
the grating-based encoder, the initial resolution is based on the grating pitch. Therefore, the
initial resolution of the grating-based encoder is about 4 to 40 µm (Table S3, Supplementary
Material). On the other hand, the initial resolution of the interferometry-based encoder is
based on the laser wavelength and the optical structure [2,12], and its initial resolution is
about 0.16 µm or 0.32 µm, depending on its interferometer factor [13]. There have been
several times where deviations have existed between the grating-based encoder and the
interferometry-based encoder. For the required resolution of the precision positioning stage,
the final resolution is around the sub-nanometer scale. The interpolation factors would
be over 1000 for the grating-based encoder, and 80 for the interferometry-based encoder.
A lower interpolation factor means less processing capacity requirement, and so this is
the first advantage of the interferometry-based encoder. Another advantage is the lower
interpolation error. Since the interpolation error is highly related to the initial resolution,
the interferometry-based encoder has an interpolation error of about a few percent of its
initial resolution [14,15]. This is the reason why the advanced precision positioning system
is usually built with an interferometry-based encoder [13].

The interferometry-based encoder can be sorted into the homodyne and hetero-
dyne systems according to the laser source. The optical structure and signal processing
of these two types of interferometer systems are significantly different [16]. Previous
research [17,18] has shown that heterodyne signal processing can have a higher signal-
to-noise ratio (SNR), which benefits minimizing the random error of the encoder system.
Furthermore, in the multi-axis positioning task, the homodyne interferometer requires
more optical elements and detectors to fit the differential signaling [19]. On the contrary, the
heterodyne interferometer can share the reference signal, eliminating the need to arrange
the reference signal for every positioning axis [6]. This characteristic is advantageous in the
positioning application, especially for the multi-axis positioning systems [20,21].

Therefore, in this investigation, the target system is the heterodyne interferometry-
based encoder, as shown in Figure 3. The interference signal can be expressed as
Equations (1)–(4), where Eω1(t), Eω2(t) and Aω1 , Aω2 are the electric fields and amplitude
of the two laser beams with difference frequencies; ω1 and ω2 are the angular frequencies of
these laser beams; φ1 and φ2 are the phase angles of their optical paths; IR(t) and IM(t) are
the intensity of the reference and measurement beams; I is the intensity amplitude of these
beams; ∆ω is the frequency difference between the two laser beams; and θref and θmeas are
the phase angles of the optical paths within these beams. Because the reference arm (θref) is
usually fixed, the phase difference between θref and θmeas can be seen as the displacement
information of the measurement mirror. Once we resolve this phase difference (∆∅), the
displacement of ∆L can be realized.

Eω1(t) = Aω1 e(iω1t+φ1) (1)

Eω2(t) = Aω2 e(iω2t+φ2) (2)

IR(t) =
I
2
[1 + cos(∆ω·t + θref)] (3)
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IM(t) =
I
2
[1 + cos(∆ω·t + θmeas)] (4)
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2.2. Heterodyne Signal Processing

The common heterodyne signal processing is based on LIA technology [22,23], and
is wildly used in interferometer signaling [6,24]. The block diagram of the LIA method
is shown in Figure 4. The general LIA is composed of a multiplier and a low-pass filter
(LPF). The concept of the LIA method is to resolve the phase difference between the two
input signals of VR(t) and VM(t), as shown in Equations (5)–(7). The phase delay of ψ is
the key to signal modulation, and ψ could be any phase angle, e.g., 0, π

4 , π
2 , or 3π

4 . The
modulation is designed for the quadrature or differential signaling [19,25]. This modulation
is recommended for a heterodyne encoder; otherwise, the encoder cannot determine the
moving direction, and will be easily influenced by the signal drift.

VR(t) ∝ IR(t) (5)

VM(t) ∝ IM(t) (6)

Vout = LPF{VR(t)×VM(t)} ∝ cos[(∆∅)− ψ] (7)

where ∆∅ = θmeas − θref.

2.3. Interpolation Technology

The interpolator device is a common device that can be found in the motion control
system. The function of the interpolator is to enhance the signal resolution and to convert
the sinusoidal signal into several square-wave signals. The output signal of the interpolator
is called the quadrature-encoded signal. This signal can deal with the digital counter to
resolve the direction and displacement of the target stage. The introduction of the digital
interpolator and the proposed analog interpolator will follow.
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2.3.1. Digital Interpolator

The digital interpolator is usually composed of an input circuit (usually a differential
circuit), an ADC, an MCU, and a digital output circuit (usually a comparator circuit) [7–11].
The feature of the interpolator not only enhances the resolution, but also enhances the
frequency of the output signal. Therefore, the processing speeds of the ADC and the
MCU are the restrictions of the system’s bandwidth. The commercial interpolators are
usually designed for the grating-based encoder (Table S4, Supplementary Material). In
Equation (8), the maximum velocity can be calculated as 250 mm/s for the grating-based
encoder with a grating pitch of 20 µm. Additionally, the maximum velocity of 4 mm/s with
the interferometry-based encoder is calculated in Equation (9), where the half wavelength
is 0.32 µm. Both of the ADC bandwidths (f) of the interpolator are 125 kHz and the safety
factor ( fs) is 10. When it works with the interferometry-based encoder, the maximum veloc-
ity is not enough for a general application, not to mention that the advanced application
needs a higher resolution, and so the maximum velocity might be getting worse. For this
reason, this investigation would like to find the solution to this problem.

Vmax =
pitch× f

fs
=

20 µm× 125 kHz
10

= 250 mm/s (8)

Vmax =
λ
2 × f

fs
=

0.32 µm× 125 kHz
10

= 4 mm/s (9)

2.3.2. Analog Interpolator Design

The concept of the analog interpolator comes from the principle of LIA. It uses the
multipliers to double the carrying frequencies of the signal. Additionally, it transmits
the signal with double frequency to an LIA for resolving the phase difference (∆∅), as
shown in Figure 5. In this way, not only does the carrying frequency become two times
higher, but also the phase difference becomes double. This means that the sensitivity of the
phase difference becomes higher than before. The first half of the derivation of the analog
interpolator is shown in Equations (10)–(14). In Equations (10) and (11), the measurement
signal and reference signal are multiplied by themselves. Then, the signal modulation (in
Equation (7)) is carried out for the frequency-doubled reference signal, and the differential
reference signal can be obtained, as shown in Equations (12)–(14) which are the processing
of the LIA. After this, we can obtain the information with the doubled phase difference.

HPF
[
cos2(ωt + θmeas)

]
= HPF

{
1
2
[cos(2ωt + 2θmeas) + cos(0)]

}
=

1
2

cos(2ωt + 2θmeas) (10)

HPF
[
cos2(ωt + θref)

]
= HPF

{
1
2
[cos(2ωt + 2θref) + cos(0)]

}
=

1
2

cos(2ωt + 2θref) (11)

HPF
[
cos2(ωt + θref)

]
→ Phase shiftingof

nπ
2

=
1
2

cos
(

2ωt + 2θref +
nπ
2

)
; n = 0, 1, 2, 3 (12)
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LPF
[

1
2

cos(2ωt + 2θmeas)×
1
2

cos(2ωt + 2θref)

]
=

1
8

LPF[cos(4ωt + 2θmeas + 2θref)− cos(2∆∅)] =
1
8

cos(2∆∅) (13)

LPF
[

1
2

cos(2ωt + 2θmeas)×
1
2

cos
(

2ωt + 2θref +
nπ
2

)]
=

1
8

cos
(

2∆∅+
nπ
2

)
; n = 0, 1, 2, 3 (14)
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Figure 6 is the block diagram of the multi-order analog interpolator. Additionally,
the second half of the derivation of this interpolator is shown in Equations (15)–(17). By
duplicating the processing in Equations (10) and (11), the (m + 1)-order interpolator can be
realized. For a better understanding of this concept, the example of the 5th-order analog
interpolator is shown in Figure 7. The parameters of this example are as follows: the
beat frequency of the laser is 2.7 MHz, the wavelength of the laser is 633 nm, the final
resolution is 2.473 nm, the bandwidth of the output signal is 80 MHz, and the corresponding
maximum velocity is 791 mm/s.{

HPF
[
cos2(ωt + θmeas)

]}(m+1)
=

1
2(2m)

cos
[

2(m+1)·(ωt + θmeas

)]
; m = 0, 1, 2, 3, . . . , N (15)

{
HPF

[
cos2(ωt + θref)

]}(m+1)
=

1
2(2m)

cos
[

2(m+1)·(ωt + θ ref

)]
; m = 0, 1, 2, 3, . . . , N (16)

LPF
[{

HPF
[
cos2(ωt + θmeas)

]}(m+1)
×
{

HPF
[
cos2(ωt + θref)

]}(m+1)
]
=

1
2(2*2m+1)

cos(2(m+1)·∆∅) (17)
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3. Results

In this investigation, an analog interpolator was tested with a heterodyne interfer-
ometric signal. Both the theoretical analysis and experimental result will be described
as follows.

3.1. Theoretical Analysis

The proposed interpolation method is based on the analog circuit. Different from
the digital interpolator, there is no ADC, algorithm, or MUC in the proposed interpolator.
Therefore, the bandwidth of the analog interpolator would be the lowest cutoff frequency
of these analog circuits, and the lowest one is usually the cutoff frequency of the LPF. To
analyze this, Equations (17)–(19) can be obtained. Equation (17) shows the interpolation
factor of the (m + 1)th-order interpolator, and Equation (17) shows the attenuation factor
of it. To summarize the above mentioned discussion, Table 2 shows the planning and
specifications of the analog interpolator from the 1st-order to the 10th-order, and the block
diagram refers to Figures 6 and 7. In this table, the interpolation factors and attenuation
factors are revealed in detail. For the interpolation factors, the final resolution can meet
the requirement of the precision positioning stage (Tables S1, S2, and S5, Supplementary
Material). For the attenuation factors, it is a disadvantage of the proposed interpolation
method. Therefore, we highly recommend adding an automatic gain control (AGC) module
or an amplifier after every HPF, as this is an effective solution to this disadvantage. The
cutoff frequencies of LPF are designed to be just a little bit lower than the beat frequency or
its multiplied frequencies. For the maximum velocities, all of them are the same with the
original bandwidth of the laser source. This analysis shows that the converting bandwidth
and the maximum velocity of the proposed interpolation method are independent of the
resolution and the interpolation factor.

In addition, the maximum velocity limitation is influenced by both the interpolating
resolution and the cutoff frequency of the LPF. The cutoff frequency of the LPF defines
the bandwidth of the maximum measurable velocity and serves as a barrier to filter out
high−frequency noise. As a result, the cutoff frequency becomes a crucial parameter in the
proposed interpolator that needs to strike a balance between the maximum velocity and
the SNR. The level of noise is dependent on the encoding system, operational conditions,
and environmental factors. Table 2 presents an example of the parameter configurations,
which may need to be adjusted according to the specific situation in different applications.

interpolation factor of(m + 1)thorder interpolator = 2(m+1) (18)
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attenuation factor of(m + 1)thorderinter polator = 2(2∗2
m+1) (19)

Table 2. Relationship between the multiplication order, interpolation factor, and the resolution.

Multiplication
Order

Interpolation
Factor

Attenuation
Factor

Resolution 1

(nm)
Cutoff Frequency of LPF 2

(MHz)
Max. Velocity 3,4

(mm/s)

None 1 20 79.125 2.5 791
1st 2 23 39.563 5 791
2nd 4 25 19.781 10 791
3rd 8 29 9.891 20 791
4th 16 217 4.945 40 791
5th 32 233 2.473 80 791
6th 64 265 1.236 160 791
7th 128 2129 0.618 320 791
8th 256 2257 0.309 640 791
9th 512 2513 0.155 1280 791

10th 1024 21025 0.077 2560 791
1 The resolution is according to the wavelength of 633 nm, the interferometer factor of 2, and quadrature (×4)
signal processing. 2 The beat frequency of the laser is 2.7 MHz. 3 The safety factor (fs) is set to 1. 4 The max.
velocities are independent of the resolutions.

3.2. Analog Interpolation Testing

To validate the effectiveness of the proposed interpolation method, simulated signal
testing was conducted. During the testing, reference and measurement signals with a
frequency of 2.7 MHz were generated using a function generator. These signals were then
processed using the proposed interpolator, as shown in Figure 8, for both the first and
second multiplication orders. The aim of this testing was to validate the effectiveness of
the proposed method and, as such, comparators were not included in the system. The
generated signals were kept consistent across all tested multiplication orders, and the
output signals from the LIA were captured to analyze the signal pattern, frequency, and
SNR. To introduce a phase difference between the reference and measurement signals, a
slight frequency variation (∆f ) was added to the signals.
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The test results indicate that the proposed multiplication method effectively enhances
the frequencies of both the reference and measurement signals, as depicted in Figure 9a,c.
The SNR values for the first- and second-order multiplications are approximately 20.7 dB
and 15.9 dB, respectively, and the resulting encoding signals are stable and compatible with
commercial control systems, as shown in Figure 9b,d.

Next, we will analyze the influence of signal attenuation between each order of multi-
plication and estimate the limitations of the proposed interpolation method. A comparison
of the SNR values between the first and second orders reveals a 4.8 dB attenuation in the
SNR. Based on previous studies [26,27], the LIA can recover signals with an SNR as low
as −24 dB under appropriate conditions. Assuming an SNR attenuation of 4.8 dB with
each order of multiplication, the SNR for the 10th-order multiplication is approximately
−22.5 dB, which is an acceptable SNR for modern LIA technology. According to Table 2,
the 10th-order multiplication can achieve a resolution of 0.077 nm, making it suitable for
precision positioning applications.
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vs. in-phase signal (yellow), 90-degree phase-shifted signal (blue), 180-degree phase-shifted signal
(red), and 270-degree phase-shifted signal (green); (c) generated signal (blue) and its multiplication
signal (yellow) in 2nd-order multiplication; (d) output signal from the LIA in 2nd-order multiplication,
vs. in-phase signal (yellow), 90-degree phase-shifted signal (blue), 180-degree phase-shifted signal
(red), and 270-degree phase-shifted signal (green).

3.3. Experiment Setup

The experiment setup of the interpolation circuit is shown in Figures 10 and 11.
The circuit in Figure 10 is a controlled experimental setup, and Figure 11 is a 1st-order
interpolator with an interpolation factor of 2 and resolution of 39.563 nm. The order of
magnitude of the resolution is equivalent to the resolution of the commercial laser encoder
system (Table S1, Supplementary Material). This interpolation circuit is used to deal
with the signal of the heterodyne interferometer with the wavelength of 633 nm, the beat
frequency of 2.7 MHz, and an interferometer factor of 2. The specifications of the circuit
modules are shown in Table 3, and the experimental result will be shown in the next section.
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Table 3. Bandwidth of the circuit module in the experiment.

Circuit Module Bandwidth

Multiplier DC—250 MHz
AGC DC—500 MHz

HPF 1 500 kHz
(Default)

LPF 1.5 MHz
Phase shifter 2–3.5 MHz
Comparator DC—200 MHz

1 High−pass filter circuit (HPF) is included in AGC circuit (AD8367).

3.4. Experimental Result

The experimental signal was observed and captured using an oscilloscope. Figure 12a
shows the beat frequencies of the reference signal (navy blue) and measurement signal
(red), when the measurement mirror is in the static conditions. The detected frequency
is around 2.7 MHz, just as with the beat frequency of the laser source. Figure 12b shows
the signal passing through the LIA (red and navy blue) and the output signal from the
comparators (light blue and purple) with the oscilloscope window width of 50 µs, when
the measurement mirror is moving with a constant speed of 2 mm/s. These are the results
of the controlled experimental setup, and as we can see it works well. Figure 12c shows
the beat frequencies of the reference signal (navy blue) and measurement signal (red) after
the first multiplier and in the static conditions. The detected frequency was doubled by
the first multiplier, and it is around 5.4 MHz. Figure 12d shows the signal after the LIA
(red and navy blue) and the signal from the comparators (light blue and purple) with
the oscilloscope window width of 20 µs, when the measurement mirror is moving with
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a constant speed of 2 mm/s. One can see that the density of the encoded signal of the
first−order interpolator is higher than the controlled setup, when under the same moving
speed. This means that the interpolator can improve the resolution of the heterodyne signal.
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4. Discussion

To discuss this research, there are some sections that need to be investigated. First
of all is the advantage of the analog interpolation method. The proposed method frees
the heterodyne interferometer system from the trade-off between the resolution and the
moving speed. The requirements for resolution and accuracy are becoming increasingly
strict in modern manufacturing, e.g., the semiconductor industry, photoelectric industry,
and panel/display industry. For the advanced positioning device, a resolution of a mi-
crometer or less is inadequate, and thus the need for an interpolator arises. Currently, most
interpolation technology is based on digital signal processing. Therefore, the bandwidth of
the encoded signal is limited by the clock of the ADC and MCU. Additionally, the complex-
ity of the algorithm which is related to the interpolation factor will affect the converting
speed. In view of this problem, a novel analog interpolation method has been proposed
in this research. Without the need for digital processing (ADC, algorithm, and MCU), the
interpolator’s conversion speed is independent of the interpolation factor.

Second, the disadvantage of this method and the solution to it will be discussed.
Theoretically, the analog interpolator can be stacked multiple times to achieve high-order
interpolation. However, the attenuation factor causes the signal to attenuate rapidly. The
attenuation factor of the first-order interpolator is 23, and this attenuation is not a serious
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problem in the beginning. If we place an amplifier after each HPF of the interpolator, this
attenuation effect will not accumulate significantly.

Lastly, the potential of this method should be discussed. Currently, there is rapid
growth in the applications of precision positioning stages. Many advanced types of equip-
ment have been proposed. For the technology of the grating-based encoder, the grating
pitch is a hard limitation for the positioning accuracy down to the nanometer scale. This
presents a great opportunity for the interferometry-based encoders. The interferometry-
based encoders have the initial resolution of the sub-micrometer scale, and the speed of
light is the definition of the meter. These are the significant advantages of interferometry-
based encoders. However, the maximum velocity of the interferometry-based encoders is a
limitation for the application field (Table S2, Supplementary Material). For the resolution
in the sub-nanometer range, the moving speed may be less than 10 mm/s, and it could be a
problem for the production capacity. For this reason, the proposed analog interpolation
method could be the solution to this problem. By integrating the analog circuits into an
integrated circuit (IC), the interpolator could be a compact module that can be embedded
in the sensor head of an interferometry-based encoder.

5. Conclusions

In this investigation, a novel analog interpolator was proposed. This system is based
on the principle of LIA. It can handle the heterodyne interferometric signal. The output
signal is compatible with a commercial motion control system. This interpolation method
can be implemented multiple times for a higher interpolation factor. By using this method,
there is no longer the need for trade-off between the interpolation factor and the moving
speed. It is beneficial for advanced precision positioning applications.

Supplementary Materials: The following supporting information can be downloaded at https:
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Specifications of the commercial precision positioning machine.
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